
Conditional expectation 
and prediction



Conditional frequency functions and pdfs have properties of ordinary 
frequency and density functions. Hence, associated with a conditional 
distribution is a conditional mean.

Y and X are discrete random variables, the conditional frequency function
of Y given x is pY|X(y|x). 

Conditional expectation of Y given X=x is 

Continuous case:

Conditional expectation of a function:



Consider a Poisson process on [0, 1] with mean λ, and let N be the # of 
points in [0, 1]. For p < 1, let X be the number of points in [0, p]. Find 
the conditional distribution and conditional mean of X given N = n.

Make a guess!



Consider a Poisson process on [0, 1] with mean λ, and let N be the # of 
points in [0, 1]. For p < 1, let X be the number of points in [0, p]. Find 
the conditional distribution and conditional mean of X given N = n. 

We first find the joint distribution: P(X = x, N = n), which is the probability
of x events in [0, p] and n−x events in [p, 1]. 

From the assumption of a Poisson process, the counts in the two intervals are 
independent Poisson random variables with parameters pλ and (1−p)λ (why?), 
so

N has Poisson marginal distribution, so the conditional frequency function of 
X is

Binomial distribution,
Conditional expectation is np. 



Conditional expectation of Y given X=x is a function of X, and hence also a 
random variable, E(Y|X). 

In the last example, E(X|N=n)=np, and E(X|N)=Np is a function of N, a random 
variable that generally has an expectation

Law of total expectation
The average (expected) value of Y can be found by first conditioning 
on X, finding E(Y|X), and then averaging this quantity with respect to X. 

Taken w.r.t. the distribution of X

In other words, the expectation of a random variable Y can be calculated by 
weighting the conditional expectations appropriately and summing or integrating. 



Proof.    RHS =

Interchanging the order of summation, 

Law of total probability,

Finally,  RHS                                               = LHS. 



Example.
In a system, a component and a backup unit both have mean lifetimes 
equal to μ. If the component fails, the system automatically substitutes 
the backup unit, but there is probability p that something will go wrong 
and it will fail to do so. What is the expected total lifetime?

Let T be the total lifetime, let X = 1 if the substitution of the backup 
takes place successfully, and X = 0 if it does not. 



Example. Random sums.

1. 保险公司在一年内收到N笔索赔，每笔数量为X1, X2,…, Xn ,总赔款为T。

2. 商场来了N个客户，每位消费了X1, X2,…, Xn ,总销售额度为T。

3. 3月6日，N个人在东活排成一队，报名参加女生节校园活动，每人用时
X1, X2,…, Xn ,总排队时间为T。

      E(T)?

       Make a guess!



Example. Random sums.

1. 保险公司在一年内收到N笔索赔，每笔数量为X1, X2,…, Xn ,总赔款为T。

2. 商场来了N个客户，每位消费了X1, X2,…, Xn ,总销售额度为T。

3. 3月6日，N个人在东活排成一队，报名参加女生节校园活动，每人用时
X1, X2,…, Xn ,总排队时间为T。



What about the variance? (We do not prove it.)

Example. Random sums again.
Additional assumptions: Xi are independent random variables with the 
same mean, E(X), and the same variance, Var(X).



Example. Random sums again.

Suppose that # of insurance claims in a certain time period (a 
Poisson random variable) has expected value 900 and standard 
deviation 30. Suppose that the average claim value is $1000 and 
the standard deviation is $500.

Then the expected value of the total, T , of the claims is 

E(T) = 900 ∙ 1000 = $900,000

and the variance of T is 

                          Var(T)=10002 ∙ 302 + 900 ∙ 5002 = 1.125 ∙ 109

Standard deviation is $33541. 

If total # is not variable, fixed at N=900, Var(T)=E(N) Var(X), standard 
deviation is $15,000, much smaller. 



Prediction
Predicting the value of one random 

variable from another



Examples.

1. Predict the age of a fish through measuring its length. Lengths and ages 
are joint random variables.

2. In forestry, estimate the volume of a tree from its diameter. Diameter 
and volume are joint random variables. 

3. Predict your fate from your appearance. (??!!)



Examples.

1. Predict the age of a fish through measuring its length. Lengths and ages 
are joint random variables.

2. In forestry, estimate the volume of a tree from its diameter. Diameter 
and volume are joint random variables. 

3. Predict your fate from your appearance. (??!!)

Trivial case: predicting Y by means of a constant value c.
Need some measure of the prediction effectiveness, widely used mean 
squared error should be minimized:

  -- Should use c=μ=E(Y).



Predicting Y by some function h(X).
Minimize MSE=E{[Y−h(X)]}.

For every x, the inner expectation is minimized by setting h(x) equal to 
the constant E(Y | X=x), according to the preceding trivial case.

Unfortunately, this optimal prediction scheme depends on knowing the joint 
distribution of Y and X to find E(Y|X), which is often N/A. 



Predicting Y by some function h(X).
Minimize MSE=E{[Y−h(X)]}.

For every x, the inner expectation is minimized by setting h(x) equal to 
the constant E(Y | X=x), according to the preceding trivial case.

Unfortunately, this optimal prediction scheme depends on knowing the joint 
distribution of Y and X to find E(Y|X), which is often N/A. 

Instead of trying to find the best function h among all function, we optimize our 
linear predictor (最优线性预测元)

(no α) (zero if                           )



(no α) (zero if                           )

Minimum of the quadratic function of β is found by setting the derivative 
w.r.t. β equal to zero 

The minimum MSE predictor is

The mean squared prediction error is

ρ=correlation coefficient



Notes: 
1. Optimal linear predictor depends on joint distribution of X, Y only through their 

means, variances, and covariance, unlike general optimal predictor E(Y|X).
2. Mean squared prediction error depends only on σY and ρ, small if ρ is about ±1.
3. For the bivariate normal distribution, direct calculation shows exactly the same 

form as the optimal linear predictor



Notes: 
1. Optimal linear predictor depends on joint distribution of X, Y only through their 

means, variances, and covariance, unlike general optimal predictor E(Y|X).
2. Mean squared prediction error depends only on σY and ρ, small if ρ is about ±1.
3. For the bivariate normal distribution, direct calculation shows exactly the same 

form as the optimal linear predictor

Example. Two exams are given in a course. The scores of a student on the mid-
term and final exams, X and Y, are jointly distributed. Suppose that the exams are 
scaled to have the same means μ = μX = μY and standard deviations σ = σX = σY . 
Then, the correlation ρ = σXY /σ2 and the best linear predictor                                 .

By the equation
we predict that student’s score on the final exam to differ from the overall mean μ 
by less than did the score on the mid-term. In case of positive correlation:

-- Encouraging for students below average, bad news for those above average

 This phenomenon is often referred to as regression to the mean. 



The moment-
generating functions



Moment-generating functions (mgf, 矩母函数、矩生成函数) are 
very useful tools that can dramatically simplify certain calculations.

Discrete case:                                               Continuous case:

If two random variables have the same mgf in an open interval containing zero, 
they have the same distribution. 

For some problems, we can find the mgf and then deduce the unique probability 
distribution corresponding to it. 



The rth moment of a random variable, if exists, is E(X r). 
Central moments:    E{[X − E(X)]r } 

1st ordinary moment: mean.        2nd central moment: variance.
3rd central moment: Skewness, asymmetry of a pdf.

4th central moment: Kurtosis,  spikiness of a pdf.

尖峰态

低峰态

常峰态



The rth moment of a random variable, if exists, is E (Xr). 
Central moments:    E{[X − E(X)]r } 

The mgf

Differentiating r times,

To find the moments we must sum a series or carry out an integration. 
But if mgf is found, the difficult process of integration or summation can 
be replaced by the mechanical process of differentiation! 



Example: 
Poisson distribution

Differentiating,

Evaluating them at t=0,

Mean and variance of a Poisson distribution are both λ. 



Example: 
Gamma distribution

Differentiating,

Gamma density with α, λ−t



Example: Normal distribution
Standard normal distribution first:

配方大法好！

Gaussian integrates to 1, 



Example: Normal distribution
Standard normal distribution first:

配方大法好！

Gaussian integrates to 1, 

Proof

For a general Gaussian,



Proof:
   Independence,

推广：多个独立随机变量，连乘即可。
矩母函数最有用的性质之一，可处理一些复杂的棘手问题。

Example: The sum of two independent Poisson random variables 
with parameters λ and μ is…?



Proof:
   Independence,

推广：多个独立随机变量，连乘即可。
矩母函数最有用的性质之一，可处理一些复杂的棘手问题。

Example: The sum of two independent Poisson random variables 
with parameters λ and μ is…?

矩母函数唯一决定分布！



Example: The sum of independent normal random variables is…?



Example: The sum of independent normal random variables is…?

Example:

Note：Gamma density reduces to exponential when αi=1, then α1+α2+…+ αn=n.

Sum of n independent exp. random variables with λ follows gamma with n, λ. 

Poisson process: The time between n consecutive events in time follows gamma.

(e.g. Length of time to serve n customers in a queue) 

→



Note: These cases are atypical, the sum may not follow the same distribution.

Example: Random sums.
Xi are independent & with the same mgf MX, N has MN  and indep. of Xi .

Given N=n, 

Thus,



Approximate methods



In many applications, only the 1st and 2nd moments of a random variable, 
instead of the entire probability distribution, are known approximately.

Why? Repeated independent observations of a random variable allow reliable 
estimates to be made of its mean and variance. 



In many applications, only the 1st and 2nd moments of a random variable, 
instead of the entire probability distribution, are known approximately.

Why? Repeated independent observations of a random variable allow reliable 
estimates to be made of its mean and variance. 

In reality, suppose we can measure X and determine its mean and variance, 
Y=g(X), where g is a fixed function. How to determine E(Y) and, at least 
approximately, Var (Y), in order to assess the accuracy of the indirect 
measurement process? 



In many applications, only the 1st and 2nd moments of a random variable, 
instead of the entire probability distribution, are known approximately.

Why? Repeated independent observations of a random variable allow reliable 
estimates to be made of its mean and variance. 

In reality, suppose we can measure X and determine its mean and variance, 
Y=g(X), where g is a fixed function. How to determine E(Y) and, at least 
approximately, Var (Y), in order to assess the accuracy of the indirect 
measurement process? 

E(Y) and Var(Y) cannot be calculated easily, unless g is linear. However, if g is 
nearly linear in a range in which X has high probability, it can be approximated 
by a linear function and approximate moments of Y can be found.

When confronted with a nonlinear problem hard to solve, we linearize.

In probability and statistics, this method is called propagation of error, 
or the δ method. 



Taylor series expansion of g about μX, to the first order,

Approximately linear!  
Recall: if U=a+bV, then E(U)=a+bE(V) and Var(U)=b2Var(V),

Expanding to 2nd order to improve it,

Taking expectation of RHS, note

How good such approximations are depends on how nonlinear g is in a 
neighborhood of μX and on the size of σX.



Example: The relation of voltage, current, and resistance is V=IR. 
Suppose that the voltage is held constant at V0 across a medium 
whose resistance fluctuates randomly, say, of random fluctuations at 
the molecular level. The current therefore also varies randomly. 
Suppose that it can be determined experimentally to have mean μI and variance 
σI

2. We wish to find the mean and variance of R. 

- σR depends on both mean and variance 
of I. 

- For small I, change of I leads to large 
variations in R=V0/I.

- For small I, 2nd order correction for μR 
is large.

- When I→0, function is highly non-
linear, not a good approximation.



Example: Test the accuracy of the approximations.
Consider two cases: X uniform on [0, 1];  X uniform on [1, 2].

Exact result. Let                , for X uniform on [0, 1],

More linear on [1, 2],
better approximation?

Approx. X uniform on [0, 1], μX =1/2, Var (X)=1/12,

0.667 (1.6%)

0.236 (13%)



Example: Test the accuracy of the approximations.
Consider two cases: X uniform on [0, 1];  X uniform on [1, 2].

Exact result. For X uniform on [1, 2],
Mean=1.219, Var(Y)= .142,         = .119.

Approx. X uniform on [1, 2], μX =3/2, Var (X)=1/12,

1.219 (0%)

0.119 (1%)

More linear on [1, 2],
better approximation?

Indeed!!



The case of 2-variables
Taylor series expansion of g about (μX, μY) – denoted as μ – to 1st order, 

Approximately linear!  

Expanding to 2nd 
order for an 
improved estimate,

Taking expectations of RHS,



Example: Expectation and variance of a ratio.
A chemist measures the concentrations of two substances, both with
some measurement error that is indicated by their standard deviations, 
and then report the relative concentrations in the form of a ratio. 
What is the approximate standard deviation of the ratio, Z=Y/X ?
For g(x, y) = y/x, 

Small if σX, σY are 
small, measured 
accurately; large if 
μX is small.

Quite variable if 
μX is small. Var(Z) 
decreases if ρ and 
μY /μX are of the 
same sign. 



Laplace’s law of succession
Suppose that the sun has risen n times in succession; what is the 
probability that it will rise once more?

Laplace used an “urn model” to study successive sunrise as a random process. A 
sunrise is assimilated to the drawing of a black ball from an urn of unknown 
composition. The various possible compositions are assimilated to so many 
different urns containing various proportions of black balls. Finally, the choice of 
the true value of the proportion is assimilated to the picking of a random number 
in [0, 1]. Clearly, these are weighty assumptions calling forth serious objections 
at several levels.

- Is sunrise a random phenomenon or is it deterministic? 
- Assuming that it can be treated as random, is the preceding simple urn model 

adequate to its description? 
- Assuming that the model is appropriate in principle, why should the a priori 

distribution of the true probability be uniformly distributed, and if not how 
could we otherwise assess it?




