
Lecture 3
Joint distributions



Joint probability structure of two or more random variables defined on the 
same sample space.
- Turbulent atmosphere/molecular cloud/quasar outflow: in a realistic 3-D 

model, the joint probability distribution of x, y, z components of wind velocity 
can be measured or simulated.

- Setting fish harvesting policies: a model for the joint distribution of age and 
length in a population of fish can be used to estimate the age distribution from 
the length distribution.

The joint behavior of two random variables, X and Y, is determined by cdf

-- probability that point (X,Y) belongs to a semi-infinite rectangle in the plane.



Probability that point 
(X,Y) belongs to a given 
rectangle is?

In general, if X1,…, Xn are jointly distributed random variables, their joint cdf is

More complicated situations, more intersections and unions of rectangles. 



X, Y are discrete random variables defined on the same sample space, taking on 
values x1,…, xn , y1,…, yn , their joint frequency/probability mass function is

- Examples.
Toss a coin 3 times. X=# of heads on the first toss, Y=total # of heads.

Joint frequency function:

Random variables: discrete

Frequency function of Y?

Similar for X:



Marginal frequency function
X1,…, Xn are defined on the same sample space, their joint frequency function is

Marginal frequency function of X1 is

2-d marginal frequency function of X1 , X2 is

What is the number of ways that n objects are grouped into r 
classes (types of outcomes) with ni in the ith class, i=1, …, r?

1st class: n1 out of n;             2nd class: n2 out of n-n1;
… rth class: nr out of n−n1−n2−…−nr−1

Multinomial coefficient:



Example: Multinomial distribution

Each of n independent trials can result in one of r types of outcomes, 
on each trial the probabilities of the r outcomes are p1, p2 ,…, pr .
Ni = total # of outcomes of type i in the n trials, i=1, …, r.
(e.g. God is playing a dice…)

Any particular sequence of trials giving rise to N1=n1 , …, Nr=nr occurs with 
probability 

How many such sequences are there? 
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Marginal distribution of Ni?   -- Direct summation is daunting!



Example: Multinomial distribution

Each of n independent trials can result in one of r types of outcomes, 
on each trial the probabilities of the r outcomes are p1, p2 ,…, pr .
Ni = total # of outcomes of type i in the n trials, i=1, …, r.
(e.g. God is playing a dice…)

Any particular sequence of trials giving rise to N1=n1 , …, Nr=nr occurs with 
probability 

How many such sequences are there? 
Equivalent question: What is the # of ways that n objects are grouped into r 
classes (types of outcomes) with ni in the ith class, i=1, …, r?

Joint frequency function:

Marginal distribution of Ni?   -- Direct summation is daunting!
Ni can be interpreted as # of success in n trials, each of which has pi of success.

Binomial random variable Ni renders



X, Y are continuous random variables with joint cdf F (x, y), joint pdf f (x, y).
For any “reasonable” 2-D set A

Differential form is

Random variables: continuous



Example: Consider the bivariate density function

P (X>Y) can be found by integrating f over the set 

If we fix x first, y ranges from 0 to x, then x over [0, 1].

If we fix y first, x ranges from x to 1, then y over [0, 1].

Random variables: continuous

y =
 x

y =
 x



Random variables: continuous

Summing / integrating the joint frequency function over the other variable.



Random variables: continuous

Summing / integrating the joint frequency function over the other variable.

Example. Bivariate density function                                           0 ≤ x, y ≤ 1

Marginal density of X:

Marginal density of Y:



For several jointly continuous random variables, there are marginal density 
functions of various dimensions. Say, for density function f (x, y, z) of X, Y, Z,

1-d marginal distribution of X:

2-d marginal distribution of X and Y:

Farlie-Morgenstern Family
If F(x), G(x) are 1-d cdfs, for any α with |α| ≤ 1, the following is a bivariate 
cumulative distribution function:

As                                                the marginal distributions are

Marginals given, we may construct H as many as we want.



Farlie-Morgenstern Family

Example. Marginals are uniform on [0, 1], F(x) = x, G(y) = y, set α = −1,

Bivariate density

If α = 1,



Farlie-Morgenstern Family are copulas 
      – a copula（连接函数）is a joint cdf that has uniform marginal distributions. 

  Note 
           (summing up all v values over pdf is equivalent to let v approach infinity in cdf)              

The density is 

Suppose X, Y have cdfs FX (x), FY (y), then U=FX (x), V=FY (y) are uniform random 
variables. For a copula C(u, v), consider the joint cdf

Since C(FX (x), 1)=FX (x), marginal cdfs of FXY are FX (x), FY (y). The pdf is

From ingredients of two marginal distributions 
and any copula, a joint distribution can be 
constructed.

Dependence between the random variables are 
captured in the copula.



Example 1: The density is 

Find marginal distributions.

  - exponential.

  - Gamma distribution. Recall

Picture showing where pdf is 
nonzero, to aid in determining 
the limits of integration



Example 2: A point is chosen randomly in a disk of radius 1. 

R is distance from origin, its cdf, pdf are

Marginal density of x?

What about y? Symmetry!
  



Example 3: Bivariate normal density

Five parameters

What does its contour lines look like?

-- An ellipse centered at                  . ρ≠0, tilted; ρ=0, untilted. 
  



ρ=0 ρ=0.3

ρ=0.6 ρ=0.9



Example 3: Bivariate normal density

Marginal density of X is

                                 Completing the square,

Gaussian

If X, Y ~ bivariate Gaussian distribution, 
their marginal distributions are Gaussian.

Inverse question?



Independently random variables

If g and h are function, then Z=g(X) and W=h(Y) are also independent.

Example: Farlie-Morgenstern family, when α=0, X, Y are independent.

Example: Bivariate normal distribution, when ρ=0, X, Y are independent.



Independently random variables
Example.

The times of arrival of two packets, T1, T2 are independent, both uniformly 
distributed on [0, T], then joint pdf is

We need                          ,  or   t1 − τ (or 0) < t2 < t1 + τ

P(collision) 

= pdf integrated over shaded area

= 



Conditional 
distributions



Conditional distributions: discrete

X, Y are discrete, the conditional probability that X=xi given that Y=yi is

We denote it as                     .        If X, Y are independent, = pY  (y)

Reexpressing it, 

Summing both sides over all y values, law of total probability,



Conditional distributions: discrete
Example.

                  Make a guess!! 



Conditional distributions: discrete
Example. 

N=true # of particles
X=# of detected particles

Given N=n, X is binomial

Denote j=n−k

Still Poisson, but parameter 
is now λp.



Conditional distributions: continuous
The conditional probability of Y given X is defined to be

Reexpressing it, 

Integrating both sides over x, the marginal density of Y is

Law of total probability for the continuous case.



Previous example



Three interesting examples -- 1. Stereology (体视学)
In metallography (金相学）and other applications of quantitative 
microscopy, aspects of a 3-d structure are deduced from studying 2-d cross 
sections, where statistics play an important role (DeHoff & Rhines 1968).

Spherical particles are dispersed in a medium (e.g. grains in a 
metal); the density function of the radii of  the spheres is denoted 
as fR (r). When the medium is sliced, 2-d, circular cross sections of 
the spheres are observed. We denote the pdf of the radii of these 
circles as fX (x). Their relationship?

From the viewpoint of a single sphere, the slicing plane is chosen 
at random. Fix R=r, find conditional density

H is uniformly distributed over [0, r],                                 

r fixed!



Spherical particles are dispersed in a medium (e.g. grains in a 
metal); the density function of the radii of  the spheres is denoted 
as fR (r). When the medium is sliced, 2-d, circular cross sections of 
the spheres are observed. We denote the pdf of the radii of these 
circles as fX (x). Their relationship?

Differentiating it w.r.t. x,

The law of total probability gives marginal density of X,

Abel’s equation / transform
- bridging 2-D projection and 3-D spherical geometry.
- Useful in astronomy!! (e.g. galactic astronomy, cosmology…)

Niels Henrik Abel (1802-1829), 
Norwegian mathematician, 
Professor-to-be at Univ. of Berlinobservable

wanted

Three interesting examples -- 1. Stereology (体视学)



Lec #2: To generate random variables with cdf F, apply F−1 to uniform random variables.

Three interesting examples -- 2. Rejection method

But what if F−1 does not have a closed form?

Suppose pdf f is defined on [a, b], let M be a function                              
and let m be a pdf,

Step 1: Generate T with pdf m.
Step 2: Generate U, uniform on [0, 1] and independent of T.
            - if M (T)∙U ≤ f (T), then let X=T (accept T);
            - otherwise, reject T (go to step 1). 

Idea is to choose M so that 
it is easy to generate 
random variables from m.



Three interesting examples -- 2. Rejection method

Justification: What is X?  T but only if it is accepted.
Why not the opposite?

Law of total probability

For any given T=t, probability of 
U ≤ f (T)/M (T) is f (t)/M (t). 
Then sum over all t values.

Collecting everything, LHS = f (x) dx.



Three interesting examples -- 3. Bayesian Inference
A freshly minted coin has a certain probability of coming up heads if it 
is spun on its edge (may not be ½). Say, you spin it n times and see X 
heads. What has been learned about the chance Θ it comes up heads?

Totally ignorant about it, we might represent our knowledge 
by a uniform density on [0, 1], the prior density 

Given a value θ, X follows binomial distribution

The joint discrete/continuous pdf

Marginal density of X by integrating over θ,



Three interesting examples -- 3. Bayesian Inference

Using Gamma and Beta functions (I skip the tedious maths here),

(If our prior on θ is uniform, each outcome of X is a priori equally likely).

Having observed X=x, what’s our knowledge on Θ? 
Quantified by the posterior density of θ given x,

= …

= … 

Posterior density is Beta density 
with a=x+1, b=n−x+1.  



Three interesting examples -- 3. Bayesian Inference

Suppose we spin a coin n=20 times, finding x=13 heads.
a=x+1=14, b=n−x+1=8, see figure.

Posterior is Beta density, a=x+1, b=n−x+1.  

- Extremely unlikely that θ<0.25
- Likely θ>0.5 (91% probability)

prior

posterior
Question: where does it peak?



Three interesting examples -- 3. Bayesian Inference

Suppose we spin a coin n=20 times, finding x=13 heads.
a=x+1=14, b=n−x+1=8, see figure.

Posterior is Beta density, a=x+1, b=n−x+1.  

- Extremely unlikely that θ<0.25
- Likely θ>0.5 (91% probability)

prior

posterior
Question: where does it peak?

θ13 (1−θ)7  peaks at 13/20. Intuitively correct.

Analog questions in astronomy are common. 

We observe a fraction, deduce the real fraction 
(uncertainty directly given by Bayesian inference).



Functions of jointly 
distributed random variables



X, Y are discrete random variables, taking integer values and having joint 
frequency function p(x, y). What is the frequency function of Z=X+Y ?

Special case A: sums

Whenever X=x and Y=z−x, Z=z, so the probability that Z=z is the sum 
over all x of these joint probabilities,

If X and Y are independent,

- convolution of the sequences pX  and pY.



Continuous case

Special case A: sums

Find cdf of Z first!

Differentiating it, using the rule of chains,

If X and Y are independent,

- convolution of the functions fX  and fY.

Convolution is everywhere in 
astronomy: 

- Smooth an image with a PSF
- Deriving the star formation 

history
- combination of multiple effects
- …



Continuous case

Special case A: sums

Example: The lifetime of a component is exponentially distributed.
    We have an identical and independent backup component. 
    
 Lifetime of the system S=T1+T2 , its pdf is

 Beyond the limits of integration, both components have 0 density.

                   Gamma distribution with parameters 2, λ.



Special case B: quotients
Find cdf of Z=Y/X first, again.

                                         is the probability of the set of (x, y) such that y/x ≤ z. 
If x > 0, it is the set y ≤ xz; if x < 0, it is the set y ≥ xz.

Differentiating it, using the rule of chains, insert y=xv (instead of xz),

                                                                         If X, Y are independent.



Special case B: quotients
Example: How is the ratio of two independent Gaussians distributed?

Consider standard normal distribution, Z=Y/X, then

Integrand is even,

                                          Cauchy density decreases slower than Gaussians. 



The general case
Example: X, Y are independent standard normal random variables, joint pdf is

Changing to polar coordinates, 



The general case
R, Θ  have joint distribution

Joint density implies that R and Θ are independent 
variables, Θ is uniform on [0, 2π], R has the density

Rayleigh density! 



The general case


