
Small examples in Astronomy
1. Two QSOs at different redshift are beside each other on the sky. Remarkable!
Calculate probability: it is conditional on having noticed this at the start.
Thus prob(A|A) = 1, consistent with our measure of belief in something we know.

2. Now calculate probability of finding a galaxy and a quasar within r of each other. 
We search the solid angle Ω and have already found surface densities ζG and ζQ. 
On finding a galaxy, we search around it for a quasar. We need

Assumes probabilities are independent – and this is what we want to test.
Without resorting to models:

Thus

…..symmetrical in quasar and galaxy surface densities: we could search first for
a galaxy or for a quasar. Note strong dependence on search area – specify this
before the experiment!



Small examples in Astronomy
We want to know, given the data, what is the probability/belief state of our model.
Priors can change anticipated results in violent and dramatic ways.

Before 1987, 4 naked-eye SNe had been recorded in ten centuries. What, before 
1987, was the probability ρ of a bright SN happening in the 20th century?

God’s-eye viewpoint: Meaningless! Events are either certain or forbidden.
God does not play dice…

Data: 4 SNe in 10 centuries.    Prior on ρ: total ignorance, uniform on [0, 1].
Model: Binomial, in any century we either get a SN or not (neglecting here the 
possibility of 2 or more SNe). Posterior probability is then

Normalize it,

Using Gamma and Beta function,



Small examples in Astronomy
In general, for n SNe in m centuries, posterior prob. Is

Here n=4, m=10. Where does it peak?

But… That was before 1987, say, at the end of 20th century… What about now?



Small examples in Astronomy
In general, for n SNe in m centuries, posterior prob. Is

Here n=4, m=10. Where does it peak?

But… That was before 1987, say, at the end of 20th century… What about now?

Prior:                                        
         
New data: exactly one event of prob. ρ.

Updated posterior:
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Small examples in Astronomy
For a long time, objection to Bayesian focused on Bayes/Laplace uniform prior.
Jeffreys (1961), Jaynes (1968): in many cases that’s far too agnostic. Intricate 
arguments led them to other possibilities:

We have focused on the peak – many other ways to characterize by a single number.
Posterior mean:

If we have had N successes and M failures, the posterior mean is given by the famous 
Laplace’s rule of succession:

e.g. M=0: “The Sun Also Rises”
e.g. SNe: In the year of 1899, N=4, N+M=10, predicts 5/12 rather than 4/10 (peak).
Characterization by a single number can be often misleading… unless the posterior 
distribution is very narrow (large samples). 



Functions of jointly 
distributed random variables



X, Y are discrete random variables, taking integer values and having joint 
frequency function p(x, y). What is the frequency function of Z=X+Y ?

Special case A: sums

Whenever X=x and Y=z−x, Z=z, so the probability that Z=z is the sum 
over all x of these joint probabilities,

If X and Y are independent,

- convolution of the sequences pX  and pY.



Continuous case

Special case A: sums

Find cdf of Z first!

Differentiating it, using the rule of chains,

If X and Y are independent,

- convolution of the functions fX  and fY.

Convolution is everywhere in 
astronomy: 

- Smooth an image with a PSF
- Deriving the star formation 

history
- combination of multiple effects
- …



Continuous case

Special case A: sums

Example: The lifetime of a component is exponentially distributed.
    We have an identical and independent backup component. 
    
 Lifetime of the system S=T1+T2 , its pdf is

 Beyond the limits of integration, both components have 0 density.

                   Gamma distribution with parameters 2, λ.



Special case B: quotients
Find cdf of Z=Y/X first, again.

                                         is the probability of the set of (x, y) such that y/x ≤ z. 
If x > 0, it is the set y ≤ xz; if x < 0, it is the set y ≥ xz.

Differentiating it, using the rule of chains, insert y=xv (instead of xz),

                                                                         If X, Y are independent.



Special case B: quotients
Example. How is the ratio of two independent Gaussians distributed?

Consider standard normal distribution, Z=Y/X, then

Integrand is even,

                                          Cauchy density decreases slower than Gaussians. 



The general case
Example: X, Y are independent standard normal random variables, joint pdf is

Changing to polar coordinates, 



The general case
R, Θ  have joint distribution

Joint density implies that R and Θ are independent 
variables, Θ is uniform on [0, 2π], R has the density

Rayleigh density! 



The general case: propositions
Two variables:

The general case:



X, Y are independent standard normal random variables, joint pdf is

The roles of u, v are played by r, θ:

Partial derivatives:

Proposition says:

Redo the previous example



Lecture 4
Expected values



The expected value is a weighted average: the possible values are weighted by their 
probabilities. Discrete case:

The expectation may be undefined!

Mean = Center of mass of the frequency function



Suppose that items produced in a plant are independently defective with 
probability p. Items are inspected one by one until a defective item is found. 
On the average, how many items must be inspected? 

Make a guess!
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Suppose that items produced in a plant are independently defective with 
probability p. Items are inspected one by one until a defective item is found. 
On the average, how many items must be inspected? 

X, # of items expected, is a geometric random variable. P(X=k)=qk−1 p, q=1−p.

Poisson distribution has 



An expected values=possible values weighted by probabilities. Continuous case:

Example: Cauchy density has no expectation.



An expected values=possible values weighted by probabilities. Continuous case:

Example: Cauchy density has no expectation.

Example: St. Petersburg Paradox
  只赚不赔的赌博策略：加倍下注法。假设输赢概率各一半，第0次，下注1元；
  输了下2元，再输下4元，再输下8元……直到第k次赢了为止。最终输掉
  1+2+4+…+2k-1=2k−1元, 赢回2k元，净得至少1元（实际赌博赢时不只回本）。

X=最后获胜一注数额，

Daniel Bernoulli (1700-1782)



Markov’s Inequality

Discrete case: All terms are
nonnegative

Probability that X is much bigger than E(X) is small.

Let t = k E(X), then P (X > k E(X)) ≤ 1/k

对任意非负概率分布，大于几倍均值的概率至多是几分之一。



Expectations of functions of random variables

- If Y=g(X), then 

- If X1,…, Xn are jointly distributed random variables, Y=g(X1,…, Xn), then

Question: E[g(X)] = g[E(X)]?

Example 1: The mean velocity is v0, mean kinetic energy is mv0
2/2?

Example 2: Constant voltage V=IR, measure I many times, average value is
                   ~E(I), R=V/E(I)?



Expectations of functions of random variables

- If Y=g(X), then 

- If X1,…, Xn are jointly distributed random variables, Y=g(X1,…, Xn), then

Question: E[g(X)] = g[E(X)]?                                           -- No!

Example 1: The mean velocity is v0, mean kinetic energy is mv0
2/2? -- Roughly

Example 2: Constant voltage V=IR, measure I many times, average value is
                   ~E(I), R=V/E(I)?                                                              -- Roughly



Example: According to the kinetic theory of gases, the magnitude of the 
velocity of a gas molecule is random, following the Maxwell’s distribution

What is the mean kinetic energy Y=mX2/2?

1. Find the pdf of Y, fY; then calculate E(Y).

2. Use our theorem!

Change variable  



Example: A stick of unit length is broken randomly in two places. What 
is the average length of the middle piece? 

Make a guess!!



Example: A stick of unit length is broken randomly in two places. What 
is the average length of the middle piece? 

The two break points are independent uniform random variables U1 and U2, find 
E |U1−U2|, Now that f (u1,u2)=1, 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1),

u2 ≤ u1 u2 > u1

= 1/3.

Make a guess!!



In particular, E(X,Y) = E(X) E(Y) for independent X, Y.

Linearity:

Example: 
Expectation of binomial distribution
is hard to evaluate directly.

Alternatively, consider Y as the sum of Bernoulli random 
variables, Xi=1 or 0 (success or failure on the ith trial).

Independence:



Variance and 
standard deviation



Variance and standard deviation

Discrete Continuous



Variance and standard deviation

Bernoulli distribution
X takes on values 0 and 1 with probability 1−p and p, respectively.

Jacob Bernoulli 
(1654–1705)



Variance and standard deviation

Bernoulli distribution
X takes on values 0 and 1 with probability 1−p and p, respectively.

Jacob Bernoulli 
(1654–1705)



Proof:

Example: Uniform distribution on [0, 1], E(X)=1/2,



Chebyshev’s Inequality

Probability that X deviates much from E(X) is small.

Let t = kσ, then P (|X−μ| ≥ kσ) ≤ 1/k2

对任意概率分布，偏离均值几σ的概率至多是几的平方分之一。

Proof: Let Y=(X−μ)2, then E(Y)=σ2. Change t to t2, apply Markov’s inequality to Y.

Example: Gaussian distribution, 2σ corresponds to how many %?

                Here P (|X−μ| ≥ 2σ) ≤ 1/22 = 25%



Measurement error
Random error: a sequence of repeated independent measurements made with 
no deliberate change in the apparatus or experimental procedure still yield 
uncontrollable fluctuations, which are often modeled as random.

Systematic error: same effect on every measurement, e.g. equipment may be 
out of calibration, there may be errors associated with the measurement method.

measurement

true value

systematic 
error / bias

random error



Measurement error
Acceleration due to gravity: Youden (1972), a NIST statistician.
Measured at Ottawa, 32 times with each of two methods. Method #2 has 
smaller scatter.

Precision vs. Accuracy



Measurement error
Speed of light: McNish (1962), Youden (1972).
24 independent determinations of c. Methods, e.g. G=geodimeter (光电测距仪）

1. Errorbars too small.

2. Spread of values 
cannot be accounted 
for by different 
experimental 
techniques alone.

“Surely the evidence 
suggests that individual 
investigators are unable 
to set realistic limits of 
error to their reported 
values.” 



Measurement error
What does it mean by, e.g. 10.2±1.6? 

It is often not clear what precisely is meant by such notation. 10.2 is the 
experimentally determined value and 1.6 is some measure of the error.
It is often claimed or hoped that β is negligible relative to σ, and in that case 1.6 
represents σ or some multiple of σ.

FIRAS instrument on COBE 
satellite, Nobel prize 2006



Measurement error
What does it mean by, e.g. 10.2±1.6? 

It is often not clear what precisely is meant by such notation. 10.2 is the 
experimentally determined value and 1.6 is some measure of the error.
It is often claimed or hoped that β is negligible relative to σ, and in that case 1.6 
represents σ or some multiple of σ.

An overall measure of the size of the measurement error that is often 
used is the mean squared error



Covariance and 
correlation



Covariance (协方差)

Positively associated:   X > mean, Y > mean, Cov > 0;
Negatively associated:  X > mean, Y < mean, Cov < 0.

Cov (X, Y) = E (XY) − E(X) E(Y)

X, Y independent, E(XY)=E(X)E(Y), Cov (X, Y)=0

In parallel,



Bilinear property of covariance

Therefore:

独立与否，均有                                    
只有独立，才有

Var (X+Y) = Var (X) + Var (Y) + 2Cov (X, Y)



Example: Random Walk

Brownian motion is a continuous time version of a random walk with the 
steps being normally distributed random variables. 

- Robert Brown: 1827, apparently spontaneous motion of pollen grains suspended in 
water

- Albert Einstein: 1905, due to collisions with randomly moving water molecules 
- Louis Bachelier: 1900, PhD thesis “The theory of speculation” related random 

walks to the evolution of stock prices



Correlation coefficient (相关系数)

Example. 
X, Y follow a bivariate normal distribution, their covariance is

X and Y are jointly distributed random variables,

                                                                or    

ρ=0 ρ=0.3

ρ=0.6 ρ=0.9

ρ=0 ρ=0.3

ρ=0.6 ρ=0.9



Problem set #2
Suppose that in a numerical simulation, you need to generate some fake noise that follows a 
standard normal distribution. Since the cdf has no closed form, let us do it in two ways:
1. Rejection method. (cf. Lec 3, pp. 28). Although a Gaussian is defined on (−∞, ∞), you can 

approximate it by a large enough interval (e.g. [−3, 3], [−5, 5]), and choose m (x) to be 
uniformly distributed. Plot a histogram using your output data.

2. Polar method. In Lec 4 we find that if X, Y are Gaussian, Θ is uniform on [0, 2π], R has a 
Rayleigh density. Let T=R2, by calculating the cdf (Lec 2, pp. 32), we obtain                                              

       where the joint density is due to the fact that T, Θ are also independent. R2 is exponential!
       Therefore, we can the do following: First, you generate independent random variables U1     
       and U2 , both uniformly distributed on [0, 1]. Then −2 log U1 is exponentially distributed 
       with parameter ½, and 2π U2 is uniform on [0, 2π]. Therefore, the following X, Y are 
       independent standard normal random variables. Again, plot a histogram demonstrating     
       that your output indeed follows N(0, 1).


