[ecture 3

Joint distributions




Joint probability structure of two or more random variables defined on the
same sample space.

- Turbulent atmosphere/molecular cloud/quasar outflow: in a realistic 3-D
model, the joint probability distribution of x, y, z components of wind velocity
can be measured or simulated.

Setting fish harvesting policies: a model for the joint distribution of age and
length 1n a population of fish can be used to estimate the age distribution from
the length distribution.

The joint behavior of two random variables, X and Y, is determined by cdf

Fx,y)=P(X<x,Y <Yy)
-- probability that point (X, Y) belongs to a semi-infinite rectangle in the plane.
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Probability that point
(X,Y) belongs to a given
rectangle 1s?

P(S&‘l <X 5:: 2,y < Y '-<-. y2) =F($2ay2) _F(:B?syl) - F($13y2) +F($1:y1)

More complicated situations, more intersections and unions of rectangles.

In general, if X}, ..., X, are jointly distributed random variables, their joint cdf is




Random variables: discrete

X, Y are discrete random variables defined on the same sample space, taking on
values x, ..., x,,, y1,..., v, , their joint frequency/probability mass function is

pGi,y) = P(X =x;,Y = ;)

- Examples.
Toss a coin 3 times. X=# of heads on the first toss, Y=total # of heads.

Q = {hhh, hht, hth, htt, thh,tht, tth, ttt}
A A A A
Joint frequency function:

Y Frequency function of Y?

1
+ 0

pr(0) =P =0)= 3
3
8

pi(l) = P(¥ =1)=

Similar for X: px(x) = Z DX ¥r)

]




Marginal frequency function

Xy, ..., X, are defined on the same sample space, their joint frequency function is

2-d marginal frequency function of X, X, is Px,x, (X1, x2) = Z px1,

X3 X

What is the number of ways that n objects are grouped into r
classes (types of outcomes) with #; in the ith class, i=1, ..., 7?

1st class: n, out of #; 2nd class: n, out of n-n;
... rthclass: n.out of n—n,—n,—...—n

—1

n! (n—np)! n—ny—n,—---—n,_1)!

nl!n—ny)!'(n—n; —n-)ln,! O'n,!

n!

o L] (3 }/Z
Multinomial coefficient: —
NNy --- N, ni'ny!---n,!




Example: Multinomial distribution

Each of n independent trials can result in one of » types of outcomes,
on each trial the probabilities of the » outcomes are py, p,, ..., p, .
N, = total # of outcomes of type i in the # trials, i=1, ..., r.

(e.g. God is playing a dice...)

Any particular sequence of trials giving rise to N,=n,, ..., N,=n, occurs with

probability pfln przrz ... phr

How many such sequences are there?




Example: Multinomial distribution

Each of n independent trials can result in one of » types of outcomes,
on each trial the probabilities of the » outcomes are py, p,, ..., p, .
N, = total # of outcomes of type i in the # trials, i=1, ..., r.

(e.g. God is playing a dice...)

Any particular sequence of trials giving rise to N,=n,, ..., N,=n, occurs with

probability pflu przrz ... phr

How many such sequences are there?
Equivalent question: What is the # of ways that n objects are grouped into r
classes (types of outcomes) with #; in the ith class, i=1, ..., »?
n
nl . e f’li

Joint frequency function:  p(ny, ..., n,) = (

Marginal distribution of N7 -- Direct summation is daunting!




Example: Multinomial distribution

Each of n independent trials can result in one of » types of outcomes,
on each trial the probabilities of the » outcomes are py, p,, ..., p, .
N, = total # of outcomes of type i in the # trials, i=1, ..., r.

(e.g. God is playing a dice...)

Any particular sequence of trials giving rise to N,=n,, ..., N,=n, occurs with
robabilit ni _no 1

P Y Py Dy Py

How many such sequences are there?

Equivalent question: What is the # of ways that n objects are grouped into r

classes (types of outcomes) with #; in the ith class, i=1, ..., »?

rl 1 n?2
Joint frequency function:  p(ny, ..., 1n,) = (n " )Pl” i O
T

Marginal distribution of N7 -- Direct summation is daunting!
N, can be interpreted as # of success in # trials, each of which has p; of success.

Binomial random variable N, renders  py (n;) = (n)pj”'(l _ py)rh
ni)




Random variables: continuous

X, Y are continuous random variables with joint cdf F (x, y), joint pdf 1 (x, »).
For any “reasonable” 2-D set A

P(X,Y)e A) = /]‘f(x, y)dy dx
A

In particular, if A = {(X,Y)|X <xand Y < y},

F(x,y):/' / f(u,v)dvdu

From the fundamental theorem of multivariable calculus, it follows that

a2

39 = i,y
J%; ¥) 90y (x,y)

Difterential form is

Px<X<x+4+dx,y<Y<y4+dy)= f(x,y)dxdy




Random variables: continuous

3
Example: Consider the bivariate density function fy) 2
1

0
0

12
f(x,y)ZT(szrxy), 0<x<l, 0=<y=<lI

P (X>7Y) can be found by integrating f over the set

{(e, 0y <5 =<1}

If we fix x first, y ranges from 0 to x, then x over [0, 1].

9

13 1] prx R
P(X >Y)= 7/0 /O (x” +xy) dyldx = 7

If we fix y first, x ranges from x to 1, then y over [0, 1].

@ o1
PR = T=— / I/ (x* +xy)dx|dy
0 pYy




Random variables: continuous

The marginal cdf of X, or Fy, is

Fx(x) = P(X <x)
lim F(x,y)

y—>00

/' / f(u,y)dy du

From this, it follows that the density function of X alone, known as the marginal
density of X, is

fx(X)zF;’((X):/ f(x,y) dy

Summing / integrating the joint frequency function over the other variable.




Random variables: continuous

The marginal cdf of X, or Fy, is

Fx(x) = P(X <x)
lim F(x,y)

y—00

/' / f(u,y)dy du

From this, it follows that the density function of X alone, known as the marginal
density of X, is

fx(x) = Fy(x) = / fx,y)dy
Summing / integrating the joint frequency function over the other variable.

Example. Bivariate density function f(x,v) = —(x*4+xy), 0<x,y<1

: : . | TeE e 12 ¥
Marginal density of X2 £ () = _/ 24+ xy)dy = — ( 2 4 _)
7 O - -

i 2

Marginal density of Y- Bl = 1_2( 1 +y/2)
ryro = g\3 T riel




For several jointly continuous random variables, there are marginal density
functions of various dimensions. Say, for density function f'(x, y, z) of X, ¥, Z,

1-d marginal distribution of X: felx)= / / filx,y,z) dydz

2-d marginal distribution of X and Y: Teplhs 1) = / fix, ¥,2)dz

Farlie-Morgenstern Family

If F(x), G(x) are 1-d cdfs, for any a with |a| < 1, the following is a bivariate
cumulative distribution function:

H(x,y) = FxX)G(W){l + e[l = F()I[1 = G}
As lim F(x) = lim F(y) =1, the marginal distributions are

Hix, o) = Flx)

Marginals given, we may construct H as many as we want.




Farlie-Morgenstern Family
H(x,y) = FX)GO){l + o[l — F()I[1 — G}

Example. Marginals are uniform on [0, 1], F(x) =x, G(y) =y, seta =—1,
H(x,y) =xy[l1 - (1—-x)(1-y)]

i#) i)
= 2°y ¥ v —ty>, U< =1,

Bivariate density
52
hx,y) = BxayH(x’ y)
= 2x + 2y — 4xy, D=x =1,
Ifoa=1,
H(x,y) =xy[l+ A -x)(1-y)]
= 2xy — x°y — y*x + x*y?,
The density is

h(x,y) =2—2x — 2y + 4xy,




Farlie-Morgenstern Family are copulas
—acopula CGEEERRZED) is ajoint cdf that has uniform marginal distributions.

Note PiF < @) = Gl 1) = @ and €1, ) = 49

(summing up all v values over pdf is equivalent to let v approach infinity in cdf)

The density is 52

c(l, v) = 8MavC(u, iy =0

Suppose X, Y have cdfs Fy(x), Fy(y), then U=Fy(x), V=Fy(y) are uniform random
variables. For a copula C(u, v), consider the joint cdf

Fxy(x,y) = C(Fx(x), Fy(y))
Since C(Fy(x), 1)=Fy(x), marginal cdfs of Fyy are F'y(x), Fy(y). The pdfis

fxy(x,y) =c(Fx(x), Fy(¥)) fx(x) fr(y)

From ingredients of two marginal distributions
and any copula, a joint distribution can be
constructed.

PROPOSITION €

Let Z = F(X); then Z has a uniform distribution on [0, 1].

. Proof
Dependence between the random variables are 00
. - — = — =l —

This is the uniform cdf.
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Picture showing where pdf is
the limits of integration

il

elsewhere
x =0

e
D
V
~.
o~

A‘egkl‘

Aze—xv
0,
},’

{

Find marginal distributions.
/EO

-

fxyr(x,y)d

e Mdy
2 —Ay _
Ae Mdx = A

fx,y)
/

)
- Gamma distribution. Recall

fr(y

Example I: The density is
fx(x)
- exponential.
)




Example 2: A point is chosen randomly 1n a disk of radius 1

1, if x2+y?2<1
Flx,y) =% .

il otherwise

R is distance from origin, its cdf, pdf are
i g :
FrR) =P(R<r)=—=r IRF)Y=2r,0 <1 < 1,
T

Marginal density of x?

Sfx(x) /f(x v) dy

dy

i

1 — x2,

2
i 4

What about y? Symmetry!
fr(y) =




Example 3: Bivariate normal density

1 (y — py)’
ex y 5
2noxoyy/1 — p? d oy

_2p(x — px)(y — piy)
Ox0y

f(-xs y) —

Five parameters —00 < Uy <0 —00 < [y <00
oy >0 oy >0

—1l<p<l

What does its contour lines look like?

=m0’ 20— p0) = py)

= constant

2 2

-- An ellipse centered at (fLx, [Ly). p#0, tilted; p=0, untilted.

Fx) = —me P2,

o2
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Example 3: Bivariate normal density

i, P 1 ox (_ 1 [(X—MX)Z
. _ZJTO'Xo'y\/l—pz 4 2(1 — p?) of

_Zpuv—uxxy—wu0]>

OxOy

Marginal density of X is

u=(x—ux)/ox

Ixlx) = / fxy(x,y) dy v=(y— uy)/oy

@ - v* — 2puv)] dv

| R 1
= exp | ————
2noxy/1 — p? /—oo p[ 2(1 — p%)

Completing the square, (v — pu)”> + u>(1 — p?)

—1r2/2 1

|
2noxy/1 — p? —o0 [ 2(1 = p*)

o

(v — pu)2] dv

Gaussian

1 e—U/D[u—uxFﬂﬁ}
OxA 27 If X, Y ~ bivariate Gaussian distribution,

their marginal distributions are Gaussian.

Inverse question?

Fx) = — 0"

oxl 2




Independently random variables
DEFINITION

Random variables X, X», ..., X, are said to be independent if their joint cdf
factors into the product of their marginal cdf’s:

Xn) = Fx (%1) Fx, (%) - -+ Fx, (X5)

for all x, x> o [ |

If g and h are function, then Z=g(X) and W=h(Y) are also independent.

Example: Farlie-Morgenstern family, when o=0, X, Y are independent.

H(x,y) = Fx)G(y){l + o[l — F()Il - GO}

Example: Bivariate normal distribution, when p=0, X, Y are independent.

| ( 1 [(x —px)t (v — puy)?

f&x,y)= -+

2 2
Ox Oy

2roxoyy/ 1 — p? = S 2(1 - p?)
C2p(x = px)(y — uy)D

Ox0Oy




Independently random variables

Example.

Suppose that a node in a communications network has the property that if two packets
of information arrive within time 7 of each other, they “collide” and then have to be
retransmitted. If the times of arrival of the two packets are independent and uniform
on [0, T'], what is the probability that they collide?

The times of arrival of two packets, T}, T, are independent, both uniformly
distributed on [0, 7], then joint pdf is

|
ft, )= T

Weneed |t — 6| < T, o0r tj,—t(or0)<t,<t;+71

)

P(collision)

= pdf integrated over shaded area 72 — (T — 7)°

=1—(1—1/T)>.




Conditional

distributions




Conditional distributions: discrete

X, Y are discrete, the conditional probability that X=x; given that Y=y, is
P(X=x;,Y =yj)
P(Y =y;)
Pxy(Xi, }"j)
py(y;)

X =%lY =¥ =

We denote it as PX|Y (x]|y). If X, Y are independent, = py ()

Reexpressing it,

Pxy(x,y) = pxiy(X|¥)py(y)

Summing both sides over all y values, law of total probability,

pPx(x) = Z Pxiy (x|[y)py(y)




Conditional distributions: discrete

Example.

Suppose that a particle counter is impertfect and independently detects each incoming
particle with probability p. If the distribution of the number of incoming particles in

a unit of time is a Poisson distribution with parameter A, what is the distribution of
the number of counted particles?

Make a guess!!




Conditional distributions: discrete

Example.

Suppose that a particle counter is impertfect and independently detects each incoming
particle with probability p. If the distribution of the number of incoming particles in
a unit of time is a Poisson distribution with parameter A, what is the distribution of
the number of counted particles?

P(X =k)=) PN =m)PE=kN =n) N=true # of particles
n=0 X=# of detected particles

= dfe fn . ,
— Z ' ( )pk(l . p)n—!\
n.

k Given N=n, X 1s binomial

n==k

157 T ¢ I |
— > A )\'H
k¢ . n— k)]

n=k

Denote j=n—k

ADY e AT (1 = p)d
:(p) e_,,z ( _ P)
k! b

Still Poisson, but parameter
is now Ap.




Conditional distributions: continuous

The conditional probability of Y given X is defined to be

Sxvr(X,y)
Ix(x)

Irix(y|x) =

[

) — Sxvr(x,y)dxdy _ fXY(.Xa,V)dV
fx(x) dx fx(x) 7

Reexpressingit,  fxy(x,y) = fyix(¥[x) fx(x)

Integrating both sides over x, the marginal density of Y is

fr(y) =/ frix(v[x) fx(x) dx

Law of total probability for the continuous case.




Previous example




Three interesting examples -- 1. Stereology (4 #.%)

In metallography (& #8%) and other applications of quantitative
microscopy, aspects of a 3-d structure are deduced from studying 2-d cross

sections, where statistics play an important role (DeHoff & Rhines 1968).

Spherical particles are dispersed in a medium (e.g. grains in a

metal); the density function of the radii of the spheres is denoted
as fr (r). When the medium is sliced, 2-d, circular cross sections of

the spheres are observed. We denote the pdf of the radii of these  swmpame ‘u
circles as fy (x). Their relationship?

From the viewpoint of a single sphere, the slicing plane 1s chosen

at random. Fix R=r, find conditional density fy|g (X [#).

H 1s uniformly distributed over [0, 7], X = /r?
Fyxir(x|r) = P(X < x)

— P(\/r? — H?> <)

r fixed!

D< ¥ <#




Three interesting examples -- 1. Stereology (#4L % )

Spherical particles are dispersed in a medium (e.g. grains in a
metal); the density function of the radii of the spheres is denoted
as fr (). When the medium is sliced, 2-d, circular cross sections of
the spheres are observed. We denote the pdf of the radii of these
circles as fy (x). Their relationship?

Differentiating it w.r.t. x,

fxir(x|r) =

ra/r? — x2

The law of total probability gives marginal density of X,
Niels Henrik Abel (1802-1829),

o0
fX ()C) — / fX|R (X|r)fR (I’) d?" Norwegian mathematician,
—00

observable Professor-to-be at Univ. of Berlin

wanted

fr(r) dr

e i
L ra/r? — x2

Abel’s equation / transform
- bridging 2-D projection and 3-D spherical geometry.
- Useful in astronomy!! (e.g. galactic astronomy, cosmology...)




Three interesting examples -- 2. Rejection method

Lec #2: To generate random variables with cdf F, apply F~! to uniform random variables.

But what if F~! does not have a closed form? ?:_;\

——

Suppose pdf fis defined on [a, b], let M be a function M (Xx) > f(x)
and let m be a pdf, M (x)

ff M(x) dx

L) =

Step 1: Generate T with pdf m.
Step 2: Generate U, uniform on [0, 1] and independent of 7.

-1t M (T)-U <f (1), then let X=T (accept 7);
- otherwise, reject 7 (go to step 1).

'\.‘-'

Idea is to choose M so that
it is easy to generate
random variables from m.

accept freject




Three interesting examples -- 2. Rejection method

Justification: What is X? 7 but only if it is accepted. ,
Why not the opposite?

Px<X<x+4+dx)=Pkx <T <x+dx | accept)
P =T =g+ dx and accept)
P (accept) m(x) dx
Pacceptix <= T <x+dx)PxG =T <x +dx)
P (accept)

fx)
M(x)

P(acceptlx < T <x+dx)=PU < f(x)/M(x)) =

P (accept) = P(U < f(T)/M(T))

Law of total probability B > £ m(e) dt — I

Ja M(t) [7 M) dr

fr(y) = / Srix(¥]|x) fx(x) dxp

For any given 7=¢, probability of
U<f(T)/M(T)isf()/M(2).

M Then sum over all ¢ values.

4

Collecting everything, LHS = f(x) dx.

accept freject

Mi




Three interesting examples -- 3. Bayesian Inference

A freshly minted coin has a certain probability of coming up heads if it
1s spun on its edge (may not be }2). Say, you spin it n times and see X
heads. What has been learned about the chance ® it comes up heads?

Totally ignorant about it, we might represent our knowledge
by a uniform density on [0, 1], the prior density

Jel@)=1, 0= <L

Given a value 6, X follows binomial distribution

fxo(x]0) = ( )9"'(1 — )", X

n
X

The joint discrete/continuous pdf

fo.x(0,x) = fxo(x]0)fo(0)

= (”)9"’(1 6y,
X

Marginal density of X by integrating over 0,

L /n
fx(x) 2/ ( )9'r(l —0)"""do
0 X




Three interesting examples -- 3. Bayesian Inference

Using Gamma and Beta functions (I skip the tedious maths here),

! ¥ n X H—X — — 1
fx(k)=‘/0 (X)@ (1= 0)~"do = = —.

(If our prior on @ is uniform, each outcome of X is a priori equally likely).

Having observed X=x, what’s our knowledge on ©?
Quantified by the posterior density of & given x,

fo.x(0,x)

n X _ H—X
foix(@|x) = £ 0) = (n+ U(X)H (L —¥)

B ['(n+2)
T M+ 1P —x 4 1)

H* (l . 9)11—.\‘

1.6
B 1.2

mO.S
i@
Posterior density is Beta density =0

0 | o
. _ - 0 0.2 04 0.6 0.8 1.0 0 0.2 04 06 0.8 1.0
with a=x+1, b=n—x+1. N N

['(a+ b)

— N = < 1
= Taorm” U “<‘ = IL

04 06 08 10 002 04 06 08 L0
P p
b) a=6, b=2 d) a=0.5, b=4

2(u




Three interesting examples -- 3. Bayesian Inference

=% I (ﬂ L3 2) i _ O\—X
foix(B]x) = F(X—I—I)F(n—x+l)9 (1-0)

Posterior is Beta density, a=x+1, b=n—x+1.

Suppose we spin a coin n=20 times, finding x=13 heads.
a=x+1=14, b=n—x+1=8, see figure.

- Extremely unlikely that 6<0.25
- Likely 6>0.5 (91% probability)

Question: where does it peak?

posterior

VRN

0.0 0.2 0.4 0.6 0.8 1.0
P




Three interesting examples -- 3. Bayesian Inference

['(n+2)

foix(B]x) = F(x+1)l“(n,—x+1)9'(l —0)"™

Posterior is Beta density, a=x+1, b=n—x+1.

Suppose we spin a coin n=20 times, finding x=13 heads.
a=x+1=14, b=n—x+1=8, see figure.

- Extremely unlikely that 6<0.25
- Likely 6>0.5 (91% probability)

Question: where does it peak?

osterior
013 (1-60)7 peaks at 13/20. Intuitively correct. P

Analog questions in astronomy are common.

We observe a fraction, deduce the real fraction
(uncertainty directly given by Bayesian inference).

0.0 0.2 0.4 0.6 0.8 1.0
P




Functions of jointly
distributed random variables

PROPOSITION B

Let X be a continuous random variable with density f(x) andletY = g(X) where
g is a differentiable, strictly monotonic function on some interval /. Suppose that
f(x) =0if x isnotin /. Then Y has the density function

d
fr() = fx(g () |d—g‘1(y)|
y

for y such that y = g(x) for some x, and fy(y) = 0if y # g(x) forany x in /.
Here ¢! is the inverse function of g; thatis, g7 '(y) = x if y = g(x). o




Special case A: sums

X, Y are discrete random variables, taking integer values and having joint
frequency function p(x, y). What is the frequency function of Z=X+Y?

Whenever X=x and Y=z—x, Z=z, so the probability that Z=z is the sum
over all x of these joint probabilities,

o0

pz(d)= )  p&x,z—x)

X=—0C

If X and Y are independent,

pz() = > px(x)pr(z —x)

X=—0C0

- convolution of the sequences py and py.




Special case A: sums

Continuous case

Find cdf of Z first! 3
Fz(z) = // f(x,y)dx dy

R.
:/ / fx,y) dy dx

Differentiating it, using the rule of chains,

felz) = / f(x,z—x)dx

If X and Y are independent,

folz) = / fxx)fy(z—x)dx

- convolution of the functions f; and f;.

Convolution is everywhere in
astronomy:

Smooth an image with a PSF
Deriving the star formation
history

combination of multiple effects




Special case A: sums

Continuous case folz) = / Jx(x) fylz — x)dx

Example: The lifetime of a component is exponentially distributed.
We have an identical and independent backup component.

Lifetime of the system S=T,+T, , its pdf is

x
fS(S):fle“}“rke%(”)clr
0

Beyond the limits of integration, both components have 0 density.

fsls) = /\2/ g i
0

—s )\’256—)\.5

g(1)

Gamma distribution with parameters 2, A.




Special case B: quotients
Find cdf of Z=Y/X first, again.

F7(z) = P(Z < 7) is the probability of the set of (x, y) such that y/x <z.
If x > 0, it 1s the set y <xz; if x <0, it is the set y > xz.

-0 00 00 pxz
Fz7(2) :/ / f(x,y)dy dx+/ / FiX: vy dy dx
—00 JxZ 0 —00

Differentiating it, using the rule of chains, insert y=xv (instead of xz),

.0 " — 00 00 2

Fz(2) :/ / f (o, xuv)dv dx—l—/ / xf(x,xv)dvdx
/ / (—x)f(x, xv) dvdx—I—/ / xf(x, xv) dvdx
/ / x| Flx, xv) dx dv

fZ(C):/ x| f(x, x2) dx fz(:)Z/ x| fx (x) fr (x2) dx

(0,9

If X, Y are independent.




Special case B: quotients

Example: How is the ratio of two independent Gaussians distributed?

Consider standard normal distribution, Z=Y/X, then

= |l 25 2.2 15 b
fzlz) = / e N 27X 2 gy | fz(2) = / %] f(x, x2) dx
—0 27-[ J —00

Integrand is even,

l ™ I
fz(2) = _/ xe @0/ gy Ny = x°
T Jo

I §

. @02 1 A= (22 4+ 1)/2
27T 0

[()OO Aexp(—Ax) dx =1

fZ(Z):zr(z2+1)’ —00 < 7 < 00

Cauchy density decreases slower than Gaussians.




The general case

Example: X, Y are independent standard normal random variables, joint pdf is

L
- g —(x={2)— (@ [2)
xy(x,y) =—e '
J ' 27

Changing to polar coordinates, - itX >0

R=+X?4Y2 _ a , if X <0

it X =0, ¥ 5£0
X = Recos B

Y = Rsin®




The general case

R, ® have joint distribution
freo(r,0)dr d60 = P(r < R<r+dr,0 <0 <0 +db)
= fxy(rcos@,rsinb)r dr db
fro(r,0) = rfxy(rcosf,rsinb)

—(x2/2)—(y%/2)

. r 2.2 e E e D -
o 0) = ——el=0Pet0=2s202 |y (x, y) =

—if
V7 27

1 5
—r</2
—FE

2

Joint density implies that R and ® are independent
variables, © 1s uniform on [0, 2xt], R has the density

fRry=re™"”, r=0

Rayleigh density!




The general case

Under the assumptions just stated, the joint density of U and V is
fuv @, v) = fxy(hi @, v), hy(u, V)|J " (b (u, v), ha(u, v))]|

for (u,v) such that u = g;(x,y) and v = g,(x, y) for some (x, y) and O
elsewhere. m

X, have the joint density function fx,..x, and
Yj:gli(Xl,...,X”)., f_l,...,fi
X.r' — hi(Yl" T Yn)q

and if J(xy, ..., x,) is the determinant of the matrix with the i; entry dg; /dx;, then
the joint density of Y,

i
Jrix, (1 Yn) = fxpx, (X1, 000y Xl 0, v - 5 B8]

wherein each x; 1s expressed in terms of the y’s; x; = h; (y;




