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INTRODUCTION

The growth of solid surfaces via vapor phase processes can be viewed as
proceeding in either of two directions: outward by physical or chemical
deposition or inward by physical or chemical etching. Figure 1 is a sche-
matic illustration of the evolution of a surface, S(r, t), where S is the 
coordinate of the growing surface at the position r = (x, y) and time t, and
the initial condition S(r) = 0 at t = 0 corresponds to initiating the growth
on a perfectly fiat surface. The average value of the new surface height at
any particular time (S(r)) corresponds to the amount of material added
to or removed from the original surface. As illustrated in Figure 1, surfaces
typically roughen during growth. Many technological applications in
optics and electronics require extremely smooth surfaces, and at present,
both areas are hampered by inherent roughness resulting from growth
processes. A qualitative understanding of how growth mechanisms affect
surface morphology is very useful, but to be able to optimize grown
structures, a method to predict surface topology quantitatively will be
required. Because rough surfaces are inherently very complex and do not
appear to have underlying symmetry constraints to simplify mathematical

401
0066-426X/94/1101-0401 $05.00

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 1

99
4.

45
:4

01
-4

38
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

&
 T

ec
hn

ol
og

y 
of

 C
hi

na
 o

n 
06

/1
5/

07
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.annualreviews.org/aronline


402

o

A

t=O

TONG & WILLIAMS

Figure 1 A side view of a solid surface S at various times as it grows outward because of
deposition or inward because of etching. The surface evolves roughness as it grows.

modeling, a predictive treatment may appear hopeless. However, recent
theoretical and experimental developments have shown that the fun-
dameiatal molecular-scale phenomena that are involved in surface growth
are common to all deposition and etching processes that involve vapor-
solid interactions and that these processes leave a definite signature in the
topology of the surface. Thus, a unified framework for calculating details
of surface topography may soon be constructed that incorporates such
varied growth methods as sputter deposition, evaporative techniques,
including molecular beam epitaxy (MBE) of crystalline materials, chemical
vapor deposition (CVD), ion sputter-etching, dry chemical etching, and
plasma etching as special cases. After a brief historical perspective on
studies of the development of surface morphology, this review presents a
snapshot of current developments in the quantitative classification and
understanding of the surface topography that results from growth pro-
cesses that add or remove many monolayers of a solid material. The
structure of the solid below the surface will not be addressed.

The classification scheme most often invoked to understand epitaxial
film deposition was proposed over three decades ago by Bauer (1). This
paradigm recognized three processes, two of which are topologically
distinct, that have been named after their original investigators: Frank-
van der Merwe (FM) for monolayer-by-monolayer growth (2), Volmer-
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KINETICS OF SURFACE GROWTH 403

Weber (Wl) for three-dimensional (3D) crystallite formation (3), 
Stranski-Krastanov (SK) for growth of an initial uniform layer followed
by 3D crystallite growth (4). These models are based on thermodynamic
balances involving surface and interfacial energies and stresses built up in
the films and have been discussed in detail previously (5-7). For homo-
epitaxy, i.e. the deposition of a material onto itself to form a single
crystalline film over the original surface, the growth should proceed via
the FM process in the thermodynamic limit. An important realization is
that for heteroepitaxy, i.e. the deposition of one material onto a different
material, there are thermodynamic driving forces (the Grinfield instability)
that will roughen the surface through the growth of separate islands (8).
The applicability of the paradigm depends on the attainment of local
equilibrium on the growing surface, which requires that the mass transport
processes parallel to the surface be fast compared to the flux of depositing
or etching species arriving at the surface. In modern technological appli-
cations, however, the drive is toward lower substrate temperatures to
minimize unwanted chemical interactions within a complex material sys-
tem and higher growth rates to achieve more economical production (9).
These factors push practical deposition of films by vapor-phase processes
away from the idealized thermodynamic limits and toward a non-
equilibrium or kinetically limited regime. At the same time, the require-
ments with respect to minimizing surface roughness have become even
more stringent.

The influence of kinetics on surface topology was experimentally recog-
nized when chemical analyses by Auger spectroscopy and other surface-
sensitive techniques indicated that the three thermodynamic models dis-
cussed above did not explain the morphology of many deposited films
(10). New models involving the growth of pyramidal shaped islands, i.e.
simultaneous multilayers, which form when the deposition rate is high
compared to the lateral mass transport rate, were then proposed (11). The
dependence of surface morphology on incident flux for material deposition
is illustrated in Figure 2, and this has also been the object of theoretical
investigation for decades (12-14). At low fluxes, the atoms or molecules
that arrive on a surface will diffuse with a low probability of encountering
other deposited species. These diffusing species eventually arrive at a step
edge and a:re incorporated into the growing film. This is the process of
step-flow growth, which is generally considered to produce the flattest
possible surfaces and is the kinetic route to achieve FM films (15-17). 
higher incident fluxes, the probability that two or more diffusing species
will contact increases as Rm, where R is the flux and m is the number of
species fusing together. If rn is the critical number required to nucleate an
island, then the area density of nuclei is extremely sensitive to the kinetics
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404 TONG & WILLIAMS

Low Flux High Flux

Figure 2 Illustration of the influence of incident flux on the morphology of a growing
surface. At low flux, very little interaction occurs between adsorbed species before they
diffuse to step edges and stick, thereby leading to step edge growth and relatively fiat surfaces.
At high fluxes, the probability of several adsorbed species coming together to form the
nucleus of an island is much greater, and the result is the growth of simultaneous multilayers
that form many islands and produce roughening of the surface.

of growth. At high enough fluxes or low enough substrate temperatures,
islands nucleate on top of other islands, and the growth of a rough surface
with pyramidal shaped features proceeds regardless of the thermo-
dynamically most favored structure for the film (11, 12, 18, 19).

With the introduction of high-resolution electron microscopies and
scanning probe techniques such as scanning tunneling microscopy (STM)
and atomic force microscopy (AFM), actual pictures of the various stages
of film growth have been obtained (20). The pictures seldom resemble
either the quasithermodynamic ideals of stable film structures with locally
flat surfaces or the kinetic models with pyramids, as shown in Figure 3.
These examples are all for the heteroepitaxial deposition of thin films of
CuC1 on a lattice-matched CaF2 substrate (21), but qualitatively similar
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Figure 3 Topc,graphs of epita×ial CuC1 lilms grown on CaF2 (111) substrates (2]). 
z-scale is e×paBded by 5 x compared ~o the ×-y scales. Two different growth temperatures
and two different deposition fluences are shown: A is 110°C, B is 80°C, 1 is 6 nm, and 2 is
12 nm (continued on next page).

images have been obtained for a wide range of growth processes involving
the deposition or etching of single crystalline, polycrystalline, and amorphous
materials. The complexity of the morphology presents significant chal-
lenges to characterize the type, amount, and temporal evolution of the
topography of a growing surface quantitatively.
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Figure 3--(continued)

PHENOMENOLOGY
Stochastic Roughenin9 and Gaussian Smoothenin9
The extreme kinetic limit of growth via a surface-vapor interaction is the
stochastic addition or removal of atoms with no lateral transport on the
surface. Figure 4 illustrates the growth of a surface by the random depo-
sition of 10, 100, and 300 monolayers of atoms onto a 64 × 64 square
lattice, or by holding the figure upside down, the random withdrawal of
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200,0

150.0

I(}0,0

Figure 4 Stoc~astic su~fatc¢ growth on a 64 x 64 ~egracnt of a square lattice for the deposition
of 10, 100, and 300 monolaycrs, q?he z-sea~e is contracted by I J5 >~ c~mDared to the xJy
s~zdes.

atoms. In this illustration, the atoms only come to rest when they have
touched the next highest atom on a lattice site; thus, no overhangs or
internal voids in the film are possible. Such structures are observed in real
films and more realistic simulations (22, 23), but this simple picture 
presented here to introduce the methods for quantitatively characterizing
a rough surface rather than as a model of how real surfaces grow. As
growth proceeds, the roughness of the surface increases, and the noise level
essentially follows a Poisson distribution in which the standard deviation is
proportional to the square root of the amount of material deposited,
I(S(r))l ~<’~, where the triangular brackets indicate an average over r. The
primary feature of this stochastic model is that there is no correlation at
all in the heights at differertt ~ocations ou the surface.

Of course, a totally random surface is not physically possible because
some lateral transport of the atoms will always smoothen the roughness.
The simplest way to model such a smoothening is to convolute a stochastic
surface with a two-dimensional Gaussian futtction, as illustrated in Figure
5. Here, the rough surface of the 300-monolayer stochastic film in Figure 4
has been convoluted with a symmetric two-dimensiortal Gaussian, F(I rl) 
U(nae)exp (-IrI2/~), where ~r, the lateral correlation length, is 2 
atomic diameters and lr) is the magnitude of the vector r. These surfaces
look qualitatively similar to those in Figure 4 and many others that are
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408 TONG & WILLIAMS

Figure 5 The stochastic surface for 300-monolayer deposition after convolution with a two-
dimensional Gaussian function that has a correlation length corresponding to 2 and 4 atomic
diameters. The z-scales are different from those in Figure 4.

produced by deposition or etching, but a quantitative method of analyzing
surface morphology is required to allow comparison of rough surfaces
with each other and with different models to describe the roughness.
The growing surface in the comoving frame of reference, which is the
experimental observable, is defined to be H(r) -= S(r)-(S(r)). The most
obvious quantitative characteristic of a rough surface is the root-mean
square (rms) of H(r) or the standard deviation of th~ surface height,
6 ~ [(H(r)a)] ~/2. This is an important number for characterizing variations
perpendicular to the average surface, but many investigators have focused
too narrowly on just this one parameter. The concept of roughness also
involves the aspect ratio of the height to the width of the features or the
corrugation of the surface. For a given value of 6, the surface with the
largest aspect ratio is usually considered to be the roughest. Thus, a
measurement of the extent of features in the plane of growth, i.e. the
lateral correlation length, is also required to describe a surface.
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Autocovariance and Spectral Power Density

Quantitative information about both the height variations and the lateral
correlation is provided by the autocovariance function (24-26),

G([vl) -- (H(r’)H(r’-r))-(H(v)> 2 = (H(/)H(/-v)), 1.

where the surface roughness is assumed to be isotropic here so that G is a

function of the magnitude of r. At ]rl = 0, G(0) is the variance ‘52 of the
surface height, but the behavior of G([r[) for Ivl > 0 represents a quan-
titative description of how the heights at different points on a surface are
correlated to each other as a function of their separation [rl. Calculating
G([r[) of a surface is a way to compress a data set enormously, since the
n × n triples ,of numbers (H, x, y) that represent topographic information
in three dimensions are compressed into a two-dimensional representation
with only n pairs of numbers (G, Ir[). This may represent a reduction 
the number of experimental data points to be considered and processed

mentally by several orders of magnitude, and at the same time G(Ir[) can
reveal details hidden in the complexity of a topograph. The G([r]) for the
random surface of Figure 4 resembles a delta function because G(0) is the
variance of tlhe surface but G([v[) ~ 0 for [rl > 0. This is the quantitative
statement that the heights at different locations on the stochastic surface
are uncorrelated. On the other hand, thc autocovariance functions for the
smoothened surfaces from Figure 5 have a width determined by the lateral
correlation length, o-, used in smoothening the stochastic surface, as shown
in Figure 6a. Thus, because the autocovariance function can be computed
for any r by (125)

G(lr[) ~ 82 exp (-Irl2/,r2), 2.

a Gaussian model of roughness allows the surface morphology to be
characterized by only two numbers: the standard deviation of the surface
height fi and the lateral correlation length a. Determining ,5 and a rep-
resents an extremely significant data compression as only two numbers
quantitatively characterize an entire n x n topograph in three dimensions.

Another convenient data summarization function is the spectral power
density or the, structure factor for the rough surface (27),

g(lq[) = ][G([r[)], 3.

where ~ is the two-dimensional Fourier transform operator. The spectral
power density is an extremely useful function because the electrooptical
(28) and chemical properties (8) of a rough surface can be formulated 
terms ofg(Iqt). Figure 6b shows the spectral power densities for the sto-
chastic model and the smoothened surfaces of Figure 6a. The spectral
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400
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Figure 6 (a) The autocorrelation function G(Irl) computed for the three Gaussian-smooth-
ened surfaces from Figure 5. The corresponding autocorrelation function for the original
stochastic surface of Figure 4 on this scale is G(0) = 300 and G([rl) ~ 0 for Irl > 0, and 
not plotted because of the large difference in scale. (b) The corresponding reciprocal space
spectral density g(q) for the stochastic and the Gaussian-smoothened surfaces.

power density for the stochastic surface is essentially a constant, with a
significant noise level because of the finite number (512 × 512) of data
points sampled. The random arrival of depositing species roughens a
surface the same amount at all length scales, thus producing features on
the surface that are equal in magnitude at all wavenumbers. Because the
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KINETICS OF SURFACE GROWTH 411

Fourier transform of a convolution of two functions is just the product of
their Fourier transforms, g(q) of the Gaussian-smoothened surfaces is (25)

The obvious route of obtaining 6 and a for a particular surface is by
computing the autocorrelation function from real-space data and then
fitting G(r) to a Gaussian (24, 26). However, a reciprocal-space experiment
that may be used to ascertain the rms roughness and the correlation length
of a surface is to determine g(q) by measuring the angle dependence of the
nonspecular intensity in a light-scattering experiment (29, 30). In a plot
of ln[g(lql)] vs Iql 2, the slope yields -a2/4 and the value of ln[g(lql)]
extrapolated to Iql = 0 yields g(0) = rcb2ff2. This method has been shown
to be quite sensitive. Before real-space techniques had sufficient resolution,
values of 6 as small as a few angstroms had been inferred (31) from the
scattering of visible radiation from rough surfaces by assuming that the
experimental, spectral density has the functional form of Equation 4.

Early Experimental Observations

Because of the technological importance of mirrors, the surface roughness
of metal films deposited onto various types of optical flats has been mea-
sured using several different techniques (25, 25a). Very often, the charac-
terization of these surfaces yielded results that differed significantly from
the expectati.ons of Equations 2 and 4. The experimentally determined
autocorrelation functions for an example of heterodeposition, e.g. Ag thin
films grown on insulating substrates, are shown in Figure 7. These data
were obtained by digitizing real-space images of deposited Ag films
obtained wit]a an electron microscope, which requires a means to calibrate
the z-scale ot’ the resulting topographs (25, 32). The autocorrelation func-
tions display statistically significant oscillations about G(I r I) = 0, and thus
cannot be modeled by a simple Gaussian function as in Equation 2. One
approach to improve the model for G(Irl) is to fit the experimental data to
a somewhat :more complex function (25),

G([ r 1) ~ 6:~ exp ( -- 12/0"2) COS(bit1), 5.

where the cosine term is used to model the oscillations in the experimental
data. This adds a third number, b, to the set often used to quantitatively
characterize a rough surface. The physical meaning of this additional
number is actually more clear when considering the Fourier transform of
Equation 5,
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412 TONG & WILLIAMS

a) b)

r (10 a A) q (10.2

Figure 7 (a) Experimentally determined autocorrelation functions for silver films deposited
onto insulating substrates (25). These functions display the oscillations about G(]r]) = 0 
represent typical behavior for the autocorrelation functions of surface growth. (b) The
spectral density functions for the same data as (a). There is a pronounced peak in the speetral
density for q > 0. The inset in (b) shows how the spectral density is modeled in Equation 
by shifting the peak of/a Gaussian distribution up to ]q] = b to correspond with the peak in
the experimental distribution.
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KINETICS OF SURFACE GROWTH 413

g(Iql) (z/2)6~a~ {exp[-a~(lql+b)~/4]+exp[-~r2(lql-b)~/4]}.   

Thus, the peak in the reciprocal-space spectral density for heterodeposition
of metals on insulators occurs at a nonzero spatial frequency Iql = b, as
shown in the examples of Figure 7b (25).

Equation 6 illustrates a major problem with the traditional analysis of
experimentally measured spectral density functions obtained from a light-
scattering experiment. Such data are necessarily collected over a finite
range of Iql, and usually do not include data close to Iql = 0 because of
the strong specular scattering of the incident light, which has some angular
divergence. Obtaining a reliable value of 6 fi-om light-scattering experi-
ments becomes very questionable if the peak in the spectral density occurs
at lq] > 0 for the actual distribution (25). if the data are analyzed according
to Equation 4, the extrapolation of the experimental In [q(lql)] to ]q] = 
will yield a .,;ignificant overestimate of the actual surface rms height. Thus,
real-space imaging techniques will generally yield superior information
about 6 as long as they have a resolution that is significantly smaller than
the lateral correlation length of the sample. The correlation length is often
overlooked in analyses of rough surfaces, but in principle, a can be easily
determined from scattering measurements and can even be determined
readily as a function of time by performing scattering experiments during
surface growth.

Recently, autoregressive techniques have been adapted to characterize
G(I r l) and 9’(1 q l) from rough surfaces (33). This approach has been utilized
because experimental data are often not satisfactorily modeled even by the
three parameters: 6, a, and b. Rather than extend the model of Equations 5
and 6 by adding higher-order moments and harmonics, which would not
have a convenient physical interpretation, an entirely different param-
eterization has been proposed by Rasigni et al (33). In the autoregressive
approach, tlhe experimental spectral density function is approximated by
a function of the form

~7(Iql) ~ ~(0)11 +Za,,exp(-i2~rnlq[Ax)l-~,

where the a,, are fitting parameters and Ax is the characteristic spatial
interval used in collecting real-space data. This form for the spectral
density function fits the experimental data for Ag films deposited onto
insulating substrates reasonably well if Equation 7 is taken up to the fourth
order, as shown in Figure 8. This parameterization ofg(Iq]) is very useful
if one requires a reasonably faithful representation of the entire spectral
density function for numerical analysis of other properties of the rough
surface. However, the coefficients a,, are not intrinsic properties of the
surface, but rather depend on how the surface roughness data were
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414 TONG & WILLIAMS

collected, i.e. on the spacing between measurements Ax. The coefficients
a, do not represent a convenient data compression for quantitative com-
parison of different surfaces with each other or with theory because no
physical meaning can be associated with them.

Deficiencies

The parameters ~, o’, and b are phenomenological because they describe
the rms surface height, the correlation length in the surface plane, and the
spatial frequency of the maximum spectral density, but they give no insight
into how or why a particular surface has formed the way it has. The values
of ~, a, and b determined at a given time do not provide any information
about the evolution of a growing surface, and thus all three must be
measured as functions of time to determine the temporal behavior of
growth. In addition, a Gaussian appears to be too strong a smoothening
function to model the lateral mass transport on a stochastically roughened
surface because experimentally measured autocorrelation functions such
as those in Figure 7b have values of ~ and a significantly larger than the
models for Gaussian smoothened stochastic surfaces in Figure 6. In order
to gain experimental control of the morphology of a growing surface,
better models of surface roughness and an improved understanding of the
growth process are required.

SCALING

Self-Affinity and Self-Similarity

Another approach to the understanding of surface growth employs the
concept of topographical scaling (34). The most familiar type of scaling 
self-similarity, which itself is a restricted case of a more general class, self-
affinity. If ~¢H(~r) is indistinguishable from H(v), then H is self-similar,
but if the z-axis must be multiplied by a different factor, i.e. ~’H(~’) 
indistinguishable from H(r), then H is self-affine. Many real surfaces
appear to be self-affine over a restricted range of length scales (32, 35, 36),
and this observation has stimulated the application of fractal geometry to
the study of surface growth (37-39).

The patterns that form during the growth of surfaces are similar for very
different materials and over many orders of magnitude in film thickness
for the case of deposition. Different communities of researchers have
discovered the fractal-like nature of these patterns and have developed
quantitative means for analyzing the structure and understanding the
origins of the patterns, often in complete isolation from one another.
Examples of these analyses range from the condensation of water vapor
on cold glass surfaces (breath figures) (40~4) to the ion bombardment
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1.0
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-0.2
0.1 0.2 (13

r (10 3 nm)

0.1 0.2 0.3 0.4 0.5

q (10 .3 nm"1)

Fi#ure 8 (a) An autoregressive fit to the experimental autocovariance function for a thin
metal film deposited onto an insulating substrate (33). (b) The autoregressive fit to 
spectral density corresponding to (a).
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erosion of solid surfaces (22, 45-49). Scaling analyses have been developed
for many types of geometries and dimensions, including growth of a one-
dimensional surface (1 + 1D), nucleation and growth confined to a plane
(2D), growth perpendicular to a plane (2 + 1D), and higher dimensional
systems (37, 50, 51). Even within a particular dimensionality, different
viewpoints of the basic building blocks of the surface can be adopted, such
as aggregates of different-sized spherical droplets that can display some
mobility and coalescence or identical cubes that can be transported about
the surface until they come to rest at a favorable position. Describing and
comparing all these approaches is beyond the scope of this review. Here,
we consider only one scaling approach and refer interested readers to some
of the many reviews for details of alternate formulations (37, 38, 50).

Scaling of the Interface Width in 2 + 1D

In 1985, Family & Vicsek (52) analyzed the behavior of growing surfaces
by assuming that they were self-affine. They showed that the standard
deviation of the surface height ~c, also called the interface width, of a
growing self-affine surface can be expressed in the form (16)

~(L, t) = Uf(t/U), 8.1

wheref(x) is a function that behaves as a for x<<1 andas aconstant for
x >> 1. This reduces to

~(L,t)~t ~ for t/Lz<<l 8.2

and to

~(L, t) ~ ~ for t /Lz >> 1, 8.3

where L is the length scale over which the roughness is measured and t is
the elapsed time of growth, which is usually proportional to the amount
of material deposited (or removed). The two new parameters a and fl are
called the static (or spatial) and dynamic (or temporal) scaling exponents,
respectively, and z is a/ft.

As illustrated in Figure 9, the rms roughness of a surface is actually a
function of the length scale L over which it is measured until the roughness
saturates at some critical length Lc, above which ~L = 6 because a finite
amount of material has been deposited. For a self-affine surface, a plot of

~L vs L on a log-log scale yields a straight line with slope 0 < ~ < 1 for
L _< Lc; for a self-similar surface, c~ = 1. The interface width as a function
of length scale is related to the autocorrelation function in the following
fashion (53, 54):
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B

log(L)

Figure 9 An illustration of the dependence of the interface width ~ on the length scale used
to measure the surface roughness. At very small length scales, the apparent rms height is
small, but the measured interface width increases as the length scale expands until it achieves
a saturation value determined by the fact that the variations in the surface are finite.

Thus, by approximating the log-log plot of Figure 9 with a pair of straight
line segments to depict the behavior of ~(L), an approximation for the
autocorrelation function for a self-affine surface with spatial scaling
exponent c~ is

G(r) T\LoJ J’ for r < Lo 10.

0, for r >

and is illuslrated for c~ = 1 in Figure 10a.
The Fou:rier transform of Equation 10 yields the spectral density func-

tion

(g 2 
--6 Lc, for Iql < 1/Lo,

g(Iql) 11.
C~ __q-2~.+1),

for Iql >-- 1/Lc,
~r L~~

as shown in Figure 10b. Thus, comparing Figures 6 and 10 shows that a
self-affine surface has a qualitatively similar but quantitatively distinct
geometry fl:om a surface with Gaussian roughness. Comparing the two
spectral density functions (Equations 4 and 11) at [q[ : 0 shows that
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0
0

Irl (arb. units)

"~O L,

b)

0 1/Lc
Iql (arb. units)

Filture 10 (a) The autocovariance function corresponding to the straight line segment model
for the log-log plot of the interface width versus length scale for a self-similar surface. (b)

The spectral density function for the same example as (a).

L¢ ~ [rt/(e)’/2]~ -, and thus the critical length for scaling L¢ can also be
viewed as the appropriate metric for the lateral correlation length for a
self-affine surface.

The Family & Vicsek (52) analysis of a growing surface also explicitly
considers the temporal behavior of the surface roughening. Plotting the
log of the saturation value of {L (i.e. 6) vs log (t) yields a straight line 
a slope of 13 for a growing self-affine surface (inset of Figure 11). Thus, the
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time dependence of the surface rms is determined from Equation 8.2
(6 ~ fl) if/~ is known. Moreover, because the critical length for scaling
and the deposition time are related to each other by t/L~ ,-~ 1 from Equa-
tions 8.2 and 8.3, the time dependence of the lateral correlation length is
also known to be L¢ ~ fl/~. Figure 11 shows how the temporal dependence
of 6 and L¢ can be determined from the spatial and temporal dependence
of ~L. If the growing surface is self-similar (~ = 1) at any time, then the
correlation length and the surface rms have the same time dependence,
and thus the surface will be self-similar at all times. However, if the surface
is self-affine, then the correlation length of the surface must increase faster
than the surface rms, and thus the ratio 6/L~ will decrease with time.
The amplitude of the rms of a self-affine surface will increase, but the
corrugation will decrease as the surface grows.

The parameters ~ and/~ provide a pair of numbers that can be used to
classify the spatial and temporal scaling of growing surfaces quantitatively,
and thereby identify the growth process according to its symmetry in a
renormalization group sense. If the two system-dependent parameters 6
and Lo are also known at some time z, the surface rms and the correlation
length can be predicted for all times during the growth of the surface:

6(0 = 6(-c) 12.

and

Lc(t ) = Lc(’c)~) 13.

Thus, if growing surfaces are truly self-affine, they can, in principle, be
completely characterized in space and time by only five numbers: The
scaling exponents should be universal and predictable from theory,
whereas the surface rms and correlation length are system dependent and
must be measured at least once for each particular set of growth conditions.
In some cases predicted by theory (50, 55), additional constraints relate 
and fl, so that in fact the entire spatial and temporal evolution of a growing
surface may be determined from only four independent parameters, which
reveals a remarkable simplicity underlying the complex process of surface
growth.

Continuum Equations of Motion
The scaling of growing self-affine surfaces arises from the competition
between the stochastic roughening and various smoothening mechanisms.
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One way to analyze the scaling behavior for various models of growth is
through numerical simulations with Monte Carlo or molecular dynamics
techniques, and such analyses have yielded important insights (37, 41, 50,
56, 57). However, the amount of computer time required to simulate the
evolution of many features on a surface that are hundreds of atomic
diameters high and thousands in width for a 2+ 1D system (> 109 atoms)
is well beyond present computer technology. Because such sizes are com-
mon for actual surfaces, many investigators have developed continuum
models that represent the equation of motion of a growing surface and
then analyzed the behavior of such equations after they have been spatially
averaged in order to predict the scaling exponents.

The simplest model of the evolution of surface morphology by depo-
sition or etching involves only the white noise present in the flux of the
incident species, as represented in Figure 5. A continuum equation of
motion that models this stochastic growth is (37)

8H(r, t)
t3t - r/(r, t),

14.

where r/(r, t) is a function (50) that produces a Poisson distribution with 
mean equal to the total amount of material deposited or removed. The
spatial scaling exponent e = 0 for the stochastic surface produced by
Equation 14 because the surface is completely random, and thus the value
of ~ will be independent of the length scale used to measure it. An
alternate way to think of the stochastic limit is that L~ = 0. The temporal
scaling exponent/3 = 1/2 because the standard deviation for a stochastic
process is proportional to the square root of the amount of material
deposited or removed and, thus, the time t, if the incident flux of depositing
material or etchant is constant. In this limit, an initially flat surface will
become continually rougher as time proceeds, but the correlation length
will always be zero, just as in the discrete examples of Figure 5.

In 1986, Kardar, Parisi & Zhang (KPZ) (58) proposed an equation
of motion intended to describe the spatial and temporal evolution of a
nonequilibrium growing surface:

an(r,
63t

-- vV2H+ ~ (VH)2 + r/(r, 15.

This KPZ equation was derived from arguments of simplicity and sym-
metry rather than on any mathematical representation of the physical
mechanisms of surface growth (and therefore its exact physical interpre-
tation has been a subject of discussion). The V2H term is the lowest-order
derivative that would model the erosion of hills and the filling-in of valleys,
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422 TONG & WILLIAMS

because it is negative for local maxima and positive for local minima. The
(VH)2 term accounts for the nonlinearity assumed to be present in all
physical systems and was chosen because it ensures that Equation 15 has
rotational invariance, i.e. it is symmetric for small rotations about axes
contained in the surface plane. Both v and 2 are system-dependent param-
eters. For the limit in which 2 = 0, the KPZ equation reduces to the
Edwards-Wilkinson (EW) Langevin equation (59), which has an analytical
solution in 2 + 1D. In this case, there is only a logarithmic relation between
~ and L, and thus ~ = 0 and/~ = 0. The correlation length Lc is finite, as
contrasted with the case of ~ = 0 and Lo = 0 for the stochastic surface.
Growth for which c~ =/~ = 0 apparently corresponds to the Franck-van
der Merwe model discussed above, in that an initially flat surface grows
without significant roughening and thus establishes a link between the
earlier thermodynamic and scaling ideas of surface growth. If 2 ~ 0, the
KPZ equation does not have an analytical solution and, therefore, must
be examined either through renormalization group theory or numerical
simulations. Several studies have shown that the presence of the nonlinear
term in the KPZ equation causes both the scaling exponents to increase
to ~ ~ 0.4 and /~ ~ 0.25, which in fact satisfy the relation ~+~/fl =-2
expected for a system with rotational invariance (37).

The KPZ equation has attracted a great deal of attention because it was
initially thought to be a universal equation of surface growth independent
of scale or mechanism. According to KPZ, for any system at long enough
times, the nonlinear term in the equation of motion should eventually
dominate the growth. One consequence of this postulate is that it should
be impossible to grow a fiat surface by a vapor-solid interaction under any
circumstances, since both the scaling exponents for KPZ are nonzero.
However, a great deal of empirical evidence that fiat surfaces can be grown
has accumulated from the epitaxial growth of metal and semiconductor
surfaces (9, 60), which demonstrates that KPZ is not universal and that
there are growth conditions under which the nonlinear term in Equation
15 may be negligible. In fact, careful measurements of ~ and/~ for many
growing surfaces have shown that few physical systems actually conform
to the detailed scaling predictions of KPZ, as will be illustrated below.

Several researchers have used the KPZ approach to propose and analyze
alternate continuum equations of motion (61 74). Wolf & Villain (WV)
(72) presented thermodynamic arguments to show that -V4H te rm
would better model the process of smoothening by surface diffusion, which
is often considered to be the primary lateral mass transport mechanism in
surface growth. They proposed the WV equationOH(r, t) _ o.)V4H_[- ~/(~., t)

16.
Ot
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KINETICS OF SURFACE GROWTH 423

which is linear and thus can be solved exactly in 2+ 1D to yield growth
exponents cf ~ = 1 and/3 = 1/4, as a better alternative to model surface
growth. Interesting consequences of this equation are that a growing
surface will be self-similar and it will be impossible to grow a fiat surface,
if stochastic roughening and surface diffusion are the only processes con-
tributing to the formation of surface morphology. Because ~ = 1, the ratio
of 6/L¢ will be constant during the entire growth process, and thus, a WV
surface can become significantly more corrugated than a KPZ surface for
long growth times.

Given the’, importance associated with the nonlinear term in the KPZ
equation, several researchers soon added such a term to the WV equation
to yield (66, 70, 71)

- coV4H+pV2(VH)2+~l(r,t), 17.
Ot

which is characterized by the scaling exponents ~ = 2/3 and /3 = 1/5.
Villain (7l) interpreted the nonlinear term as a model for the fact that
steps can act as a source or sink of atoms on a growing surface, which
means that Equation 17 may model step-flow and/or island nucleation
growth. The continuum equations (15-17) are characterized by nearly the
same small but nonzero temporal scaling exponent. Thus, the dependence
of the surface rms on growth time is relatively weak in all three models,
but 6 must increase with time as the surface grows. The spatial scaling
exponents differ considerably from each other, thereby providing a means
to distinguish experimentally among the various scaling models. Equations
15 and 17 represent two different general classes of growth mechanism,
and therefore, one can reasonably assume that many growing surfaces
have an equation of motion that involves a linear combination of both.
This can lead to more complex temporal and spatial behavior, such as a
breakdown of scaling or kinetic phase transitions, as discussed by Villain
(71).

Each model discussed above predicts distinct scaling that can be directly
compared to experimental results through the exponents ~ and/3. To date,
most of the experimental investigations of the topological behavior of
growing surfaces have been intended to determine the validity of the
scaling ideas, primarily by testing if plots of log (~) vs log (L) and/or
log (6) vs log (t) actually yield straight lines and if the scaling exponents
determined from the experimental data are close to one of the model
predictions. The primary techniques used in these recent studies to examine
the spatial scaling are X-ray (53, 78-82) or electron (83, 84, 84a) scattering
and to determine the temporal scaling are STM or AFM (21, 45, 53,
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60, 75-77). These methods are complementary, because the real-space
topographs are readily analyzed to yield e, but to obtain temporal infor-
mation from STM or AFM requires the growth of an entire series of
samples with the subsequent collection and analysis of a large number of
topographs. X-ray and electron scattering can be performed as the samples
are growing and thus provide real-time information on the surface rough-
ness with which to determine ft. However, determining the spectral density

9(q) over a large enough range of q to allow the determination of e from
reciprocal space data is challenging (82, 83). Table 1 summarizes the
predictions for the scaling exponents of the various theoretical models and
presents some experimental values obtained from the literature.

Several issues arise in the comparisons of experimental and theoretical
values of the scaling exponents. First, most of the reported values of e
tend to cluster either around e ~ 0.7 predicted by Equation 17 or around
the value ofe ~ 0 for the flat semiconductor surfaces of MBE growth, and
relatively few at the intermediate KPZ value ofe ~ 0.4. These observations
indicate that surface diffusion certainly plays an important role in the
development of surface morphology, but apparently some other mech-
anism is responsible for the extremely flat surfaces produced by high-
temperature MBE growth. Also, rotational invariance is apparently not

Table 1 Theoretically predicted and experimentally observed values of ~ and/3

Reference

Continuum Models
Stochastic roughening 0 ½
Evaporation-recondensation 0 0
KPZ ~ 0.4 ~ 0.25
Surface diffusion I ¼
Surface diffusion plus steps -~ 15

Experimental Observations
Ion etched SiOz films NAa 1.0
Ion etched graphite 0.4 1.0
O atom etched graphite 0.71 0.6
Ion etched Fe films 0.53 NA
Vapor deposited Fe 0.79 0.22
Vapor deposited Au 0.73 NA
Vapor deposited Pt 0.68 NA
Sputter deposited Au NA 0.40
MBE CuCI 0.85 NA
MBE GaAs < 0.2 < 0,1

Equation 14
Equation 15, 2 = 0
Equation 15, 2 ¢ 0
Equation 16
Equation 17

89
45
76
49
83
75
77
53
21
6O

"NA--not available.
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KINETICS OF SURFACE GROWTH 425

obeyed by most real growing surfaces because KPZ-like behavior is rare.
The requirement for rotational invariance may be broken by the presence
of crystal planes. Second, reported values of the temporal scaling exponent
are either/3 :-~ 0 for MBE growth or they are significantly larger than those
predicted by any of the continuum theories. The value of/3 can even exceed
0.5, which is the value for a purely stochastic surface with no smoothening
at all. This indicates that there are important roughening mechanisms
contributing; to the evolution of surface morphology in addition to sto-
chastic noise that have not been considered in the scaling approaches.

An even more fundamental issue is that it may not be possible to
determine sc, aling exponents for many growing surfaces. Inspection of the
log-log plot,,; of experimental ~2L vs L data, such as those in Figure 12 for
CuC1 films grown on CaF2 substrates (21), shows that they are often not
strictly linear over the range of data presented. It is usually not clear if
these variati,ons are the result of noise or other limitations in the measure-
ments or of a breakdown in the assumption of scaling behavior. In fact,
this method of data presentation is not very sensitive to deviations from
scaling behavior because most functions plotted on a log-log scale over a
restricted range of the independent variable will yield nearly straight lines.
Because the autocorrelation function is related to the derivative of ~ from
Equation 9, it and the spectral density are much more sensitive to topo-
logical properties of rough surfaces, and therefore, they should represent
the preferred, method of data presentation and analysis (38). When spectral
density functions are analyzed, it is clear that most experimental systems
cannot be modeled very well by scaling relations. As illustrated in Figure
7b, a peak o:rten occurs in the spectral density at some positive value of q
(21,25, 33), which from Equation 11 is a clear violation of scaling behavior.
Thus, real growing surfaces are usually not self-affine, but the scaling
models have provided valuable insight into the topology of growing sur-
faces and more importantly into the time dependence of growth.

MECHANISMS OF SURFACE GROWTH

Smoothening

The phenomenological view discussed in the previous section assumes all
rough surfaces attain a single universal form; an alternative approach is
to focus directly on the various roughening and smoothening mechanisms
that affect surface morphology. Stochastic roughening is actually opposed
by several different lateral mass transport processes that smoothen features
on a surface. Herring (85) was the first to consider the evolution of features
caused by four of these smoothening processes over 40 years ago in a
scaling analysis of sintering. He derived simple kinetic expressions that
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g(lq[, t) = <lh(lql, 012> = 

where ~ is proportional to

KINETICS OF SURFACE GROWTH 427

governed the rate of change of a feature as a function of its size. The rate
of smoothening can be described easily in reciprocal space by the
expression (86)

~h([ q I, t)
~-----~ o~ -[q]nh([q[, t), 18.

where q is the wavevector, h(lq[, t) is the radial average of the Fourier
transform o1~" H(r, t), and n is 1, 2, 3, or 4, which represent the functional
relationships for smoothening by plastic flow driven by surface tension,
evaporation and recondensation of particles with different radii of curva-
ture, volume diffusion, and surface diffusion, respectively. (Note: n = 
has also been shown by Vvedensky et al (87) to correspond to a knock-off
mechanism.) The derivation of the relationship between the smoothening
mechanism of surface diffusion and the q-exponent n = 4 is an example of
the scaling arguments used by Herring (85). Each smoothening mechanism
affects the morphology differently and, thus, will leave a different signature

in the spectral density function of the growing surface.
By combining the smoothening mechanisms with the stochastic

roughening, an equation of motion in reciprocal space, which is essentially
a kinetic rate equation, can be written for surface growth:

0h(I q I, t)
0-~ c~: -c,[q["h([q[, t)+~/([q[, t) (n = 1 to 19.

where the first terms on the right model one of the smoothening mech-
anisms described by Herring (85), and the second term is the reciprocal-
space stochastic noise term (the Fourier transform of the real-space term
introduced in Equation 12) that describes the random arrival of the
depositing species. The coefficients c~ can be expressed in terms of molec-
ular-level properties of the system of interest (86). The noise term has the
property

<q(q’, t’)rl(q", t")> = ~(q’--q")fi( t’-- t"), 20.

which represents the uncorrelated nature of the arrival of discrete deposit-
ing species (150). The expectation value of [h(q, t)] 2 can be determined
analytically from Equation 19 if the surface is assumed to be flat at t = 0.
This solution, of Equation 19 is the radially averaged spectral power density
(22, 25a, 59, 88):

1 -exp (-2c, tql"t)
21.

the flux, t is the deposition time, and c,
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428 TONG & WILLIAMS

(lengthn" time-~) is a constant characteristic of the specific lateral mass
transport mechanism indicated by n. For all four values of n, smaller
features (large q) are eroded away preferentially over large features (small
q), but the q-dependence of the spectral density depends explicitly on the
identity of the smoothening mechanism, as illustrated in the schematic
log-log plots of Figure 13. At low values of q a flat plateau extends out to
the critical spatial frequency qc = liLt, after which log [g(q)] vs log(q)
decreases linearly with a slope of -n because, at large q, Equation 21
approaches

O(Iql, t) ~: --- 22.

By comparing Equation 22 to Equation 11, a direct relation between
the q-exponent n and the spatial scaling exponent ~ is revealed:

n = 2(~+ 1). 23.

Thus, as was already evident from the discussion of Equations 15 17,
the value of the spatial scaling exponent depends on the smoothening
mechanism. For the specific cases in which n = 2 and n = 4, Equation 21
is the spectral density function corresponding to Equation 15 without the

.,.... ~ nonstochastic roughening

~’" stochas~ roughening

~ smoothenin/~f .... n=2

log(Iql)’

Figure 13 Schematic plots of the logarithm of power spectral density, log[g(Iql)], vs the
logarithm of spatial frequency, log (I ql)- Stochastic roughening by random deposition creates
a surface that contains features of all sizes (thin solid line). The effect of the four smoothening
mechanisms discussed by Herring (85), plastic flow (n = 1), evaporation-recondensation
(n = 2), bulk diffusion (n = 3), and surface diffusion (n = 4), are plotted in dashed lines; 
interplay between stochastic roughening by random deposition and smoothening by surface
diffusion (n = 4) results in a g(Iql) that is depicted by the lower thick solid curve. 
stochastic roughening by 3-D island formation also has a power dependence on Iql (dotted
line). The net effect of nonstochastic roughening, stochastic roughening, and surface diffusion
acting in concert is the creation of a peak in g(I ql), as depicted by the upper thick solid curve.
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KINETICS OF SURFACE GROWTH 429

nonlinear te, rm (2 = 0, EW) and to Equation 16 (WV), respectively. In 
latter case, the suggestion that the WV equation models surface diffusion
is confirmed by the fact that -74 and q4 are a Fourier transform pair.
Thus, when n = 4, Equation 19 is merely the Fourier transform of Equa-
tion 16. There is no analytical expression for the Fourier transform of
Equation 17 because of its nonlinear term. In the former case, the ~TZH(r)

term in the KPZ equation is the inverse Fourier transform of -]ql2h(] q]),
and thus it represents the n = 2 smoothening mechanism of evaporation
and recondensation, which should be more important at high growth
temperatures. The nonlinear term that imposes rotational invariance on
the KPZ equation models the effect ofisotropic deposition on the growing
surface, and it also does not have an analytic representation in reciprocal
space. In principle, Equation 21 can be used with noninteger values ofn(e)
to provide analytic approximations for the spectral density functions for
Equations 15 and 17, and any other scaling model as well, by using
Equation 23 to obtain an effective value of n.

The complete spatial and temporal description of the surface mor-
phology is contained in g(Iql, t), and in the case where there is only one
dominant smoothening mechanism, g(lq], t) is completely determined 
only three parameters: n is derived from the identity of the smoothening
mechanism, and c, and f~ are system-dependent parameters. The mech-
anistic approach shows again that a complex physical system can be
described by just a few numbers. Because these parameters are derived
from the growth mechanism rather than the film geometry, one must
compute 9(Iql, t) as a function of Iql and t to obtain a surface rms and
correlation length, as depicted in the series of log-log plots for n = 2,
shown in Ref. 25a. By Parseval’s theorem (25a), the radial integral 
Equation 21l over ]q[ corresponds to the variance ~2 of the surface height
in real space, which allows the time dependence of the surface rms to be
determined. As the low ]q] plateau of 9([q]) moves up with increasing
growth time, the knee in 9(1 q I), which represents the critical spatial fre-
quency l qlo, moves to lower values of ]ql. The choice of the location of the
knee in any one curve in Figure 14 is somewhat arbitrary, but once made
and applied, consistently to 9([ql, t) for all t, the time dependence of the
correlation length Lc = 1/qc can also be determined.

A major advantage of the reciprocal-space representation of Equation
21 is that it can analytically model the effect of the smoothening processes
of plastic flow (n = 1), which is important for smoothening of oxide sur-
faces (89), and bulk diffusion (n = 3) on surface morphology. However,
the inverse Fourier transforms of ]ql and Iq[3 that represent these mech-
anisms in real space are extremely cumbersome and do not yield analytical
solutions to their respective equations of motion. In addition, because all
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430 TONG & WILLIAMS

the terms of the form represented by Equation 18 are linear, Equation 21
is easily generalized to the following form (22, 45):

g(Iql, t) = <lh(q, 012} = ~ 1 -exp (-2Zc, lql"t),
2Y~c.lql"

24.

which can be used to analytically represent the effect of two or more
smoothening mechanisms acting simultaneously during surface growth.
The primary problems with Equation 24 are that the nonlinear terms of
Equations 15 and 17, if they are important, cannot be included in this
analytical expression for the spectral density and that there is no cor-
responding analytical expression for the autocovariance function. G(Irl)
must be obtained by numerically taking the inverse Fourier transform of
g(I q I). The number of parameters required to totally specify g(I q I, t) is 
(f~) plus two times the number of active smoothening mechanisms (n, 
that contribute to the surface morphology, and the temporal dependence
of L~ and 6 have to be determined graphically or numerically from Equa-
tion 24 and its integral.

Nonstochastic Roughening by 3D Islanding

The ~ Iq1-4 behavior of the spectral density for experimental systems (21,
45) at large q is described very well by Equation 24, but it cannot have 
peak at Iql > 0 for positive values of the constants c,, as do the many
experimental spectral densities described previously. Because stochastic
roughening produces an essentially constant value for 9(Iql) and
smoothening causes a decrease in 9(Iq I) as I q l increases, the peak in 9(I q 
must arise from another type of roughening mechanism. One example of
roughening that has been considered is the phenomenon of shadowing
(90), in which the initial peaks on the surface that result from stochastic
processes shadow the surrounding areas of the surface after they reach a
large enough size and then continue to grow more rapidly than their
surroundings. Shadowing is considered to be most important for a totally
isotropic flux of incident species, as opposed to the directed flux common
in many surface growth techniques. Another type of roughening mech-
anism that has been discussed arises from surface diffusion on a very rough
surface (91). For a small amount of surface roughness, the smoothening
that arises from the -c,[qlah(Iql, t) behavior of the rate of growth domi-
nates, but as the surface becomes rougher, other terms in a more complete
description of surface diffusion can appear with positive coefficients, and
thereby give rise to roughening in addition to that arising from noise in
the growth process. Even if the initial surface is completely smooth, the
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Stranski-Krastanov and Volmer-Weber growth modes produce strong
surface roughening for the case of heterodeposition because of the Grin-
field instab~[lity (8). All of these cases can be considered to be different
aspects of the more general category of island formation on growing
surfaces, and they will introduce terms with a net positive sign in the
growth (Equation 19).

Three-ditnensional (3D) island growth processes are particularly simple
to model mathematically by the scaling method of Herring (85). Surface
roughening by island growth yields the following terms:

cgh(Iql, t)

Ot
--,~ +csIql I -I-c6lql3, 25.

where the new coefficients are positive numbers and are preceded by plus
signs to represent roughening. The exponent n = 1 in this case represents
island growth dominated by deposition onto the surfaces of existing
islands, and the exponent n = 3 represents the growth of islands caused
by material that lands on the substrate and then diffuses to the islands
(WM Tong & RS Williams, work in preparation). In the initial nucleation
phase of growth, the second term in Equation 25 should dominate, and at
later times when most of the surface is actually covered by islands, the
first term should dominate. This adds a complication in that the coefficients
c5 and c6 may be coverage and therefore time dependent, although in
general we restrict ourselves to the case in which most of the surface is
covered with islands and the c5 term certainly dominates.

The approach that we have taken to model our data is to use a fitting
function similar to Equation 24,

gOql, t) ~: ~exp (2Zx, Iql’t)- 1 26.

where the q-coefficients ~, are simply fitting parameters. The q-coefficients
in Equation 26 are allowed to take either positive or negative values, which
will indicate if the corresponding q-dependence is a net roughening or
smoothening process, respectively. Figure 13 illustrates how a growing
surface with ~3 > 0 and Z4 < 0 can produce a spectral density function
with a peak in g(lql) at Iql > 0 (89). Such a peak is caused by the existence
and net dominance over a smoothening mechanism with the same q-
dependence of a nonstochastic roughening mechanism, which is perhaps
the most important insight to be gained from the mechanistic approach of
modeling surface growth. Because the island growth mechanisms have the
same q-dependence as smoothening by plastic flow and by volume diffus-
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432 TONG & WILLIAMS

ion, the net values for two of the coefficients obtained by fitting Equation
26 to experimental data represent Z1 = cs-cl and Z3 = c6-c3. Thus, if
both island growth by deposition onto islands and plastic flow play a role
in the evolution of a growing surface, one will dominate, and the net q-
dependence will mask the fact that the other is present. This has the
unfortunate effect of preventing the straightforward calculation of
material-dependent properties from the parameters Z, unless there is
additional information about the smoothening or roughening processes.

Figure 14 shows the result of fitting the experimental g(Iql) data for the
CuC1 films grown on CaF2 substrates from Figure 3 with Equation 26. As

can be seen, this fitting function captures all of the impo[tant features of
the experimental spectral density functions. The sign of the fitting par-
ameters 2,, which are shown in Table 2, indicates whether the cor-
responding smoothening or roughening mechanism is dominant. The fits
for all four data sets are consistent in indicating that the primary roughen-
ing mechanisms are related to the n = 1 and n -- 3 terms in Equation 26,
that surface diffusion (n = 4) is the primary smoothening process, and that
evaporation-recondensation (n = 2) may contribute significantly to the
evolution of the surface morphology. However, in the present model, the

104,

103.

102.

101 .

105 .

lift.

10~.

102 .

101 .
0.001 0.01 0.1 0.001

Iql (nm-1) 0.01 . 0.I
Iql (nmq)

Figure 14 Fits of Equation 26 to the 9(Iql) data for the CuCI films of Figure 3. The data

are presented as log-log plots, which stress the high Iql behavior but suppress the peak that

is very prominent on a linear scale, as are those of Figure 7b.
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Table 2 Comparison of fits of Equation 26 to heteroepitaxial growth of CaF2"

433

Sample f~( × 103) t ~( × 102) ~(2( × 104) Z3( × 105) Z,~( × 106)

A1 6.167 1 -3.968 2.989 -7.359 8.424
A2 6.385 2 -2.059 1.588 -4.521 6.769
BI 13.680 1 --2.965 1.923 -4.096 4.838
B2 7.321 2 - 1.731 1.205 -2.944 3.408

From Figure 14.

parameters ?( all appear to be coverage or time dependent. Equation 26
may have to be modified to include the effects of nonlinear terms in the
equation of motion for the growing surface such as those in Equations 13
and 15, or there may be additional smoothening or roughening mech-
anisms that have not yet been considered.

CONCLUSIONS

The complex morphologies that result from surface growth can be quan-
titatively described with just a very few parameters. The familiar phenom-
enological characterization scheme of specifying the surface rms (3), the
Gaussian-derived lateral correlation length (or), and the spatial frequency
(b) of the maximum spectral density provides a set of parameters that can
be easily calculated from the autocovariance function and whose meanings
are straightforward to visualize. The inadequacies of standard phenome-
nology are that this parameterization does not provide insight into either
the origin of the surface features or the evolution of the structure, and the
use of the minimum set of three parameters actually yields a rather poor
approximation to the autocorrelation function and spectral density. Using
an autoregressive approach with five parameters, one of them being the
value of the spectral density at lql = 0, yields a much better description of
the autocovariance and spectral density but without any physical meaning
associated with the parameters. The reason why a fourth-order auto-
regression formula works well can be attributed to the fact that surface
diffusion is :important for the development of surface morphology, and it
has a characteristic Iq1-4 signature in the spectral density of the surface
that is approximated by the fourth-order term in the autoregression.

The application of scaling analyses to surface growth was a major
advance in the ability to predict the evolution of surface topology. In
principle, the entire spatial and temporal dependence of the evolution of a
surface is contained in only five numbers: the universal static and dynamic
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scaling exponents (e,/3), the material-dependent surface rms height, and
the critical length for scaling [6(z), Lc(z)] measured at some particular 
(z). With this information, the rms and the critical or correlation length
can be predicted for all times t from the scaling relations of Equations 12
and 13, and at any given time, the autocovariance function and the spectral
density can be calculated by Equations 10 and 11. This approach demon-
strates that there is a great underlying simplicity to surface growth.
However, the scaling exponents do not appear to be universal and more
importantly, the scaling relations of Equations 10 and 11 cannot account
for the fact that the spectral density for many real systems has a peak at a
nonzero spatial frequency.

The continuum models for surface growth provide insight into some of
the specific mechanisms behind the scaling exponents. In particular, scaling
analyses demonstrate that surface diffusion by itself cannot produce a flat
surface in the presence of stochastic roughening. The length scale over
which surface diffusion acts is too small to be effective beyond a locally
flat but tilted facet. Rather, surface diffusion with random noise yields a
self-similar morphology for which both the surface rms height and the
correlation length increase with growth time as l ~/4. The only continuum
equation that can yield the types of flat surfaces observed for MBE growth
is the EW equation (Equation 15 with 2 = 0). This equation corresponds
to stochastic roughening with smoothening by evaporation and recon-
densation. Because the vapor pressure of a convex curved surface is higher
than that of a planar surface (92), at the high temperatures required for
high-quality epitaxial growth, islands will sublime whereas flat areas will
be favored condensation regions. The length scale for smoothening by
evaporation and recondensation is large enough to create a globally fiat
surface if stochastic noise is the only significant roughening mechanism in
the system.

The mechanistic approach to modeling the spatial and temporal depen-
dence of growing surfaces has both advantages and disadvantages com-
pared with scaling analysis. The spectral density of a growing surface in
reciprocal space and time #(I ql, t) is defined with a fairly simple analytical
expression in Equation 26 when considering only the linear mechanisms
of smoothening and roughening. This expression can be adapted to include
the simultaneous action of all four of the major linear smoothening mech-
anisms, including plastic flow and bulk diffusion, which cannot be handled
analytically in a real-space equation of motion. It can also readily include
the roughening terms that arise from the nucleation and growth of islands
on a surface. This nonstochastic roughening is responsible for the peaks
that appear in the spectral density functions of grown surfaces at ]ql > 0.
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Equation 26 also provides insight into why experimental values of the
static scaling exponent ~ often agree closely with the theoretical predictions
of the cont:inuum theories of Equations 16 and 17, whereas the experi-
mental dynamic scaling exponents /~ are often much greater than the
theories allow. The exponent ~ is related through Equation 23 to the large
]q[ slope of 9(Iq[) vs [q[ on a log-log plot, and because surface diffusion
with n = 4 is a major factor in the formation of surface morphology, the
effective value of c~ ~ 1 will be determined from plots of log (~) vs log (L)
for these cases. However, the value of 6(0 is determined by integrating

9(q, t) over q, and the presence of a nonstochastic roughening term in
Equation 26 will significantly increase the temporal derivative of 6(t). The
effective value of/3 determined from log-log plots of 6 vs growth time will
thus be larger than predicted by scaling analyses because they do not
include nonstochastic roughening.

In the ge~rleral case, nine parameters are required to completely define
9(q, t): the value of fl and the four pairs of numbers represented by (n,
in Equation 26. Although in principle the values of Z, are related to basic
physical constants of the system, such as diffusion constants and surface
energies, the values of the parameters obtained from fitting experimental
spectral-deztsity functions can contain offsetting contributions from both
smoothening and roughening mechanisms. The parameters g, can be used
to obtain a very good approximation to the experimental 9([ql), but they
are not rela~ed in an analytic fashion to structural parameters such as the
surface rms or correlation length. These must be obtained numerically
or graphically from g([q]). In fact, each smoothening or nonstochastic
roughening mechanism will have its own characteristic correlation length
that can be determined from a plot of Equation 21 for a single pair of q-
coefficient and related q-exponent. Even though the g([q[) from Equation
26 is a major improvement over previous approximations, it does not
correctly predict the time dependence of the spectral-density function for
growing CuC1 films, as shown in Table 2. At present, it is unclear whether
the changes; required to make Equation 26 a truly predictive tool for
understanding the development of the topology of growing surfaces are
minor or if a different approach must be developed. The recent theoretical
work of Amar & Family (91) is notable for predicting the shape of the
G([ rl) curve for their model of surface diffusion. In the future, both exper-
imental and theoretical investigations should concentrate on obtaining the
functional form of the autocovariance G([ r [, t) and/or the spectral density
9([ q[, t) over the largest possible range of length or spatial frequency and
time, because these are the most complete and sensitive characteristics of
rough growling surfaces.
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