Mesh Parameterizations

Xiao-Ming Fu
Outline

• Definition
• Tutte’s barycentric mapping
• Least squares conformal maps (LSCM, ASAP)
• Angle-Based Flattening (ABF)
 • ABF++, LABF
• As-rigid-as-possible (ARAP)
 • Simplex Assembly
Outline

• Definition
• Tutte’s barycentric mapping
• Least squares conformal maps (LSCM, ASAP)
• Angle-Based Flattening (ABF)
 • ABF++, LABF
• As-rigid-as-possible (ARAP)
 • Simplex Assembly
Definition

• A function that puts input surface in one-to-one correspondence with a 2D domain.

• Parameterization of a Triangulated Surface
 • all \((u_i, v_i)\) coordinates associated with each vertex \(v_i = (x_i, y_i, z_i)^T\)
Definition

• Build a local coordinate system on input triangle t.

• The mapping is piecewise linear.

• J_t is 2×2.

$$\begin{bmatrix} u_j - u_i & u_k - u_i \\ v_j - v_i & v_k - v_i \end{bmatrix} \begin{bmatrix} x_j - x_i & x_k - x_i \\ y_j - y_i & y_k - y_i \end{bmatrix}^{-1} \begin{bmatrix} u_i \\ v_i \end{bmatrix} = x_j - x_i$$

$$f_t(x) = J_t x + b_t$$
Definition

- J_t is the Jacobian of $f_t(x)$.

\[
J_t = \begin{pmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial y}
\end{pmatrix} = \nabla u
\]

\[
= \frac{1}{A_t} \begin{pmatrix}
y_j - y_k & y_k - y_i & y_i - y_j \\
x_k - x_j & x_i - x_k & x_j - x_i
\end{pmatrix}
\begin{pmatrix}
u_i \\
u_j \\
u_k
\end{pmatrix}
\]

\[
f_t(x) = J_t x + b_t
\]
Constraints

• Bijective
 • The image of the surface in parameter space does not self-intersect.
 • The intersection of any two triangles in parameter space is either a common edge, a common vertex, or empty.
Constraints

- Inversion-free
 - The orientation of each triangle is positive.
Constraints

• Locally injective
 • The orientation of each triangle is positive $\rightarrow \det J > 0$.
 • For boundary vertex, the mapping is locally bijective $\rightarrow \theta(v) > 2\pi$.

\[\theta(v) < 2\pi \quad \theta(v) > 2\pi \]
Constraints

• Low distortion
Outline

• Definition

• Tutte’s barycentric mapping

• Least squares conformal maps (LSCM, ASAP)

• Angle-Based Flattening (ABF)
 • ABF++, LABF

• As-rigid-as-possible (ARAP)
 • Simplex Assembly
Barycentric Mapping

• One of the most widely used methods.

Given a triangulated surface homeomorphic to a disk, if the \((u, v)\) coordinates at the boundary vertices lie on a convex polygon in order, and if the coordinates of the internal vertices are a convex combination of their neighbors, then the \((u, v)\) coordinates form a valid parameterization (without self-intersections, bijective).
Barycentric Mapping

- Homeomorphic to a disk.
- A convex polygon
 - circle, square,......
- A convex combination
 - $\omega_{ij} > 0$
 - Uniform Laplacian, mean value coordinate
- Solver: linear equation.
Mean value coordinates

- Our aim is to study sets of weights \(\lambda_1, \ldots, \lambda_k \geq 0 \) such that
 \[
 \sum_{i=1}^{k} \lambda_i v_i = v_0 \\
 \sum_{i=1}^{k} \lambda_i = 1
 \]

\(v_i \) is on 2D.
Proposition

• The weights

\[
\lambda_i = \frac{\omega_i}{\sum_{i=1}^{k} \omega_i}, \\
\omega_i = \frac{\tan \frac{\alpha_{i-1}}{2} + \tan \frac{\alpha_i}{2}}{\|v_i - v_0\|}
\]

are the valid weights.

Proof: substitution. ???

Come from the mean value theorem for harmonic functions. ???
Mean value coordinates

• The input mesh is a spatial one.
 • $v_i \in R^3$
 • the mean value coordinates can be applied directly.
 • compute the coordinates directly form the spatial angle.

Figure 3. Comparisons from left to right:
(3a) Triangulation, (3b) Tutte, (3c) shape-preserving, (3d) mean value
Outline

• Definition
• Tutte’s barycentric mapping
• **Least squares conformal maps (LSCM, ASAP)**
• Angle-Based Flattening (ABF)
 • ABF++, LABF
• As-rigid-as-possible (ARAP)
 • Simplex Assembly
Conformal mapping

• Conformal mappings locally correspond to similarities

Figure 5.8. A conformal parameterization transforms a small circle into a small circle, i.e., it is locally a similarity transform. (Image taken from [Hormann et al. 07]. ©2007 ACM, Inc. Included here by permission.)
Similar transform

• 2D case: for one triangle \(t \)

• \(J_t = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = s \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \)

• \[\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \]

• \[\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \]

• Cauchy-Riemann Equations.

\[J_t = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} \]
Least squares conformal maps (LSCM, ASAP)

• Energy

\[E_{LSCM} = \sum_t A_t \left(\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 \right) \]

• measure non-conformality
• It is invariant with respect to arbitrary translations and rotations.
• \(E_{LSCM} \) does not have a unique minimizer.
• Fixing at least two vertices. Significantly affect the results.
Implementation – Homework 3

• Least squares
• https://en.wikipedia.org/wiki/Least_squares
Outline

• Definition
• Tutte’s barycentric mapping
• Least squares conformal maps (LSCM, ASAP)
 • Angle-Based Flattening (ABF)
 • ABF++, LABF
 • As-rigid-as-possible (ARAP)
 • Simplex Assembly
Angle-Based Flattening (ABF)

- Key observation: the parameter space is a 2D triangulation, uniquely defined by all the angles at the corners of the triangles.
 - Find angles instead of \((u_i, v_i)\) coordinates.
 - Use angles to reconstruct the resulting parameterization.
- Optimization goal:
 \[
 E_{ABF} = \sum_t \sum_{i=1}^{3} \omega_i^t (\alpha_i^t - \beta_i^t)^2
 \]
 \(\beta_i^t\): Optimal angles for \(\alpha_i^t\).
 \(\omega_i^t = (\beta_i^t)^{-2}\).

 \[
 \beta_i^t = \begin{cases}
 \frac{\tilde{\beta}_i^t \cdot 2\pi}{\sum_i \tilde{\beta}_i^t}, & \text{Interior vertex} \\
 \tilde{\beta}_i^t, & \text{Boundary vertex}
 \end{cases}
 \]
Constraints

• Positive resulting angles:
 \[\alpha_i^t > 0 \]

• The three triangle angles have to sum to \(\pi \):
 \[\alpha_i^t + \alpha_2^t + \alpha_3^t = \pi \]

• For each internal vertex the incident angles have to sum to \(2\pi \):
 \[\sum_{t \in \Omega(v)} \alpha_k^t = 2\pi \]

• Reconstruction constraints:
 \[\prod_{t \in \Omega(v)} \sin \alpha_{k\oplus 1}^t = \prod_{t \in \Omega(v)} \sin \alpha_{k\ominus 1}^t \]
Linear ABF

• Reconstruction constraints are nonlinear and hard to solve.
• Initial estimation + estimation error
 • $\alpha^t_i = \gamma^t_i + e^t_i$

\[
\log \left(\prod_{t \in \Omega(v)} \sin \alpha_{k \oplus 1}^t \right) = \log \left(\prod_{t \in \Omega(v)} \sin \alpha_{k \oplus 1}^t \right)
\]

\[
\sum_{t \in \Omega(v)} \log(\sin \alpha_{k \oplus 1}^t) = \sum_{t \in \Omega(v)} \log(\sin \alpha_{k \oplus 1}^t)
\]

• Taylor expansion:

\[
\log(\sin \alpha_{k \oplus 1}^t) = \log(\sin \gamma_{k \oplus 1}^t + e_{k \oplus 1}^t)
= \log(\sin \gamma_{k \oplus 1}^t) + e_{k \oplus 1}^t \cot \gamma_{k \oplus 1}^t + \cdots
\]

It is linear with estimation error.
Solver

• Set $\gamma_i^t = \beta_i^t$

• Problem:

$$\min_{e} E_{ABF} = \sum_{t} \sum_{i=1}^{3} \omega_i^t (e_i^t)^2$$

subject to

$$Ae = b$$

$$\Rightarrow$$

$$\begin{pmatrix} D & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} e \\ \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$\Rightarrow$$

$$e = D^{-1}A^T (AD^{-1}A^T)^{-1}b$$
Reconstruct parameterization

• Greed method.
 • constructs the triangles one by one using a depth-first traversal.

• Least squares method.
 • an angle based least squares formulation which solves a set of linear equations relating angles to coordinates.
Greed method

• Choose a mesh edge \(e^1 = (v^1_a, v^1_b) \).
• Project \(v^1_a \) to \((0,0,0)\) and \(v^1_b \) to \((\|e^1\|, 0,0)\).
• Push \(e^1 \) on the stack \(S \).
• While \(S \) not empty, pop an edge \(e = (v_a, v_b) \). For each face \(f_i = (v_a, v_b, v_c) \) containing \(e \):
 • If \(f_i \) is marked as set, continue.
 • If \(v_c \) is not projected, compute its position based on \(v_a, v_b \) and the face angles of \(f_i \).
 • Mark \(f_i \) as set, push edge \((v_b, v_c)\) and \((v_a, v_c)\) on the stack.
• Accumulate numerical error.
Least squares method

• The ratio of triangle edge lengths $\|\overrightarrow{P_1P_3}\|$ and $\|\overrightarrow{P_1P_2}\|$ is

$$\frac{\|\overrightarrow{P_1P_3}\|}{\|\overrightarrow{P_1P_2}\|} = \frac{\sin \alpha_2}{\sin \alpha_3}$$

\Rightarrow

$$\overrightarrow{P_1P_3} = \frac{\sin \alpha_2}{\sin \alpha_3} \begin{pmatrix} \cos \alpha_1 & -\sin \alpha_1 \end{pmatrix} \overrightarrow{P_1P_2}$$

• Thus for each triangle, given the position of two vertices and the angles, the position of the third vertex can be uniquely derived.

 • greedy method.
Least squares method

∀$t = (j, k, j)$, $M^t(P_k - P_j) + P_j - P_l = 0$

$M^t = \frac{\sin \alpha_k}{\sin \alpha_l} \begin{pmatrix} \cos \alpha_j & -\sin \alpha_j \\ \sin \alpha_j & \cos \alpha_j \end{pmatrix}$

1. Two equations per triangle for the x and y coordinates of the vertices.

2. The angles of a planar triangulation define it uniquely up to rigid transformation and global scaling.
 - Introduce four constraints which eliminate these degrees of freedom.
 - Fix two vertices sharing a common edge.
Least squares method

• Choose one edge $e^1 = (v^1_a, v^1_b)$.
• Project v^1_a to (0,0,0) and v^1_b to ($\|e^1\|$, 0,0).

• Solve following energy to compute positions of other vertices:

$$E = \sum_t \left\| M^t (P_k - P_j) + P_j - P_l \right\|^2$$
Outline

• Definition
• Tutte’s barycentric mapping
• Least squares conformal maps (LSCM, ASAP)
• Angle-Based Flattening (ABF)
 • ABF++, LABF
• As-rigid-as-possible (ARAP)
 • Simplex Assembly
As-rigid-as-possible method

Paper: A Local/Global Approach to Mesh Parameterization

Figure 1: Parameterization of the Gargoyle model using (a) our As-Similar-As-Possible (ASAP) procedure, (b) As-Rigid-As-Possible (ARAP) procedure, (c) Linear ABF [ZLS07], (d) inverse curvature approach [YKL*08], and (e) curvature prescription approach [BCGB08]. The pink lines are the seams of the closed mesh when cut to a disk.
Distortion type

• Three common distortion types:
 • Isometric mapping: rotation + translation
 • Conformal mapping: similarity + translation
 • Area-preserving mapping: area-preserving + translation
 • Conformal + Area-preserving \iff Isometric
Singular values

• Isometric mapping
 • $J_t \implies$ rotation matrix
 • $\sigma_1 = \sigma_2 = 1$

• Conformal mapping
 • $J_t \implies$ similar matrix
 • $\sigma_1 = \sigma_2$

• Area-preserving mapping
 • $\det J_t = 1$
 • $\sigma_1 \sigma_2 = 1$

$f_t(x) = J_t x + b_t$

$J_t = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$

σ_1, σ_2 are the two singular values of J_t.
Goal

\[E(u, L) = \sum_t A_t \| J_t - L_t \|^2_F \]

\(L_t \): target transformation
- Isometric mapping: rotation matrix
- Conformal mapping: similar matrix

\textbf{Variables:}
- 2D parameterization coordinate
- Target transformation

\textbf{How to optimize?}

\[f_t(x) = J_t x + b_t \]

\[J_t = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} \]

\(\sigma_1, \sigma_2 \) are the two singular values of \(J_t \).
General Local/Global Approach

• Alternatively optimization
 • Local step:
 • Fix 2D parameterization coordinates, optimize target transformations.
 • Global step:
 • Fix target transformations, optimize 2D parameterization coordinates.

• **Global step**:
 • Quadratic energy
 • Linear system
 • Eigen

\[
E(u, L) = \sum_{t} A_t \| J_t - L_t \|_F^2
\]
Local step: Procrustes analysis

- Approximate one 2×2 matrix J_t as best we can by another 2×2 matrix L_t.

- $d(J_t, L_t) = \|J_t - L_t\|^2_F = \text{trace}\left((J_t - L_t)^T(J_t - L_t)\right)$

- Minimize $d(J_t, L_t)$ through Singular Value Decomposition (SVD)
 - $J_t = U\Sigma V^T$, $\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix}$
 - Signed SVD: U and V are rotation matrix, σ_2 maybe negative
 - Best rotation: UV^T
 - Best similar matrix: $U \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} V^T$, $s = \frac{\sigma_1 + \sigma_2}{2}$
Local/Global Approach summary

Figure 2: Parameterizing a mesh by aligning locally flattened triangles. (Left) Original 3D mesh; (middle) flattened triangles; (right) 2D parameterization.
Connection to singular values

• Conformal

$$E(u) = \sum_t A_t \left(\sigma_t^1 - \sigma_t^2 \right)^2$$

• Isometric

$$E(u) = \sum_t A_t \left((\sigma_t^1 - 1)^2 + (\sigma_t^2 - 1)^2 \right)$$

$f_t(x) = J_t x + b_t$

σ_t^1, σ_t^2 are the two singular values of J_t.

$$E(u, L) = \sum_t A_t \| J_t - L_t \|^2_F$$
Outline

• Definition
• Tutte’s barycentric mapping
• Least squares conformal maps (LSCM, ASAP)
• Angle-Based Flattening (ABF)
 • ABF++, LABF
• As-rigid-as-possible (ARAP)
 • Simplex Assembly
Information

• Computing Inversion-Free Mappings by Simplex Assembly
• ACM Transactions on Graphics(SIGGRAPH Asia) 35(6), 2016.
• http://staff.ustc.edu.cn/~fuxm/projects/SimplexAssembly/index.html
Affine transformation

Key observation: the parameter space is a 2D triangulation, uniquely defined by all the AFFINE TRANSFORMATIONS on the triangles.

Edge assembly constraints:

$$A_i(v_a - v_b) = A_j(v_a - v_b)$$
Key idea

• disassembly + assembly
 • Treat affine transformation as variables
 • Unconstrained optimization

(a) (b) (c) (d)
Distortion control

Conformal: \(d_i^c = \begin{cases}
\frac{1}{2} \|A_i\|_F \|A_i^{-1}\|_F, & d = 2 \\
\frac{1}{8} \left(\|A_i\|^2_F \|A_i^{-1}\|^2_F - 1 \right), & d = 3
\end{cases} \)

Volumetric: \(d_i^{vol} = \frac{1}{2} \left(\det(A_i) + \frac{1}{\det(A_i)} \right) \)

Isometric: \(d_i^{iso} = 0.5 \cdot (d_i^c + d_i^{vol}) \)

Barrier function on distortion:

1. The type of distortion and distortion bound \(K \) are given:
\[
E_C^* = \sum_{i=1}^{N} \frac{e^{s \cdot d_i^*}}{K - d_i^*}
\]

2. The type of distortion is not specified or distortion bound \(K = \infty \):
\[
E_C^* = \sum_{i=1}^{N} e^{s \cdot d_i^*}
\]
Unconstrained optimization problem

Disassembly: project initial A_i^0 into feasible space.

$\min_{A_1,\ldots,A_N, T_1,\ldots,T_N} \lambda E_{assembly} + E_C + \mu E_m$

$\lambda_{k+1} = \min \left(\lambda_{\min} \cdot \max \left(\frac{E_{C,k} + \mu E_{m,k}}{E_{assembly,k}}, 1 \right), \lambda_{\max} \right)$

1. $E_{assembly}$ dominates the energy, approach zero;
2. λ_{\max}: avoid large distortion.

$E_{assembly}$: summation of squares of edge, assembly constraints.

E_C: Barrier function on distortion

E_m: users’ designed energy
Optimal bound

- Use the current maximal distortion as the bound for the next round of minimization.
Locally injective mapping

• Requirements for locally injective mapping on triangle mesh:
 • 1. inversion-free;
 • 2. the sum of triangle angles θ_v around boundary vertex v is less than 2π.

• A barrier term:
 $$ E_\theta = \sum_{v \in \partial M} \frac{1}{2\pi - \theta_v} $$

[Lipman 2012] [Fu et al. 2012] [Schuller et al. 2013] [Kovalsky et al. 2012] Ours without E_θ Ours with E_θ