Small examples in Astronomy

1. Two QSOs at different redshift are beside each other on the sky. Remarkable!
Calculate probability: it is conditional on having noticed this at the start.
Thus prob(A|A) = 1, consistent with our measure of belief in something we know.

2. Now calculate probability of finding a galaxy and a quasar within » of each other.
We search the solid angle Q and have already found surface densities (g and .
On finding a galaxy, we search around it for a quasar. We need

prob(G in field and Q within 7) = prob(Q within r | G in field)prob(G in field)

Assumes probabilities are independent — and this is what we want to test.
Without resorting to models:

prob(G in field) = ¢zQ prob(Q within 7) = 7.

Thus
prob(G in field and Q within r) = ¢eegQar®.

.....symmetrical in quasar and galaxy surface densities: we could search first for
a galaxy or for a quasar. Note strong dependence on search area — specify this
before the experiment!




Small examples in Astronomy

We want to know, given the data, what is the probability/belief state of our model.
Priors can change anticipated results in violent and dramatic ways.

Before 1987, 4 naked-eye SNe had been recorded in ten centuries. What, before
1987, was the probability p of a bright SN happening in the 20th century?

God’s-eye viewpoint: Meaningless! Events are either certain or forbidden.
God does not play dice...

Data: 4 SNe in 10 centuries. Prior on p: total ignorance, uniform on [0, 1].
Model: Binomial, in any century we either get a SN or not (neglecting here the
possibility of 2 or more SNe). Posterior probability is then

1
prob(p | data) ( 40) p*(1 = p)® x prior on p.

! L 710
/ prob(p | data) dp = 1, / ( A ) p'(1—p)°dp,
0 0

Using Gamma and Beta function,

Normalize it,




Small examples in Astronomy

In general, for n SNe in m centuries, posterior prob. Is

prl—p
Bln+1,m—n-+1]

Here n=4, m=10. Where does it peak?

) m—"n

prob(p | data) =

bability density

Pro
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But... That was before 1987, say, at the end of 20t century... What about now?




Small examples in Astronomy

In general, for n SNe in m centuries, posterior prob. Is

pr(L—p
Bn+1,m-n+1]
Here n=4, m=10. Where does it peak?

) m—"n

prob(p | data) =

.
—_ wn [ s

ybability density

Prc

o

o ¥}

0 0.2 0.4 0.6 0.8 |

Number of supernovae per century

But... That was before 1987, say, at the end of 20t century... What about now?
Prior: p4(1 — p)6/B[5j7]
New data: exactly one event of prob. p.

Updated posterior:

prob(p | data) =




Small examples in Astronomy

For a long time, objection to Bayesian focused on Bayes/Laplace uniform prior.

Jeffreys (1961), Jaynes (1968): in many cases that’s far too agnostic. Intricate
arguments led them to other possibilities:

prob(p) = o= )

1 p— :
prob(p) = . "Haldane prior
p(1—p)
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For a long time, objection to Bayesian focused on Bayes/Laplace uniform prior.

Jeffreys (1961), Jaynes (1968): in many cases that’s far too agnostic. Intricate

arguments led them to other possibilities:
1

p(1—p)

1 p— :
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prob(p) =

We have focused on the peak — many other ways to characterize by a single number.
Posterior mean:

1
<p>= / pprob(p | data) dp.
0




Small examples in Astronomy

For a long time, objection to Bayesian focused on Bayes/Laplace uniform prior.

Jeffreys (1961), Jaynes (1968): in many cases that’s far too agnostic. Intricate
arguments led them to other possibilities:

deﬂZQO_p)

1 p— :
prob(p) = . "Haldane prior
p(1—p)

We have focused on the peak — many other ways to characterize by a single number.
Posterior mean:

1
<p>= / pprob(p | data) dp.
0

If we have had N successes and M failures, the posterior mean is given by the famous
Laplace’s rule of succession: N 11

< p > = .
p N+ M<+2

e.g. M=0: “The Sun Also Rises”
e.g. SNe: In the year of 1899, N=4, N+M=10, predicts 5/12 rather than 4/10 (peak).

Characterization by a single number can be often misleading... unless the posterior
distribution is very narrow (large samples).




Functions of jointly
distributed random variables

PROPOSITION B

Let X be a continuous random variable with density f(x) andletY = g(X) where
g is a differentiable, strictly monotonic function on some interval /. Suppose that
f(x) =0if x isnotin /. Then Y has the density function

d
fr() = fx(g () |d—g‘1(y)|
y

for y such that y = g(x) for some x, and fy(y) = 0if y # g(x) forany x in /.
Here ¢! is the inverse function of g; thatis, g7 '(y) = x if y = g(x). o




Special case A: sums

X, Y are discrete random variables, taking integer values and having joint
frequency function p(x, y). What is the frequency function of Z=X+Y?

Whenever X=x and Y=z—x, Z=z, so the probability that Z=z is the sum
over all x of these joint probabilities,

o0

pz(d)= )  p&x,z—x)

X=—0C

If X and Y are independent,

pz() = > px(x)pr(z —x)

X=—0C0

- convolution of the sequences py and py.




Special case A: sums

Continuous case

Find cdf of Z first! 3
Fz(z) = // f(x,y)dx dy

R.
:/ / fx,y) dy dx

Differentiating it, using the rule of chains,

felz) = / f(x,z—x)dx

If X and Y are independent,

folz) = / fxx)fy(z—x)dx

- convolution of the functions f; and f;.

Convolution is everywhere in
astronomy:

Smooth an image with a PSF
Deriving the star formation
history

combination of multiple effects




Special case A: sums

Continuous case folz) = / Jx(x) fylz — x)dx

Example: The lifetime of a component is exponentially distributed.
We have an identical and independent backup component.

Lifetime of the system S=T,+T, , its pdf is

x
fS(S):fle“}“rke%(”)clr
0

Beyond the limits of integration, both components have 0 density.

fsls) = /\2/ g i
0

—s )\’256—)\.5

g(1)

Gamma distribution with parameters 2, A.




Special case B: quotients
Find cdf of Z=Y/X first, again.

F7(z) = P(Z < 7) is the probability of the set of (x, y) such that y/x <z.
If x > 0, it 1s the set y <xz; if x <0, it is the set y > xz.

-0 00 00 pxz
Fz7(2) :/ / f(x,y)dy dx+/ / FiX: vy dy dx
—00 JxZ 0 —00

Differentiating it, using the rule of chains, insert y=xv (instead of xz),

.0 " — 00 00 2

Fz(2) :/ / f (o, xuv)dv dx—l—/ / xf(x,xv)dvdx
/ / (—x)f(x, xv) dvdx—I—/ / xf(x, xv) dvdx
/ / x| Flx, xv) dx dv

fZ(C):/ x| f(x, x2) dx fz(:)Z/ x| fx (x) fr (x2) dx

(0,9

If X, Y are independent.




Special case B: quotients

Example. How 1is the ratio of two independent Gaussians distributed?

Consider standard normal distribution, Z=Y/X, then

= |l 25 2.2 15 b
fzlz) = / e N 27X 2 gy | fz(2) = / %] f(x, x2) dx
—0 27-[ J —00

Integrand is even,

l ™ I
fz(2) = _/ xe @0/ gy Ny = x°
T Jo

I g

. @02 1 A= (22 4+ 1)/2
27T 0

[* % exp(—ix) dx = |

fZ(Z):zr(z2+1)’ —00 < 7 < 00

Cauchy density decreases slower than Gaussians.




The general case

Example: X, Y are independent standard normal random variables, joint pdf is

L
- g —(x={2)— (@ [2)
xy(x,y) =—e '
J ' 27

Changing to polar coordinates, - itX >0

R=+X?4Y2 _ a , if X <0

it X =0, ¥ 5£0
X = Recos B

Y = Rsin®




The general case

R, ® have joint distribution
freo(r,0)dr d60 = P(r < R<r+dr,0 <0 <0 +db)
= fxy(rcos@,rsinb)r dr db
fro(r,0) = rfxy(rcosf,rsinb)

—(x2/2)—(y%/2)

. r 2.2 e E e D -
o 0) = ——el=0Pet0=2s202 |y (x, y) =

—if
V7 27

1 5
—r</2
—FE

2

Joint density implies that R and ® are independent
variables, © 1s uniform on [0, 2xt], R has the density

fRry=re™"”, r=0

Rayleigh density!




The general case: propositions

Two variables:

Under the assumptions just stated, the joint density of U and V is
fuv @, v) = fxy(hi(u, v), ha(u, )| I~ (hy(u, ), ha(u, v))]

for (u,v) such that u = g,;(x,y) and v = g,(x, y) for some (x, y) and O
elsewhere. [

The general case:

and 1if J(xy, ..., x,) 1s the determinant of the matrix with the ij entry dg; /dx;, then
the joint density of Y,




Redo the previous example

X, Y are independent standard normal random variables, joint pdf is

1

fxr(x,y) = Ee

—(x2/2)—(3%/2)

The roles of u, v are played by 7, 6:

_ ® _t wl
r=+Xx+Yy : X = rcost
'\?

y =rsinf

Partial derivatives:
ar X

ax x2 4+ }-’2

06 —y 00

Ix  x2+4y? Jdy x24y?

Proposition says:
fre(r,0) =rfxy(rcosf, rsinf)
forr > 0,0 <6 < 2m, and 0 elsewhere




[ecture 4

Expected values




The expected value is a weighted average: the possible values are weighted by their
probabilities. Discrete case:

DEFINITION

If X is a discrete random variable with frequency function p(x), the expected
value of X, denoted by E(X), is

E(XX)=) xip(x)

The expectation may be undefined!
E(X) is also referred to as the mean of X and is often denoted by p or uy.

Mean = Center of mass of the frequency function




Suppose that items produced in a plant are independently defective with
probability p. Items are inspected one by one until a defective item is found.
On the average, how many items must be inspected?

Make a guess!




Suppose that items produced in a plant are independently defective with
probability p. Items are inspected one by one until a defective item is found.
On the average, how many items must be inspected?

X, # of items expected, 1s a geometric random variable. P(X=k)=gc! p, g=1—p.




Suppose that items produced in a plant are independently defective with
probability p. Items are inspected one by one until a defective item is found.
On the average, how many items must be inspected?

X, # of items expected, 1s a geometric random variable. P(X=k)=gc! p, g=1—p.

Poisson distribution has £ (X)




An expected values=possible values weighted by probabilities. Continuous case:
DEFINITION

If X is a continuous random variable with density f(x), then

E(X) = /OO xf(x)dx

(o 0]

provided that [ |x| f(x)dx < oo. If the integral diverges, the expectation is un-
defined. o

Example: Cauchy density has no expectation.

x \ 1+ x2

1 1
f(x)=—< ), —00 < X < 00




An expected values=possible values weighted by probabilities. Continuous case:
DEFINITION

If X is a continuous random variable with density f(x), then

E(X) = /OO xf(x)dx

(o 0]

provided that [ |x| f(x)dx < oo. If the integral diverges, the expectation is un-
defined. o

/ = xl =

o 1+ x2
Example: St. Petersburg Paradox

SUBRANIES B I TR SR N k. R m MR & —F, B0, TiE17e;
W7 270, P N40T, I N8IT.... EHEIFEKIKE TNk, A
14244+, +2K1=20— 17T, 290, #1520 170 CRERBTE RN A R BEAD

Example: Cauchy density has no expectation.

1 1
fx)= (1+ )

X=5 Ja SR ME— 1 EH0,
E(X) =

L 1
P(X:2):2k+l




Markov’s Inequality

If X 1s a random variable with P(X > 0) = 1 and for which E(X) exists, then
P(X = t) = E(X)/1,

All terms are

Discrete case:
E(X) = Z gp(r) = Z xp(x) + Z xrp(x)  nonnegative

<t x>t

> ap(z) > tp(z) = tP(X > 1)

2t 2t

Probability that X is much bigger than E(X) is small.

Let ¢ = k E(X), then P (X > k E(X)) < 1/k
MERIEABEE S/, KRTIEDENBRZEZRILGZ—




Expectations of functions of random variables

O

- It Y=g(X), then E(Y):Z g(x)p(x) E(Y)=/ g(x) f(x)dx

X

- If X,,..., X, are jointly distributed random variables, Y=g(X|,..., X,), then

E() = Z gxi, ..., x)p(X1, ..., X,)

1

E(Y)://---/g(xl,...,xn)f(xl,...,xn)dxl---dxn

Question: E[g(X)] = 9[E(X)]?

Example 1: The mean velocity is v,, mean kinetic energy is mv,2/27?

Example 2: Constant voltage V=IR, measure | many times, average value is
~E(]), R=VIE()?




Expectations of functions of random variables

- If Y=g(X), then E(Y) = Z g(x)p(x) E(Y) = /00 a(x)f (x)dx

X

- If X,,..., X, are jointly distributed random variables, Y=g(X|,..., X,), then

E() = Z gxi, ..., x)p(X1, ..., X,)

1

E(Y)://---/g(xl,...,xn)f(xl,...,xn)dxl---dxn

Question: E[g(X)] = 9[E(X)]? -- No!

Example 1: The mean velocity is v,, mean kinetic energy is mvy2/2? -- Roughly

Example 2: Constant voltage V=IR, measure | many times, average value is
~E(]), R=VIE()? -- Roughly




Example: According to the kinetic theory of gases, the magnitude of the
velocity of a gas molecule is random, following the Maxwell’s distribution

VN b

fx(x) = ——x"e 2o
o
What is the mean kinetic energy Y=mX2/2?

1. Find the pdf of ¥, fy; then calculate E(Y).

2. Use our theorem! E(Y) = / mx? fx (x) dx
0

mJ2/m [, _ix

3
2 (o) 0

Change variable u = x*/20”

2mo? /Oo 32— 2mao?
u’'-e "du =
A/ TT 0 A/ TT

F(}) =7 and (e + 1) = al(a),

E(Y) = 3mo?




Example: A stick of unit length is broken randomly in two places. What
is the average length of the middle piece?

Make a guess!!




Example: A stick of unit length is broken randomly in two places. What
is the average length of the middle piece?

Make a guess!!

The two break points are independent uniform random variables U, and U,, find
E |U1_U2|, NOW thatf(ul,uZ):l, O S U, S 1, 0 S U, S 1),

ElU, — U2|—//|M1—M2|du1du2

/ / (ul = uz) dugdul +/ / (Lt2 — Ml)dug du1
Sul

Uy > U

= 1/3.




Independence:
COROLLARY A
If X and Y are independent random variables and g and & are fixed functions,

then E[g(X)h(Y)] = {E[g(X)IHE[A(Y)]}, provided that the expectations on
the right-hand side exist. =

In particular, E(X,Y) = E(X) E(Y) for independent X, Y.

Linearity:
If Xy, ..., X, are jointly distributed random variables with expectations E (X;)
and Y is a linear function of the X;, Y =a + >_,_, b; X;, then

EY)=a+) bEX)

=1

Example: " k .
Expectation of binomial distribution EY) = Z % kp™(1 — p)
is hard to evaluate directly. k=0

Alternatively, consider Y as the sum of Bernoulli random ¥ Z X.
variables, X/=1 or 0 (success or failure on the ith trial). - l

E(X;))=0x(—-—p)+1Ixp=p = EX)=np.




Variance and

standard deviation




Variance and standard deviation

Var(X) = E{[X — E(X)]*}

Discrete Continuous ~
Var(X) = ) (xi — 1)’ p(x;) Var(X) = f (x — p)* f(x) dx

—Oo0

oy = |blox
If Var(X) exists and Y = a + b X, then Var(Y) = b*Var(X).

Proof
Since E(Y) = a + bE(X),

E[(Y —EXY))* = E{la+bX —a — bE(X)]*}
= E{b’[X — ECX)T*}
= b’ E{[X — E(X)I)
= b*Var(X)




Variance and standard deviation

Bernoulli distribution

X takes on values 0 and 1 with probability 1—p and p, respectively.

Jacob Bernoulli
(1654—-1705)
E(X;))=0x(1—-p)+1xp=p

Var(X) = (0—p)’ x (1—=p)+ (1 —p)* x p

=p*-p+p-2p"+p°

= p —p)




Variance and standard deviation

Bernoulli distribution
X takes on values 0 and 1 with probability 1—p and p, respectively.

Jacob Bernoulli
(1654—-1705)

E(X;)=0x(U—-p)+1xp=p

Var(X) = (0—p)’ x (1—=p)+ (1 —p)* x p

pPP—-p+p-2p+p

pl—p)

s Jacob Bernoulli (1654 - 1705; also known as James or Jacques) mathematician after whom Bernoulli numbers are named, and author of the early probability text

e Nicolaus Bernoulli (1662 - 1716) painter and alderman of Basel
s Johann Bernoulli (1667 - 1748; also known as Jean) mathematician and early adopter of infinitesimal calculus

s Nicolaus I Bernoulli (1687 - 1759) mathematician;

o Nicolaus IT Bernoulli (1695 -1726) mathematician: worked on curves, differential equations, and probability, and originator of the

o Daniel Bernoulli (1700 - 1782) developer of Bernoulli’s principle and originator of the concept of expected utility for resolving t

St.

e St.

Petersburg paradox

Petersbhurg paradox

e Johann II Bernoulli (1710-1790: also known as Jean) mathematician and physicist
o Johann IIT Bernoulli (1744 -1807: also known as Jean) astronomer, geographer, and mathematician
o Jacob IT Bernoulli (1759 -1789: also known as Jacques) physicist and mathematician

o Hans Bernoulli, (1876 - 1959) architect, designer of the Bernoullihduser in Zurich and Grenchen S0




Var(X) = E(X?) — [E(X)]’

Proof: Var(X) = B[(X — p)°] = (X* — 2uX + 4*)
= E(X?) - 2uB(X) + p* = E(X?) — 2p® + pi* = E(X?) — i°

Example: Uniform distribution on [0, 1], E(X)=1/2,

1
3

1
E(XZ):/ xXdx =
0




Chebyshev’s Inequality

Let X be a random variable with mean  and variance o2. Then, for any t > 0,

2
P(IX—u|>r)SC;—2

Proof: Let Y=(X—u)?, then E(Y)=02. Change ¢ to 2, apply Markov’s inequality to Y.
P(X >t) < E(X)/t

Probability that X deviates much from E(X) is small.
Let t = ko, then P (| X—u| = ko) < 1/k2

SERBERI M, WEHELoHBERE SR ILM-FH 22—,

Example: Gaussian distribution, 26 corresponds to how many %?

Here P (|X—u| > 20) < 1/22=25%




Measurement error

Random error: a sequence of repeated independent measurements made with
no deliberate change in the apparatus or experimental procedure still yield
uncontrollable fluctuations, which are often modeled as random.

Systematic error: same effect on every measurement, e.g. equipment may be
out of calibration, there may be errors associated with the measurement method.

systematic

measurement error / bias

X:.X0+ﬁ—|—8

true value random error

E(¢) = 0 and Var(e) = o2
E(X)=x0o+p
Var(X) = o




Measurement error

Acceleration due to gravity: Youden (1972), a NIST statistician.
Measured at Ottawa, 32 times with each of two methods. Method #2 has
smaller scatter.

Dec 1959 Mean = 980.6124 — cm/sec?

32 Drops Standard deviation = * 0.6 mgal Lo
Rule No. 2 Maximnin spiead = 2:9 nipal Precision vs. Accuracy

Reference value

i

Probability  Accuracy
density X

Aug 1958 Mean = 980.6139 — cm/sec?
32 Drops Standard deviation = * (0.9 mgal _

Rule No. 1 Maximum spread = 4.1 mgal Value

Precision




Measurement error

Speed of light: McNish (1962), Youden (1972).
24 independent determinations of c. Methods, e.g. G=geodimeter () HLI A1)

Designation

Method

US | [

G ¢um

CUTKOSKY-THC.)MAS

Ll
| -

Ru

GB
Us

—

Sh

UsS

GB

AU

AU

AU
ESSEN
FROOME
FROOME
SW
FROOME
Sw

SwW
AU
SW
Us
AU
US
UsS
UsS
FLORMAN

|

299790 91

Errorbars too small.

Spread of values
cannot be accounted
for by different
experimental
techniques alone.

"Surely the evidence
suggests that individual
investigators are unable
to set realistic limits of
error to their reported
values.”




Measurement error

What does it mean by, e.g. 10.2+1.6?

It is often not clear what precisely is meant by such notation. 10.2 is the
experimentally determined value and 1.6 is some measure of the error.

It is often claimed or hoped that 8 is negligible relative to o, and in that case 1.6
represents o or some multiple of o.

Wavelength [mm]

1

0.67

Intensity [MJy/sr]

FIRAS data with 4000 errorbars

2.725 K Blackbody

FIRAS instrument on COBE
satellite, Nobel prize 2006




Measurement error

What does it mean by, e.g. 10.2+1.6?

It is often not clear what precisely is meant by such notation. 10.2 is the
experimentally determined value and 1.6 is some measure of the error.

It is often claimed or hoped that 8 is negligible relative to o, and in that case 1.6
represents o or some multiple of o.

An overall measure of the size of the measurement error that 1s often
used is the mean squared error  MSE = E[(X — xo)?]

MSE = B° + o

E[(X — x0)’] = Var(X — xo) + [E(X — x0)]?
= Var(X) + B>
— 0.2 _|_62

Var(X) = E(X*) — [E(X)P|




Covariance and

correlation




Covariance (¢ £)
Cov(X, Y) = E[(X — ux)(Y — uy)]

Positively associated: X > mean, ¥ > mean, Cov > 0;
Negatively associated: X > mean, ¥ < mean, Cov <0.

Cov(X, Y) = E(XY — Xpy —Yux + uxpy)
= E(XY) - E(X)uy — E(Y)ux + pxpy

Cov (X, ¥) = E (XY) — E(X) E(Y)

X, Y independent, E(XY)=E(X)E(Y), Cov (X, Y)=0

In parallel, Var(X) = E(X?) — [E(X)]zp




Bilinear property of covariance

U=a+),_, biXjandV =c+> 7 d;Y; Then
Cov(U, V) =) > bid;Cov(X;, ¥))
=

i=1 j

Therefore:

Var(a + > i biXi) =), > i bibjCov(X;, X)).
Var(d ", X;) =Y, Var(X;), if the X; are independent.

Var (X+Y) = Var (X) + Var (Y) + 2Cov (X, Y)

My 5%, ¥WhE EQ. X)) =) EX)
WML, AH Var(yo Xi) = Var(X;)




Example: Random Walk

A drunken walker starts out at a point x on the real line. He takes a step on length X,
which is a random variable with expected value © and variance o, and his position
at that time i1s S(1) = xo + X;. He then takes another step of length X,, which is
independent of X with the same mean and standard deviation. His position after n
such steps is S(n) = xo + > _._; X;. Then

E(S(n) = xo+ E (Z X,-) = X0+ npu
i=1

Var(S(n)) = Var (Z X,-) = no?

i=1

Brownian motion is a continuous time version of a random walk with the
steps being normally distributed random variables.

Robert Brown: 1827, apparently spontaneous motion of pollen grains suspended in
water

Albert Einstein: 1905, due to collisions with randomly moving water molecules
Louis Bachelier: 1900, PhD thesis “The theory of speculation” related random
walks to the evolution of stock prices



Correlation coefficient (4a % % #)

X and Y are jointly distributed random variables,
B Cov(X, Y)
— /Var(X)Var(Y)

P

Example.
X, Y follow a bivariate normal distribution, their covariance is PO x 0Oy

p=0  p=03 ;

i [on teed™s 200
0F | £t ",
1} . % et
. '. i .‘
3 72_ A4 .
-3

; 3 3
-2-1 0 1 2 3 4 -2-1 0 1 2 3 4
(a) (b)

Ll
= =

4

0

OF a0 '-__' s

=1 H
_2-..' e

1 |

1 2

: ; 3 : 3 ;

0 5 -2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4
- © (]

1
1
=2 =1 0

p=0.9 p=0.6 p=0.9




Problem set #2

Suppose that in a numerical simulation, you need to generate some fake noise that follows a
standard normal distribution. Since the cdf has no closed form, let us do it in two ways:

1. Rejection method. (cf. Lec 3, pp. 28). Although a Gaussian is defined on (—o0, o), you can
approximate it by a large enough interval (e.g. [-3, 3], [5, 5]), and choose m (x) to be
uniformly distributed. Plot a histogram using your output data.

Polar method. In Lec 4 we find that if X, Y are Gaussian, ® is uniform on [0, 2], R has a
Rayleigh density. Let 7=R?, by calculating the cdf (Lec 2, pp. 32), we obtain

2

where the joint density 1s due to the fact that 7, ® are also independent. R? is exponential!

2

" l _'r/'} L ; l l _I/n,
fr@)=5e"", 120 Jrelh O) =g\ 5 |2
2T

Therefore, we can the do following: First, you generate independent random variables U,
and U, , both uniformly distributed on [0, 1]. Then —2 log U, is exponentially distributed
with parameter %2, and 2nt U, is uniform on [0, 2x]. Therefore, the following X, Y are
independent standard normal random variables. Again, plot a histogram demonstrating
that your output indeed follows N(O, 1).

X =+/—2log U, cos(2n U,) Y =+/—2log U, sin(2r U,)




