[ .ecture 2

Random variables:
discrete and continuous



Random variables: discrete

Probability theory is concerned with situations in which the outcomes
occur randomly. Generically, such situations are called experiments, and
the set of all possible outcomes is the sample space corresponding to
an experiment.

- Tossing a coin 3 times:

Q = {hhh, hht, htt, hth, ttt, tth, thh, tht}

- Arandom variable is a function from sample space to real numbers:
- Total # (number) of heads
- Total # of tails
- # of heads minus # of tails

- Discrete random variables can take only finite or countably infinite # of
values
- Toss a coil until a head turns up, # of tosses is countably infinite
- A countably infinite set: one-to-one correspondence with the integers



Random variables: discrete

- Tossing a coin 3 times: P(X =0) =
Q = {hhh, hht, htt, hth, ttt, tth, thh, tht) P = 1) =
PX=2 =

X=total # of heads P(X = 3) —

- Probability mass function or frequency function
- Cumulative distribution function (cdf, non-decreasing)
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Bernoulli Random Variables

An experiment is either a success (1, probability p) or a failure (0):
pl)y=p
pO)y=1-p
Jix) =0, itx 20 amd x &1

- An alternative representation

_Jpra=-pt, ifx=0o0rx=1
Pl = {0, otherwise

- Indicator random variable

- Examples:
- Product quality assessment: pass/fail
- A new-born: female/male
- Computer commands in binary form: 1/0
- Schrodinger's cats... ??



The Binomial Distribution

Perform n (fixed) success/failure experiments. X=how many successes.
Example: 10 coin tosses, how many led to a “head”?

- For a given X=k, any particular sequence of £ successes occurs with
probability 201 = g

- The total # of such sequences is (”)
k

- Flnally p(k) — (Z) pk(l L p)n—k

2 ,'HH n=10and p=0.1
R0 AP ——

HHH n=10and p=0.5
TUH. HTT—




The Binomial Distribution

Example. If a single bit (0 or 1) is transmitted
over a noisy communications channel, it has
probability p of being incorrectly transmitted.

To improve the reliability of the transmission,
the bit is transmitted » times, where » 1s odd.
A decoder at the receiving end, called a
majority decoder, decides that the correct
message is that carried by a majority of the
received bits.

Each bit is independently subject to being
corrupted with the same probability p. The
number of bits that is in error, X, is thus a
binomial random variable with # trials and
probability p of “success” on each trial (here
a ‘““success” 1S an error).

If n=5, p=0.1, what is the probability that the
message is correctly received?




The Binomial Distribution

Example. If a single bit (0 or 1) is transmitted
over a noisy communications channel, it has
probability p of being incorrectly transmitted.

To improve the reliability of the transmission,
the bit is transmitted » times, where » 1s odd.
A decoder at the receiving end, called a
majority decoder, decides that the correct
message is that carried by a majority of the
received bits.

Each bit is independently subject to being
corrupted with the same probability p. The
number of bits that is in error, X, is thus a
binomial random variable with # trials and
probability p of “success” on each trial (here
a ‘““success” 1S an error).

If n=5, p=0.1, what is the probability that the
message is correctly received?

Yeah!! =0, 1 or 2 failures,
k failures among »: binomial

2
n . -
Z (k)pa(l — pynt
k=0

= p°( = p)’ +5p — p)* + 10p*(1 — p)?
= .9914

Much better reliability.




The Geometric Distribution

In independent Bernoulli trials, keep trying until first success.
X=how many trials (including the success).

For X=k, k-1 failures followed by a success. Due to independence,

pk)=PX =k)=(1-p)'p, Al TR .

The Negative Binomial Distribution

Keep trying until succeed r times. X=how many trials (including the success).

Generalization of geometric distribution. For X=k, -1 successes assigned to k-1
trails, before the last success.

k—1

P(X:k):(r—l

) pril — |

Negative binomial random variable=sum of independent geometric variables:
Example: fffffsffstfffffffsfs... (=failure, s=success)



Example A: The probability of winning in a
certain state lottery is p=1/9. The distribution
of the number of tickets a person must
purchase is a geometric random variable:

plk) =P(X =k) =(1 —= p)k_lp

Example B: He/she wants to win twice! Then
the distribution is negative binomial with
p=1/9, r=2:

pk) = (k — )p*(1 — p)*~

plx)

p(x)
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The Hypergeometric Distribution

Suppose that an urn contains z balls, of which » are black and n-r are
white. Let X denote the number of black balls drawn when taking m balls
without replacement. Then X follows the hypergeometric distribution:

(r) (n - r)
P(X = k) = k) \m—k
n
(m)
When n approaches infinity, let p=r/n, this distribution approximates a

binomial distribution with p: Take m balls one by one, it may succeed
(black) or fail (white).




The Poisson Distribution

(Z AL KRR REAE (FERTe) )
Rutherford M Geiger W &2 TR 144 51 % 5 ook £~ A3, A2 BIE [ — B
[N (758D, BOFBIRLT %0 X ik A Poisson 7 Afi o A4 ?
7Yl
P(X:k):k—!e , k=0,1,2,...
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The Poisson Distribution

(k) o n! k(l )il—k n _} OO
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The Poisson Distribution

The # of independent events that happen in a time interval or space volume.
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The Poisson Distribution

The # of independent events that happen in a time interval or space volume.

- HIRRSGE: SHHURS KER S, BT ML, AL TR A 5L
AT R L ) OTH

- DRESEEL: FIAnG AL T E I DR A Vi 57 IOl G I SR
gL M HAOT R A

- RREACIE: ZCEA KNGS, FALI 8] Py IE A R RN

- CCDEWHIFE T2 (INX-ray R ...

#1 2.1.5.2 XAEBHZE R FRBET von Bortkiewicz(1898). i8R F 10 M EEITHRE
H7E 20 SEAB S EBFERN LRI EH, LRER 200 MNEFA-EHEFE. XEBIHEM ) = 0.61 FIH
REAMRYRE TRP. RPEFGSHESFERTREE, N 0 B4 F2FFIRTIHEHE
WA kg, Bk, #lin, 76 200 MER-FHBIES, WD 1 AFETRIKEE 65. ERPE
=%, BRRBIMIET-HE A 200 BN R, BTG H TSEH XA = 0.61 FHRHTE.
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WRF . BET, RATARRER ) = 0.61 5EETHIBT ASAHITE. |
BERTAH W A B HABE
0 109 0.545 0.543
1 65 0.325 0.331
2 22 0.110 0.101
3 3 0.015 0.021
1 1 0.005 0.003




Poisson and Binomial Distributions

But how large is a large n,
how small is a small p?

Example: Two dice are rolled
100 times, count the # of double
sixes as X. The distribution of X
1s binomial with n=100, p=1/36
(why?). Let’s compare the two
distributions (A=np=2.78).

Why should we do this? Poisson
distribution is easier to
parameterize and calculate.

Binomial Poisson
k Probability Approximation
0 0596 0620
| 1705 A T25
2 2414 2397
3 W5 2221
4 1564 1544
5 0858 0858
6 0389 0398
T 0149 0158
8 0050 0055
9 0015 0017
10 0004 0005
11 0001 0001
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Poisson distribution
— Gaussian / Normal
distribution



A Glimpse at Poisson Process

Poisson distribution often arises from Poisson process for the
distribution of random events in a set S (1-d:time, 2-d: a plane, 3-d: a
volume of space).

BEAMEZTH
IfS,, S,,..., S, are disjoint subsets of S, then the numbers of events in
these subsets, N,, NV,,..., N,, are independent random variables that
follow Poisson distributions with parameters A|S,|, A|S|, ..., 4|S,/,
where |S;| 1s the measure of S; (e.g. length, area, volume).

Crucial assumptions:

1.Events 1n disjoint subset are independent of each other;
2.Poisson parameter for a subset is proportional to the subset’s size.

More in stochastic processes.



Random variables: continuous

Frequency / probability mass function — probability density function (pdf)

b
Plg =< X <b) :/ Fix) dx ffooo fixr) dx = |

a

- What is P (X=c)?

Differential form: P(x <X <x+dx)= f(x)dx.
Discrete cdf: Continuous cdf:
Flx)= P(X =X) — Fix)= / f(u) du
— 06

Probability that X falls in an interval is:
b
Pla<X<b) = f(x)dx = F(b) — F(a)

a



Quantile (o~4% %) and its appllcatlon

The pth quantlle x, satisfies b
(xp) = p,or P(X < x,) = p.
50%-th quantile = median.

F(x)




Quantile (o~4% %) and its appllcatlon

The pth quantile x,, satisfies
F(xp) = p,or P(X <xp) =p.
50%-th quantile = median.

Example from my research: [O 111] 5007A line
Why use quantiles?

*Quasar outflow physics hidden in the broad wings

F(x)

*Need non-parametric measurement, because emission line

has freaky profiles

*Quantile is sensitive to the flux under the broad wings

10% 50% 90% of total ﬂux

1.0

10% 50% 90% of total ﬂux

Spectral Flux Density
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Liu et al. (2013)



Random variables: continuous

Probability density function

Uniform density: 0
1
b—-a
.« | 1jB—a), #=x Db
f(x)_{(), xX<aorx >b
0 a b

Uzing maximum convention
Cumulative distnbution function

1
F(x)



Exponential distribution

e x>0 R
: X) = ’ - : 2=0.5,1,2
pdf' f(‘. ) { 0. Xt 0 15 A

X _ —AX ; =10 et
cdf: F(x) 2/ f@wdu=417¢" xz0 2%y
i 0, ¥ <1 :

Often used to model lifetimes or waiting times.

Why?
Assume: at any time, the probability that an electronic component breaks
down is a constant A. (“memoryless”, no aging effects)

Then:  F(y) = { 1 — e, X =1
0, 5 =9

Prove this in your homework.

(Z WA fH (BRI S5EFES) 2.1.375, 20094E/R5211)



Exponential distribution

Reverse question:

1) An electronic component’s lifetime is an exponential random variable,
2) it has lasted time s,
what is the probability that it will last at least more time #?

P(T>t+sand T > )
PiT = %)
P(T >t+ys)
P(T = %)
eﬂk(i’%')

P(T>t+s|T >s)=

e“-‘/\.S

—At

=e

Result is independent of s — memoryless, no aging effects
(therefore inapplicable on human lifetimes).



Exponential distribution

Memoryless character follows directly from Poisson process.

An event happens at ¢,, events occur in time as a Poisson process (with A
for unit time). 7=length of time until next event.

P(T > t) = P(noeventsin (fy, fo + 1))
During time ¢, Poisson distribution with parameter Az,

g
Don't be confused with the notations here [[ P(X = k) = Fe_’t, k=101.2...]]

No events, k=0, ¢ ', an exponential distribution with A.

The distribution of time until the 34 event is similar, and is independent of
the length of time between events 1 and 2.

The lengths of time between events of a Poisson process are
independent, identically distributed, exponential random variables.



The Gamma density

Two parameters: a, A, a flexible class for modeling nonnegative random

variables,
o

["(a)

t(x—l —Af

g(t) = e M, £ =10

Gamma function,

00
i) = / ule™ du, oW |
0

20} a=5, 10, Shape parameter
A=1 Scale parameter
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The Gamma density

Example: (Udias & Rice, 1975)
The observed times separating a sequence of small earthquakes are fitted
to a gamma density, and an exponential density.

Why does gamma density works better?

1369

Exponential model

time tells us nothing about the next s time.

(1331) &
Because earthquakes are not )
P
memoryless!
600 L 1968—1971
. . Time intervals
Exponential model: knowing that an - N = 4764
earthquake had not occurred in the last ¢ 5
S 400 Lo

506 | _/

200

Gamma model: a large likelihood that the
next earthquake will immediately follow
any given one, and this likelihood 100 -

decreases monotonically with time.

Gamma model



Gaussian/Normal distribution

Why is normal distribution everywhere?

Because of the central limit theorem. (details later)

Roughly, if a random variable is the sum/average of a large number of
independent random variable, it is approximately normally distributed.

; l ey 2 2
Filx) = ——e W W20 —00 < X < 00

oA 2T
X ~ N(p, 0%

Standard normal density has

p=0ahd o= 1

fix)
=

cdf has no close form.

FIGURE 2.13 Normal densities, u =0 and o = .5 (solid), g =0 and o = 1
(dotted), and ;. = 0 and o = 2 (dashed).



Gaussian/Normal distribution

Example:

Turbulent air flow is sometimes modeled as a random process. Since the velocity of
the flow at any point is subject to the influence of a large number of random eddies
in the neighborhood of that point, one might expect from the central limit theorem
that the velocity would be normally distributed. Van Atta and Chen (1968) analyzed
data gathered in a wind tunnel. Figure 2.16, taken from their paper, shows a normal
distribution fit to 409,600 observations of one component of the velocity; the fit is
remarkably good. m

op(u/o)




Gaussian/Normal distribution

Example:

Turbulent air flow is sometimes modeled as a random process. Since the velocity of
the flow at any point is subject to the influence of a large number of random eddies
in the neighborhood of that point, one might expect from the central limit theorem
that the velocity would be normally distributed. Van Atta and Chen (1968) analyzed
data gathered in a wind tunnel. Figure 2.16, taken from their paper, shows a normal
distribution fit to 409,600 observations of one component of the velocity; the fit is
remarkably good. m

Q: why do you almost always find
Gaussian noise on your CCD image?

op(u/o)




Functions of a Random Variable

Q: We know the pdf of particle velocity, what is the pdf of the kinetic energy?

fv, Fxy— fy, Fy Start with a simpler case.
Suppose that X ~ N(u, o2) and Y=aX+b, a>0 (a<0 similar).

Fy(y) =P <y)
=PlaX+b<y)

- d Yy —b
= P(X 22 b) iR} = - ( )
a dy a

y—1 1 y—>b
a a a

after substitution,

fr(y) =

PROPOSITION A
IfX ~N(u,0>)andY =aX + b, then Y ~ N(au + b, a*c?).



Functions of a Random Variable
Q: We know the pdf of particle velocity, what is the pdf of the kinetic energy?
Find the density of X=22, where Z~N (0,1).

Fx(x) = P(X < x) standard normal distribution

— P(_\/;S 7 = ﬁ) cdf to pdf (I),()C) = Qb(.X)
_ (/) — B(—vF)

Differentiating (we circumvent cdf because it has no closed form),

fx(x) = 2x7 12 (Jx) + 2x712 (= /)

=x" "¢ (Vx)
Finally, 112
()= — =, % =10
T o
5@ . Gamma density, with a=A=1/2.
g(t) = —1""le7, t>0 Chi-square density with 1 degree of freedom.

['()
r3) = v7



Functions of a Random Variable

We always go through the same steps:
Find the cdf of Y, diffcrentiate it to find pdf, specify in what region it holds.

PROPOSITION B

Let X be acontinuous random variable with density f (x) andletY = g(X) where
g is a differentiable, strictly monotonic function on some interval /. Suppose that
f(x) =0if x isnotin /. Then Y has the density function

d
fr(y) = fx(g™' ) |Eg‘l(y)

for y such that y = g(x) for some x, and fy(y) = 0if y ## g(x) forany x in /.
Here g~ ! is the inverse function of g; that is, g7'(y) = x if y = g(x). o

However, for any specific problem, proceeding from scratch is usually easier.



Generating pseudorandom numbers

PROPOSITION C
Let Z = F(X); then Z has a uniform distribution on [0, 1].

Proof
Pl =g =PlE(X) =z =P X =F () =FF Gl=z

This is the uniform cdf.



Generating pseudorandom numbers

PROPOSITION C
Let Z = F(X); then Z has a uniform distribution on [0, 1].
Proof
PlZ =0 —P(H(X) =g) — PX =1 @) —EF @&)—z

This is the uniform cdf.

PROPOSITION D
Let U be uniform on [0, 1], and let X = F~'(U). Then the cdf of X is F.

Proof

BN =) = PE () = ) = PN = F(0)) = K(%)

To generate random variables with cdf F,
simply apply F-! to uniform random numbers.




Generating pseudorandom numbers

Example.
Generating random variables from an exponential distribution.

When simulating large queueing networks to assess the performance, one
needs to generate random time intervals between customer arrivals, which
might be exponentially distributed. (Why?)

cdf: Fll) =1—pg™*
F-1: 6’_;“ =1 —x
—At = log(1l — x)
t = —log(l — x)/A

So if U is uniform on [0,1], then 7" = — log(1 — U)/A is the result.
Actually V = 1 — U is also uniformly distributed on [0, 1], so finally

T = —log(V)/A, where V is uniform on [0, 1].



Review: Conditional probability & Bayes’ rule

DEFINITION

Let A and B be two events with P(B) # 0. The conditional probability of A
given B is defined to be

P(ANB
P{A[B}:ﬁ B

LAW OF TOTAL PROBABILITY
Let By, B,. ..., B, be such that U:-‘:, B;=Qand B; N B; =¥ fori # j, with
P(B;) > 0 for all i. Then. for any event A,

P(A)=)_ P(A|B)P(B)

i=1

BAYES' RULE

Let A and By, ..., B, be events where the B; are disjoint, Ule B; = €, and
P(B;) > Oforall i. Then

P(A|B,)P(B))
> P(A|B;)P(B;)

i=1}

P(B;| A) =

The proof of Bayes’ rule follows exactly as in the preceding discussion. ]



Laplace’s law of succession

Suppose that the sun has risen z times in succession; what is the
probability that it will rise once more?

Pierre-Simon Laplace (1749-1827)




Laplace’s law of succession

Suppose that the sun has risen z times in succession; what is the
probability that it will rise once more?

Assume the a priori probability for a sunrise on any day is a constant. Due
to our total ignorance it will be assumed to take all possible values in [0, 1]
with equal likelihood.

This probability is treated as a random variable ¢ uniformly distributed over
[0, 1]. Thus ¢ has the density function f'such that f(p) =1 for 0 <p < 1.

Pp<&<p+dp) =dp, 0<p<l.

Assume sunrises are independent events, if the true value of £ is p, then
the probability of n successive sunrises is p”.

P(Sn ‘ f — p) :p-n.



Laplace’s law of succession

Suppose that the sun has risen z times in succession; what is the
probability that it will rise once more?

Law of total probability:

P(S")= ) P(=p)P(5"|&=p)

0<p<L1
Pass from the sum into an integral,

1l Al
T Ty 5 T 1
Py = [ P Ie=pdp= [ pap=—.

Apply it for both n and n+1, then take the ratio,

ngont+l1 n+1 1
Pwsmﬁd ‘Sn)::JP(S Sf ):: PTST ):: nTQ ::n_%l.
P(S") P(S") - n 2




Problem set #1

Do you agree with Laplace’s result? No matter your answer is yes or no,
elaborate your comments (e.g. meaning, assumptions, derivation, interpretation,
Bayesian spirit, ..., if any). Use your critical thinking!

Find the distribution of Y=X—r, where X is a negative binomial random
variable. Then write down the Taylor expansion of (1—x)”. Now, do you
understand why this distribution is called “negative binomial?

Verify that Bayes’ rule indeed renders 7.5% 1n the cancer research mentioned
in Lecture 1 (see slide pp. 27).

Prove that under the memoryless assumption, the lifetime of electronic
components follow the exponential distribution.

Create an exponential distribution using the F~! technique. Plot a histogram of
the data you generate overlaid with the expected pdf to show you are successful.
Do the same thing on another 1-2 of any continuous distributions.



