Lecture 3

Joint distributions

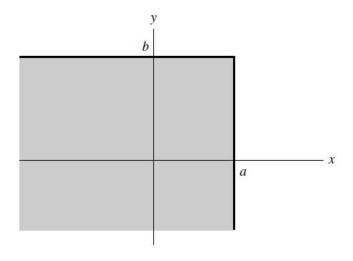
Joint probability structure of two or more random variables defined on the same sample space.

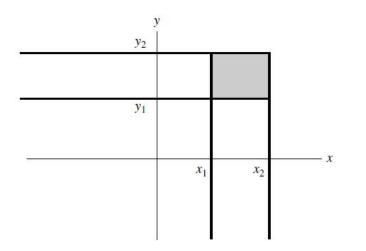
- Turbulent atmosphere/molecular cloud/quasar outflow: in a realistic 3-D model, the joint probability distribution of *x*, *y*, *z* components of wind velocity can be measured or simulated.
- Setting fish harvesting policies: a model for the joint distribution of age and length in a population of fish can be used to estimate the age distribution from the length distribution.

The joint behavior of two random variables, *X* and *Y*, is determined by cdf

$$F(x, y) = P(X \le x, Y \le y)$$

-- probability that point (*X*, *Y*) belongs to a semi-infinite rectangle in the plane.





Probability that point (X, Y) belongs to a given rectangle is?

 $P(x_1 < X \leq x_2, y_1 < Y \leq y_2) = F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1)$

More complicated situations, more intersections and unions of rectangles.

In general, if $X_1, ..., X_n$ are jointly distributed random variables, their **joint cdf** is

$$F(x_1, x_2, \ldots, x_n) = P(X_1 \le x_1, X_2 \le x_2, \ldots, X_n \le x_n)$$

Random variables: discrete

X, Y are discrete random variables defined on the same sample space, taking on values $x_1, ..., x_n$, $y_1, ..., y_n$, their joint frequency/probability mass function is

$$p(x_i, y_j) = P(X = x_i, Y = y_j)$$

- Examples.

Toss a coin 3 times. X=# of heads on the first toss, Y=total # of heads.

 $\Omega = \{hhh, hht, hth, htt, thh, tht, tth, ttt\}$

Joint frequency function:

	У			
X	0	1	2	3
0 1	$\frac{1}{8}$	$\frac{2}{8}$ $\frac{1}{8}$	$\frac{1}{8}$ $\frac{2}{8}$	$\begin{array}{c} 0\\ \frac{1}{8} \end{array}$

Frequency function of *Y*?

 $\Delta \quad \Delta \quad \Delta \quad \Delta$

$$p_Y(0) = P(Y = 0) = \frac{1}{8} + 0$$
$$p_Y(1) = P(Y = 1) = \frac{3}{8}$$

Similar for X: $p_X(x) = \sum_i p(x, y_i)$

Marginal frequency function

 X_1, \ldots, X_n are defined on the same sample space, their joint frequency function is

$$p(x_1,\ldots,x_m)=P(X_1=x_1,\ldots,X_m=x_m)$$

Marginal frequency function of X_1 is $p_{X_1}(x_1) = \sum_{x_2 \cdots x_m} p(x_1, x_2, \dots, x_m)$

2-d marginal frequency function of X_1 , X_2 is $p_{X_1X_2}(x_1, x_2) = \sum_{x_3 \cdots x_m} p(x_1, x_2, \dots, x_m)$

What is the number of ways that *n* objects are grouped into *r* classes (types of outcomes) with n_i in the *i*th class, i=1, ..., r?

1st class: n_1 out of n; 2nd class: n_2 out of $n-n_1$; ... rth class: n_r out of $n-n_1-n_2-...-n_{r-1}$

$$\frac{n!}{n_1!(n-n_1)!}\frac{(n-n_1)!}{(n-n_1-n_2)!n_2!}\cdots\frac{(n-n_1-n_2-\cdots-n_{r-1})}{0!n_r!}$$

Multinomial coefficient:

$$\binom{n}{n_1 n_2 \cdots n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Example: Multinomial distribution

Each of *n* independent trials can result in one of *r* types of outcomes, on each trial the probabilities of the *r* outcomes are $p_1, p_2, ..., p_r$. $N_i = \text{total } \# \text{ of outcomes of type } i \text{ in the } n \text{ trials}, i=1, ..., r.$ (e.g. God is playing a dice...)

Any particular sequence of trials giving rise to $N_1 = n_1, ..., N_r = n_r$ occurs with probability $p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$

How many such sequences are there?

Example: Multinomial distribution

Each of *n* independent trials can result in one of *r* types of outcomes, on each trial the probabilities of the *r* outcomes are $p_1, p_2, ..., p_r$. $N_i = \text{total } \# \text{ of outcomes of type } i \text{ in the } n \text{ trials}, i=1, ..., r.$ (e.g. God is playing a dice...)

Any particular sequence of trials giving rise to $N_1 = n_1, ..., N_r = n_r$ occurs with probability $p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$

How many such sequences are there?

Equivalent question: What is the # of ways that *n* objects are grouped into *r* classes (types of outcomes) with n_i in the *i*th class, i=1, ..., r?

Joint frequency function: $p(n_1, ..., n_r) = \binom{n}{n_1 \cdots n_r} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$

Marginal distribution of N_i ? -- Direct summation is daunting!

Example: Multinomial distribution

Each of *n* independent trials can result in one of *r* types of outcomes, on each trial the probabilities of the *r* outcomes are $p_1, p_2, ..., p_r$. $N_i = \text{total } \# \text{ of outcomes of type } i \text{ in the } n \text{ trials}, i=1, ..., r.$ (e.g. God is playing a dice...)

Any particular sequence of trials giving rise to $N_1 = n_1, ..., N_r = n_r$ occurs with probability $p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$

How many such sequences are there?

Equivalent question: What is the # of ways that *n* objects are grouped into *r* classes (types of outcomes) with n_i in the *i*th class, i=1, ..., r?

Joint frequency function:
$$p(n_1, ..., n_r) = \binom{n}{n_1 \cdots n_r} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$

Marginal distribution of N_i ? -- Direct summation is daunting! N_i can be interpreted as # of success in *n* trials, each of which has p_i of success.

Binomial random variable N_i renders $p_{N_i}(n_i) = \binom{n}{n_i} p_i^{n_i} (1 - p_i)^{n - n_i}$

X, *Y* are continuous random variables with joint cdf F(x, y), joint pdf f(x, y). For any "reasonable" 2-D set A

$$P((X, Y) \in A) = \iint_{A} f(x, y) \, dy \, dx$$

In particular, if $A = \{(X, Y) | X \le x \text{ and } Y \le y\}$,

$$F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) \, dv \, du$$

From the fundamental theorem of multivariable calculus, it follows that

$$f(x, y) = \frac{\partial^2}{\partial x \partial y} F(x, y)$$

Differential form is

$$P(x \le X \le x + dx, y \le Y \le y + dy) = f(x, y) dx dy$$

Example: Consider the bivariate density function

$$f(x, y) = \frac{12}{7}(x^2 + xy), \qquad 0 \le x \le 1, \qquad 0 \le y \le 1$$

P(X > Y) can be found by integrating f over the set

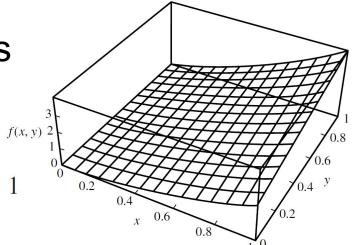
 $\{(x, y) | 0 \le y \le x \le 1\}$

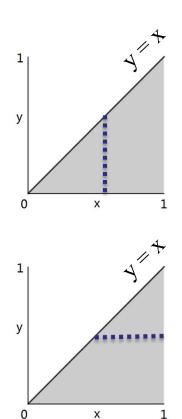
If we fix x first, y ranges from 0 to x, then x over [0, 1].

$$P(X > Y) = \frac{12}{7} \int_0^1 \int_0^x (x^2 + xy) \, dy \, dx = \frac{9}{14}$$

If we fix y first, x ranges from x to 1, then y over [0, 1].

$$P(X > Y) = \frac{12}{7} \int_0^1 \int_y^1 (x^2 + xy) \, dx \, dy$$





The marginal cdf of X, or F_X , is

$$F_X(x) = P(X \le x)$$

= $\lim_{y \to \infty} F(x, y)$
= $\int_{-\infty}^x \int_{-\infty}^\infty f(u, y) \, dy \, du$

From this, it follows that the density function of *X* alone, known as the **marginal density** of *X*, is

$$f_X(x) = F'_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$$

Summing / integrating the joint frequency function over the other variable.

The marginal cdf of X, or F_X , is

$$F_X(x) = P(X \le x)$$

= $\lim_{y \to \infty} F(x, y)$
= $\int_{-\infty}^x \int_{-\infty}^\infty f(u, y) \, dy \, du$

From this, it follows that the density function of X alone, known as the **marginal density** of X, is

$$f_X(x) = F'_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$$

Summing / integrating the joint frequency function over the other variable.

Example. Bivariate density function $f(x, y) = \frac{12}{7}(x^2 + xy), 0 \le x, y \le 1$ Marginal density of X: $f_X(x) = \frac{12}{7} \int_0^1 (x^2 + xy) \, dy = \frac{12}{7} \left(x^2 + \frac{x}{2}\right)$ Marginal density of Y: $f_Y(y) = \frac{12}{7} \left(\frac{1}{3} + y/2\right).$ For several jointly continuous random variables, there are marginal density functions of various dimensions. Say, for density function f(x, y, z) of X, Y, Z,

1-d marginal distribution of *X*:

 $f_X(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) \, dy \, dz$ 2-d marginal distribution of *X* and *Y*: $f_{XY}(x, y) = \int_{-\infty}^{\infty} f(x, y, z) dz$

Farlie-Morgenstern Family

If F(x), G(x) are 1-d cdfs, for any α with $|\alpha| \leq 1$, the following is a bivariate cumulative distribution function:

$$H(x, y) = F(x)G(y)\{1 + \alpha[1 - F(x)][1 - G(y)]\}$$

As $\lim_{x\to\infty} F(x) = \lim_{y\to\infty} F(y) = 1$, the marginal distributions are $H(x, \infty) = F(x)$ $H(\infty, \mathbf{y}) = G(\mathbf{y})$

Marginals given, we may construct H as many as we want.

Farlie-Morgenstern Family

$$H(x, y) = F(x)G(y)\{1 + \alpha[1 - F(x)][1 - G(y)]\}$$

Example. Marginals are uniform on [0, 1], F(x) = x, G(y) = y, set $\alpha = -1$,

$$H(x, y) = xy[1 - (1 - x)(1 - y)]$$

= $x^2y + y^2x - x^2y^2$, $0 \le x \le 1$, $0 \le y \le 1$

Bivariate density

$$h(x, y) = \frac{\partial^2}{\partial x \partial y} H(x, y)$$

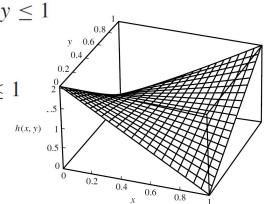
= 2x + 2y - 4xy, $0 \le x \le 1$, $0 \le y \le 1^{h(x, y)}$
If $\alpha = 1$,

$$H(x, y) = xy[1 + (1 - x)(1 - y)]$$

= 2xy - x²y - y²x + x²y², 0 \le x \le 1, 0 \le y \le 1

The density is

 $h(x, y) = 2 - 2x - 2y + 4xy, \qquad 0 \le x \le 1, \qquad 0 \le y \le 1$



y 0.6

Farlie-Morgenstern Family are copulas

- a **copula**(连接函数) is a joint cdf that has **uniform marginal distributions**.

Note $P(U \le u) = C(u, 1) = u$ and C(1, v) = v

(summing up all v values over pdf is equivalent to let v approach infinity in cdf)

The density is

$$c(u, v) = \frac{\partial^2}{\partial u \partial v} C(u, v) \ge 0$$

Suppose X, Y have cdfs $F_X(x)$, $F_Y(y)$, then $U=F_X(x)$, $V=F_Y(y)$ are uniform random variables. For a copula C(u, v), consider the joint cdf

$$F_{XY}(x, y) = C(F_X(x), F_Y(y))$$

Since $C(F_X(x), 1) = F_X(x)$, marginal cdfs of F_{XY} are $F_X(x)$, $F_Y(y)$. The pdf is

$$f_{XY}(x, y) = c(F_X(x), F_Y(y))f_X(x)f_Y(y)$$

From ingredients of two marginal distributions and any copula, a joint distribution can be constructed.

Dependence between the random variables are captured in the copula.

PROPOSITION C

Let Z = F(X); then Z has a uniform distribution on [0, 1].

Proof

$$P(Z \le z) = P(F(X) \le z) = P(X \le F^{-1}(z)) = F(F^{-1}(z)) = z$$

This is the uniform cdf.

Example 1: The density is

$$f(x, y) = \begin{cases} \lambda^2 e^{-\lambda y}, \\ 0, \end{cases}$$

elsewhere

Find marginal distributions.

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$

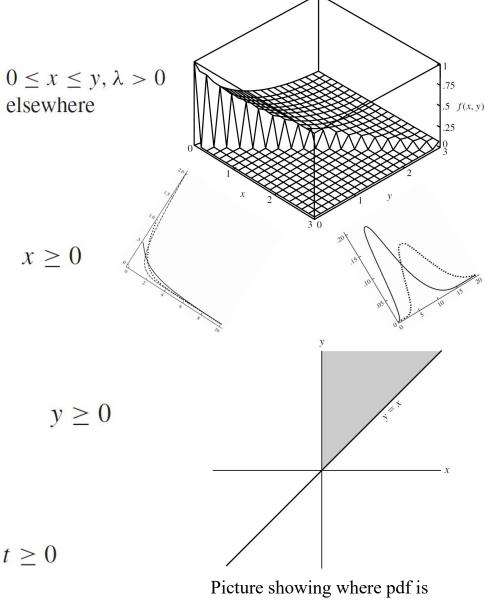
= $\int_{x}^{\infty} \lambda^2 e^{-\lambda y} dy = \lambda e^{-\lambda x}, \qquad x \ge 0$

- exponential.

$$f_Y(y) = \int_0^y \lambda^2 e^{-\lambda y} dx = \lambda^2 y e^{-\lambda y}, \qquad y \ge 0$$

- Gamma distribution. Recall

$$g(t) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} t^{\alpha-1} e^{-\lambda t}, \qquad t \ge 0$$



nonzero, to aid in determining the limits of integration

Example 2: A point is chosen randomly in a disk of radius 1.

$$f(x, y) = \begin{cases} \frac{1}{\pi}, & \text{if } x^2 + y^2 \le 1\\ 0, & \text{otherwise} \end{cases}$$

R is distance from origin, its cdf, pdf are

$$F_R(r) = P(R \le r) = \frac{\pi r^2}{\pi} = r^2$$
 $f_R(r) = 2r, 0 \le r \le 1.$

Marginal density of *x*?

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$$
$$= \frac{1}{\pi} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy$$
$$= \frac{2}{\pi} \sqrt{1-x^2}, \qquad -1 \le x \le 1$$

What about *y*? Symmetry!

$$f_Y(y) = \frac{2}{\pi}\sqrt{1-y^2}, \qquad -1 \le y \le 1$$

Example 3: Bivariate normal density

$$f(x, y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - \frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y}\right]\right)$$

Five parameters
$$-\infty < \mu_X < \infty \qquad -\infty < \mu_Y < \infty$$

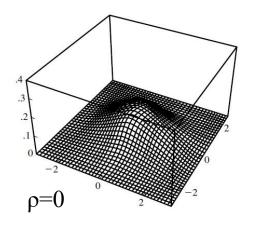
 $\sigma_X > 0 \qquad \sigma_Y > 0$
 $-1 < \rho < 1$

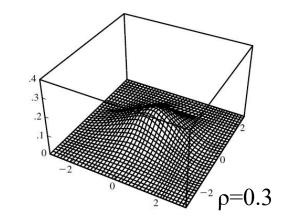
What does its contour lines look like?

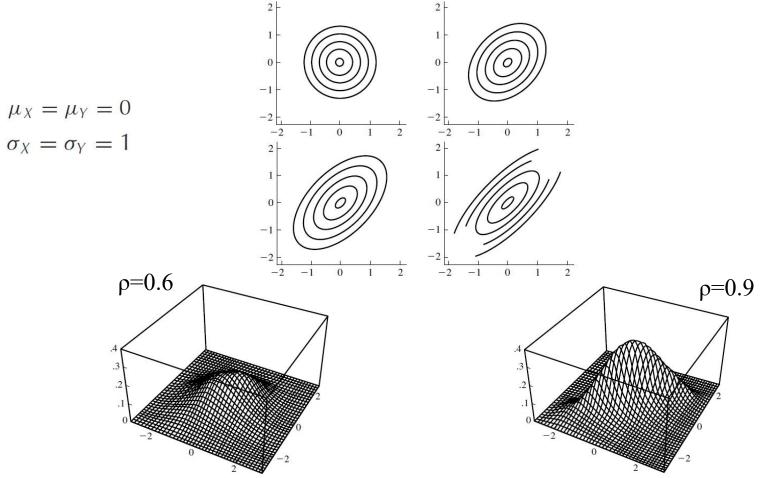
$$\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - \frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} = \text{constant}$$

-- An ellipse centered at (μ_X, μ_Y) . $\rho \neq 0$, tilted; $\rho = 0$, untilted.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}, \qquad -\infty < x < \infty$$







Example 3: Bivariate normal density

$$f(x, y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - \frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y}\right]\right)$$

Marginal density of X is

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) \, dy \qquad \qquad u = (x - \mu_X)/\sigma_X \\ v = (y - \mu_Y)/\sigma_Y \\ = \frac{1}{2\pi\sigma_X\sqrt{1 - \rho^2}} \int_{-\infty}^{\infty} \exp\left[-\frac{1}{2(1 - \rho^2)}(u^2 + v^2 - 2\rho uv)\right] dv \\ \text{Completing the square,} \quad (v - \rho u)^2 + u^2(1 - \rho^2) \\ = \frac{1}{2\pi\sigma_X\sqrt{1 - \rho^2}} e^{-u^2/2} \int_{-\infty}^{\infty} \exp\left[-\frac{1}{2(1 - \rho^2)}(v - \rho u)^2\right] dv \\ \text{Gaussian}$$

$$=\frac{1}{\sigma_X\sqrt{2\pi}}e^{-(1/2)\left[(x-\mu_X)^2/\sigma_X^2\right]}$$

If X, $Y \sim$ bivariate Gaussian distribution, their marginal distributions are Gaussian.

× 1

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}, \qquad -\infty < x < \infty$$

Inverse question?

Independently random variables

DEFINITION

Random variables $X_1, X_2, ..., X_n$ are said to be *independent* if their joint cdf factors into the product of their marginal cdf's:

$$F(x_1, x_2, \ldots, x_n) = F_{X_1}(x_1) F_{X_2}(x_2) \cdots F_{X_n}(x_n)$$

for all $x_1, x_2, ..., x_n$.

If g and h are function, then Z=g(X) and W=h(Y) are also independent.

Example: Farlie-Morgenstern family, when $\alpha=0, X, Y$ are independent.

$$H(x, y) = F(x)G(y)\{1 + \alpha[1 - F(x)][1 - G(y)]\}$$

Example: Bivariate normal distribution, when $\rho=0$, *X*, *Y* are independent.

$$f(x, y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - \frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y}\right]\right)$$

Independently random variables

Example.

Suppose that a node in a communications network has the property that if two packets of information arrive within time τ of each other, they "collide" and then have to be retransmitted. If the times of arrival of the two packets are independent and uniform on [0, T], what is the probability that they collide?

The times of arrival of two packets, T_1 , T_2 are independent, both uniformly distributed on [0, T], then joint pdf is

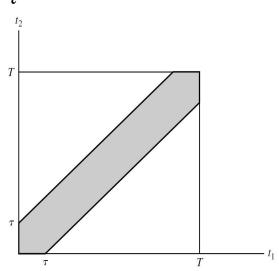
$$f(t_1, t_2) = \frac{1}{T^2}$$

We need $|t_1 - t_2| < \tau$, or $t_1 - \tau$ (or 0) $< t_2 < t_1 + \tau_{t_1}$

P(collision)

= pdf integrated over shaded area $T^2 - (T - \tau)^2$

$$= 1 - (1 - \tau/T)^2.$$



Conditional distributions

Conditional distributions: discrete

X, *Y* are discrete, the conditional probability that $X=x_i$ given that $Y=y_i$ is

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)}$$
$$= \frac{p_{XY}(x_i, y_j)}{p_Y(y_j)}$$

We denote it as $p_{X|Y}(x|y)$. If X, Y are independent, $= p_Y(y)$

Reexpressing it,

$$p_{XY}(x, y) = p_{X|Y}(x|y)p_Y(y)$$

Summing both sides over all y values, law of total probability,

$$p_X(x) = \sum_{y} p_{X|Y}(x|y) p_Y(y)$$

Conditional distributions: discrete

Example.

Suppose that a particle counter is imperfect and independently detects each incoming particle with probability p. If the distribution of the number of incoming particles in a unit of time is a Poisson distribution with parameter λ , what is the distribution of the number of counted particles?

Conditional distributions: discrete

Example.

Suppose that a particle counter is imperfect and independently detects each incoming particle with probability p. If the distribution of the number of incoming particles in a unit of time is a Poisson distribution with parameter λ , what is the distribution of the number of counted particles?

$$P(X = k) = \sum_{n=0}^{\infty} P(N = n) P(X = k | N = n)$$

$$N=\text{true # of particles}$$

$$X=\# \text{ of detected particles}$$

$$S=\sum_{n=k}^{\infty} \frac{\lambda^n e^{-\lambda}}{n!} {n \choose k} p^k (1-p)^{n-k}$$

$$Given N=n, X \text{ is binomial}$$

$$= \frac{(\lambda p)^k}{k!} e^{-\lambda} \sum_{n=k}^{\infty} \lambda^{n-k} \frac{(1-p)^{n-k}}{(n-k)!}$$

$$Denote j=n-k$$

$$= \frac{(\lambda p)^k}{k!} e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^j (1-p)^j}{j!}$$

$$= \frac{(\lambda p)^k}{k!} e^{-\lambda} e^{\lambda(1-p)}$$

$$= \frac{(\lambda p)^k}{k!} e^{-\lambda p}$$

$$Still Poisson, but parameter is now \lambda p.$$

Conditional distributions: continuous

The conditional probability of Y given X is defined to be

Reexpressing it, $f_{XY}(x, y) = f_{Y|X}(y|x) f_X(x)$

Integrating both sides over x, the marginal density of Y is

$$f_Y(y) = \int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) \, dx$$

Law of total probability for the continuous case.

Previous example

$$f_{XY}(x, y) = \lambda^2 e^{-\lambda y}, \quad 0 \le x \le y$$

$$f_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0$$

$$f_Y(y) = \lambda^2 y e^{-\lambda y}, \quad y \ge 0$$

$$f_{Y|X}(y|x) = \frac{\lambda^2 e^{-\lambda y}}{\lambda e^{-\lambda x}} = \lambda e^{-\lambda(y-x)}, \quad y \ge x$$

$$f_{X|Y}(x|y) = \frac{\lambda^2 e^{-\lambda y}}{\lambda^2 y e^{-\lambda y}} = \frac{1}{y}, \quad 0 \le x \le y$$

Three interesting examples -- 1. Stereology (体视学)

In metallography (金相学) and other applications of quantitative microscopy, aspects of a 3-d structure are deduced from studying 2-d cross sections, where statistics play an important role (DeHoff & Rhines 1968).

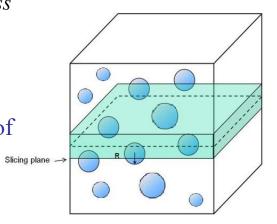
Spherical particles are dispersed in a medium (e.g. grains in a metal); the density function of the radii of the spheres is denoted as $f_R(r)$. When the medium is sliced, 2-d, circular cross sections of the spheres are observed. We denote the pdf of the radii of these strong circles as $f_X(x)$. Their relationship?

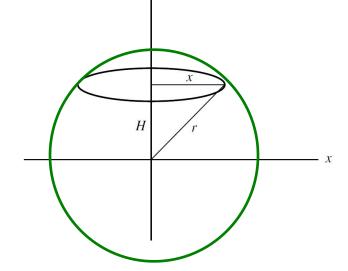
From the viewpoint of a single sphere, the slicing plane is chosen at random. Fix R=r, find conditional density $f_{X|R}(x|r)$.

H is uniformly distributed over [0, r], $X = \sqrt{r^2 - H^2}$.

$$F_{X|R}(x|r) = P(X \le x)$$

= $P(\sqrt{r^2 - H^2} \le x)$
= $P(H \ge \sqrt{r^2 - x^2})$
= $1 - \frac{\sqrt{r^2 - x^2}}{r}, \quad 0 \le x \le r$





Three interesting examples -- 1. Stereology (体视学)

Spherical particles are dispersed in a medium (e.g. grains in a metal); the density function of the radii of the spheres is denoted as $f_R(r)$. When the medium is sliced, 2-d, circular cross sections of the spheres are observed. We denote the pdf of the radii of these circles as $f_X(x)$. Their relationship?

Differentiating it w.r.t. x,

$$f_{X|R}(x|r) = \frac{x}{r\sqrt{r^2 - x^2}}, \qquad 0 \le x \le r$$

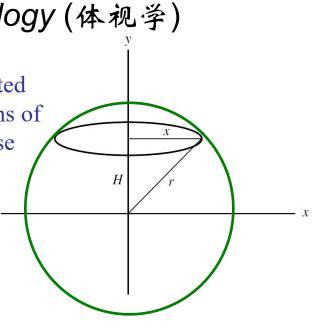
The law of total probability gives marginal density of X,

 $f_X(x) = \int_{-\infty}^{\infty} f_{X|R}(x|r) f_R(r) dr$ observable

$$= \int_{x}^{\infty} \frac{x}{r\sqrt{r^2 - x^2}} f_R(r) dr$$

Abel's equation / transform

- bridging 2-D projection and 3-D spherical geometry.
- Useful in astronomy!! (e.g. galactic astronomy, cosmology...)



Niels Henrik Abel (1802-1829), Norwegian mathematician, Professor-to-be at Univ. of Berlin

Three interesting examples -- 2. Rejection method

Lec #2: To generate random variables with cdf F, apply F^{-1} to uniform random variables.

But what if F^{-1} does not have a closed form?

Suppose pdf f is defined on [a, b], let M be a function $M(x) \ge f(x)$ and let m be a pdf, $m(x) = \frac{M(x)}{\int_a^b M(x) dx}$

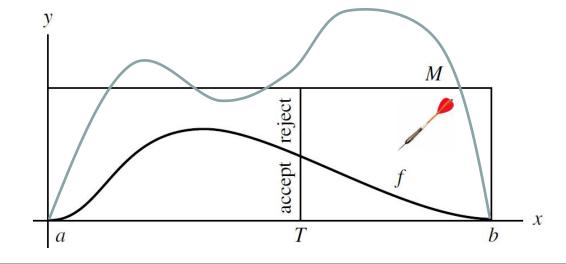
Step 1: Generate *T* with pdf *m*.

Step 2: Generate U, uniform on [0, 1] and independent of T.

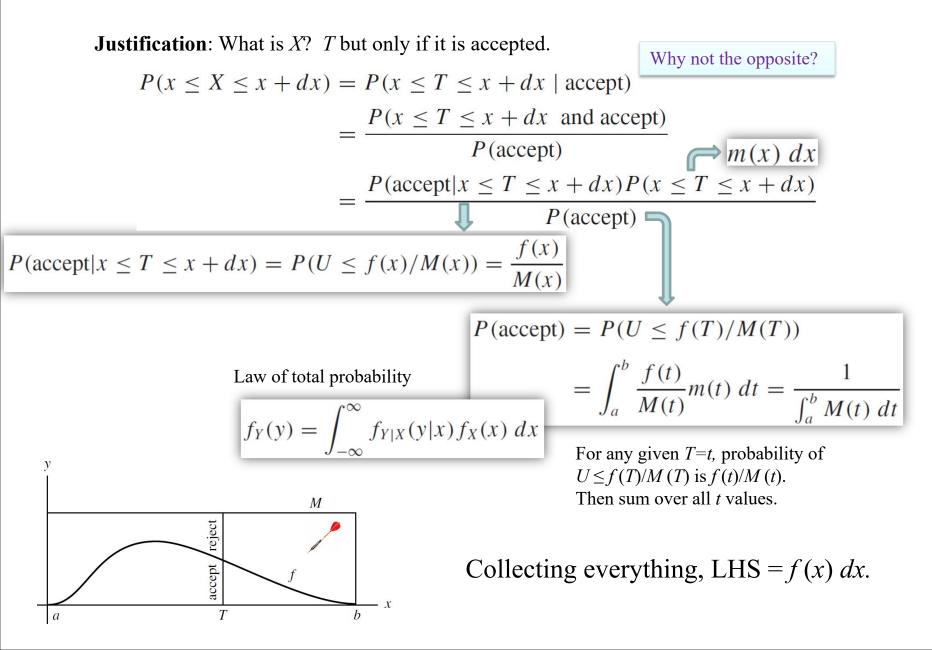
- if $M(T) \cdot U \leq f(T)$, then let X=T (accept T);

- otherwise, reject T (go to step 1).

Idea is to choose *M* so that it is easy to generate random variables from *m*.



Three interesting examples -- 2. Rejection method



A freshly minted coin has a certain probability of coming up heads if it is spun on its edge (may not be $\frac{1}{2}$). Say, you spin it *n* times and see *X* heads. What has been learned about the chance Θ it comes up heads?

Totally ignorant about it, we might represent our knowledge by a uniform density on [0, 1], the **prior density**

$$f_{\Theta}(\theta) = 1, \ 0 \le \theta \le 1.$$

Given a value θ , X follows binomial distribution

$$f_{X|\Theta}(x|\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}, \qquad x = 0, 1, \dots, n$$

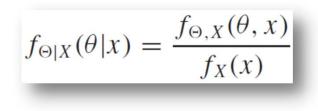
The joint discrete/continuous pdf

$$f_{\Theta,X}(\theta, x) = f_{X|\Theta}(x|\theta) f_{\Theta}(\theta)$$

$$= \binom{n}{x} \theta^{x} (1-\theta)^{n-x}, \qquad x = 0, 1, \dots, n, \quad 0 \le \theta \le$$

Marginal density of X by integrating over θ ,

$$f_X(x) = \int_0^1 \binom{n}{x} \theta^x (1-\theta)^{n-x} d\theta$$



Using Gamma and Beta functions (I skip the tedious maths here),

$$f_X(x) = \int_0^1 \binom{n}{x} \theta^x (1-\theta)^{n-x} d\theta = \dots = \frac{1}{n+1}, \qquad x = 0, 1, \dots, n$$

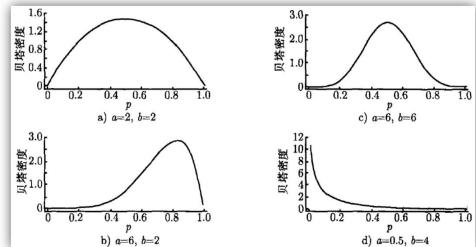
(If our prior on θ is uniform, each outcome of *X* is a priori equally likely).

Having observed X=x, what's our knowledge on Θ ? Quantified by the posterior density of θ given x,

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta,X}(\theta,x)}{f_X(x)} = (n+1) \binom{n}{x} \theta^x (1-\theta)^{n-x}$$
$$= \dots = \frac{\Gamma(n+2)}{\Gamma(x+1)\Gamma(n-x+1)} \theta^x (1-\theta)^{n-x}$$

Posterior density is **Beta density** with a=x+1, b=n-x+1.

$$g(u) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} u^{a-1} (1-u)^{b-1}, \qquad 0 \le u \le 1$$



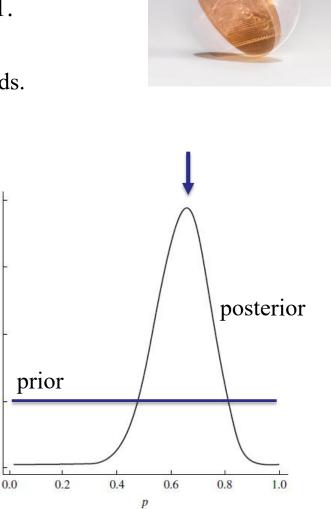
$$f_{\Theta|X}(\theta|x) = \frac{\Gamma(n+2)}{\Gamma(x+1)\Gamma(n-x+1)} \theta^x (1-\theta)^{n-x}$$

Posterior is **Beta density**, a=x+1, b=n-x+1.

Suppose we spin a coin n=20 times, finding x=13 heads. a=x+1=14, b=n-x+1=8, see figure.

- Extremely unlikely that $\theta < 0.25$
- Likely $\theta > 0.5$ (91% probability)

Question: where does it peak?



4

3

2

0

$$f_{\Theta|X}(\theta|x) = \frac{\Gamma(n+2)}{\Gamma(x+1)\Gamma(n-x+1)} \theta^x (1-\theta)^{n-x}$$

Posterior is **Beta density**, a=x+1, b=n-x+1.

Suppose we spin a coin n=20 times, finding x=13 heads. a=x+1=14, b=n-x+1=8, see figure.

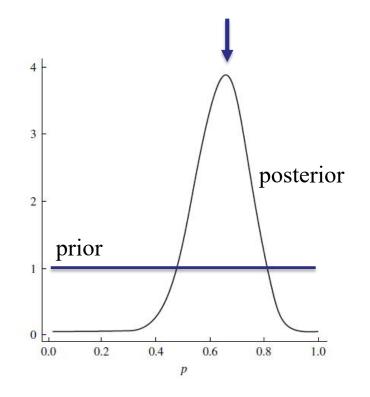
- Extremely unlikely that $\theta < 0.25$
- Likely $\theta > 0.5$ (91% probability)

Question: where does it peak?

 $\theta^{13} (1-\theta)^7$ peaks at 13/20. Intuitively correct.

Analog questions in astronomy are common.

We observe a fraction, deduce the real fraction (uncertainty directly given by Bayesian inference).



Functions of jointly distributed random variables

PROPOSITION B

Let *X* be a continuous random variable with density f(x) and let Y = g(X) where *g* is a differentiable, strictly monotonic function on some interval *I*. Suppose that f(x) = 0 if *x* is not in *I*. Then *Y* has the density function

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$

for y such that y = g(x) for some x, and $f_Y(y) = 0$ if $y \neq g(x)$ for any x in I. Here g^{-1} is the inverse function of g; that is, $g^{-1}(y) = x$ if y = g(x).

Special case A: sums

X, *Y* are discrete random variables, taking integer values and having joint frequency function p(x, y). What is the frequency function of Z=X+Y?

Whenever X=x and Y=z-x, Z=z, so the probability that Z=z is the sum over all x of these joint probabilities,

$$p_Z(z) = \sum_{x = -\infty}^{\infty} p(x, z - x)$$

If X and Y are independent,

$$p_Z(z) = \sum_{x=-\infty}^{\infty} p_X(x) p_Y(z-x)$$

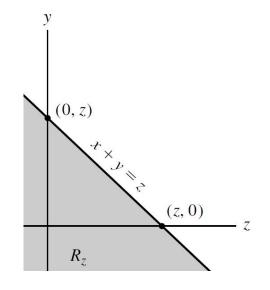
- convolution of the sequences p_X and p_Y .

Special case A: sums

Continuous case

Find cdf of *Z* first!

$$F_Z(z) = \iint_{R_z} f(x, y) \, dx \, dy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) \, dy \, dx$$



Differentiating it, using the rule of chains,

$$f_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) \, dx$$

If X and Y are independent,

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) \, dx$$

- convolution of the functions f_X and f_Y .

Convolution is everywhere in astronomy:

- Smooth an image with a PSF
- Deriving the star formation history
- combination of multiple effects
- ...

Special case A: sums

Continuous case
$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

Example: The lifetime of a component is exponentially distributed. We have an identical and independent backup component.

Lifetime of the system $S=T_1+T_2$, its pdf is

$$f_S(s) = \int_0^s \lambda e^{-\lambda t} \lambda e^{-\lambda(s-t)} dt$$

Beyond the limits of integration, both components have 0 density.

$$f_{S}(s) = \lambda^{2} \int_{0}^{s} e^{-\lambda s} dt$$
$$= \lambda^{2} s e^{-\lambda s}$$
$$g(t) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} t^{\alpha - 1} e^{-\lambda t}, \qquad t \ge 0$$

Gamma distribution with parameters 2, λ .

Special case B: quotients

Find cdf of Z=Y/X first, again.

 $F_Z(z) = P(Z \le z)$ is the probability of the set of (x, y) such that $y/x \le z$. If x > 0, it is the set $y \le xz$; if x < 0, it is the set $y \ge xz$.

$$F_Z(z) = \int_{-\infty}^0 \int_{x_z}^\infty f(x, y) \, dy \, dx + \int_0^\infty \int_{-\infty}^{x_z} f(x, y) \, dy \, dx$$

Differentiating it, using the rule of chains, insert y=xv (instead of xz),

$$F_{Z}(z) = \int_{-\infty}^{0} \int_{z}^{-\infty} xf(x, xv) \, dv \, dx + \int_{0}^{\infty} \int_{-\infty}^{z} xf(x, xv) \, dv \, dx$$

= $\int_{-\infty}^{0} \int_{-\infty}^{z} (-x)f(x, xv) \, dv \, dx + \int_{0}^{\infty} \int_{-\infty}^{z} xf(x, xv) \, dv \, dx$
= $\int_{-\infty}^{z} \int_{-\infty}^{\infty} |x| f(x, xv) \, dx \, dv$

$$f_Z(z) = \int_{-\infty}^{\infty} |x| f(x, xz) \, dx$$

$$f_Z(z) = \int_{-\infty}^{\infty} |x| f_X(x) f_Y(xz) \, dx$$

If *X*, *Y* are independent.

Special case B: quotients

Example: How is the ratio of two independent Gaussians distributed?

Consider standard normal distribution, Z=Y/X, then

$$f_Z(z) = \int_{-\infty}^{\infty} \frac{|x|}{2\pi} e^{-x^2/2} e^{-x^2 z^2/2} dx \quad f_Z(z) = \int_{-\infty}^{\infty} |x| f(x, xz) dx$$

Integrand is even,

4.0

0.3

0.2

0.1

0

$$f_{Z}(z) = \frac{1}{\pi} \int_{0}^{\infty} x e^{-x^{2}((z^{2}+1)/2)} dx \quad u = x^{2}$$

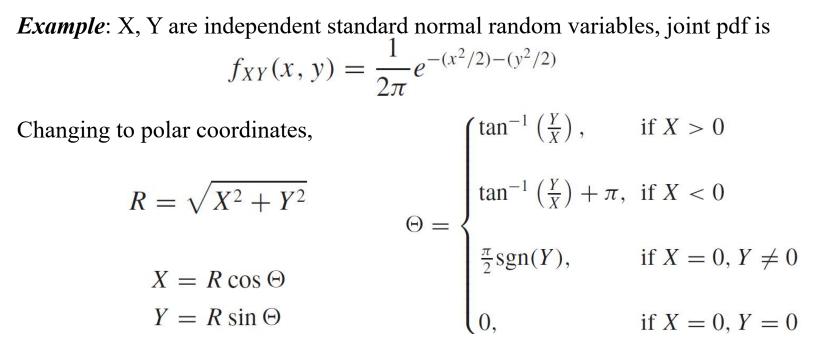
$$= \frac{1}{2\pi} \int_{0}^{\infty} e^{-u((z^{2}+1)/2)} du \quad \lambda = (z^{2}+1)/2$$

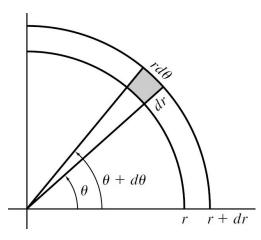
$$\int_{0}^{\infty} \lambda \exp(-\lambda x) dx = 1$$

$$f_{Z}(z) = \frac{1}{\pi(z^{2}+1)}, \quad -\infty < z < \infty$$

Cauchy density decreases slower than Gaussians.

The general case





The general case

 R, Θ have joint distribution

$$f_{R\Theta}(r,\theta) dr d\theta = P(r \le R \le r + dr, \theta \le \Theta \le \theta + d\theta)$$

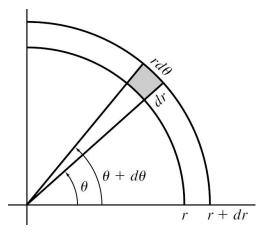
= $f_{XY}(r \cos \theta, r \sin \theta)r dr d\theta$
 $f_{R\Theta}(r,\theta) = rf_{XY}(r \cos \theta, r \sin \theta)$
$$f_{R\Theta}(r,\theta) = \frac{r}{2\pi} e^{[-(r^2 \cos^2 \theta)/2 - (r^2 \sin^2 \theta)/2]} \qquad f_{XY}(x,y) = \frac{1}{2\pi} e^{-(x^2/2) - (y^2/2)}$$

= $\frac{1}{2\pi} r e^{-r^2/2}$

Joint density implies that R and Θ are independent variables, Θ is uniform on $[0, 2\pi]$, R has the density

$$f_R(r) = re^{-r^2/2}, \qquad r \ge 0$$

Rayleigh density!



The general case

Under the assumptions just stated, the joint density of U and V is

 $f_{UV}(u, v) = f_{XY}(h_1(u, v), h_2(u, v)) |J^{-1}(h_1(u, v), h_2(u, v))|$

for (u, v) such that $u = g_1(x, y)$ and $v = g_2(x, y)$ for some (x, y) and 0 elsewhere.

If X_1, \ldots, X_n have the joint density function $f_{X_1 \cdots X_n}$ and

$$Y_i = g_i(X_1, ..., X_n), \qquad i = 1, ..., n$$

 $X_i = h_i(Y_1, ..., Y_n), \qquad i = 1, ..., n$

and if $J(x_1, ..., x_n)$ is the determinant of the matrix with the *ij* entry $\partial g_i / \partial x_j$, then the joint density of $Y_1, ..., Y_n$ is

$$f_{Y_1\cdots Y_n}(y_1,\ldots,y_n) = f_{X_1\cdots X_n}(x_1,\ldots,x_n)|J^{-1}(x_1,\ldots,x_n)|$$

wherein each x_i is expressed in terms of the y's; $x_i = h_i(y_1, \ldots, y_n)$.