Conditional expectation
and prediction



Conditional frequency functions and pdfs have properties of ordinary
frequency and density functions. Hence, associated with a conditional
distribution is a conditional mean.

Y and X are discrete random variables, the conditional frequency function
of Y given x is py(y|x).

Conditional expectation of Y given X=x is

EY|IX=x)=) yprx(yIx)

_ y
Continuous case:

E(Y|X =x)= /yfm(lec) dy

Conditional expectation of a function:

Er(Y)|X =x] = /h(y)fm(ylx)dy



Consider a Poisson process on [0, 1] with mean A, and let N be the # of
points in [0, 1]. For p <1, let X be the number of points in [0, p]. Find
the conditional distribution and conditional mean of X given N = n.

Make a guess!



Consider a Poisson process on [0, 1] with mean A, and let N be the # of
points in [0, 1]. For p <1, let X be the number of points in [0, p]. Find
the conditional distribution and conditional mean of X given N = n.

We first find the joint distribution: P(X =x, N = n), which is the probability
of x events in [0, p] and n—x events in [p, 1].

From the assumption of a Poisson process, the counts in the two intervals are
independent Poisson random variables with parameters p/ and (1-p)4 (why?),
SO

(pA)*e PX [(1 — p)A]"*e =4

x! (n —x)!

pxn(x, n) =

N has Poisson marginal distribution, so the conditional frequency function of
Xis
pxn(x, n)
pn(n)
n! Binomial distribution,

- a—=p) . J
x!(n — x)!p ( p) Conditional expectation is np.

pxin(x|n) =




Conditional expectation of Y given X=x is a function of X, and hence also a
random variable, E(Y]X).

In the last example, E(X]N=n)=np, and E(X|N)=Np is a function of N, a random
variable that generally has an expectation

E[E(Y|X)]

Taken w.r.t. the distribution of X

Law of total expectation
The average (expected) value of Y can be found by first conditioning
on X, finding E(Y|X), and then averaging this quantity with respect to X.

E(k )= ELECY | X)].

In other words, the expectation of a random variable Y can be calculated by
weighting the conditional expectations appropriately and summing or integrating.



E(Y) = E[E(Y|X)].

Proof. RHS = Z E(Y|X =zx)px(x)

E(Y|X =z)=) ypv(ylz)

Interchanging the order of summation,

ZE Y|X =z)px(z) = Z ZPY|X(9|$)PX (z)

Law of total probability, Py ()’ )

Finally, RHS = Z ypy (y) = E(Y) =LHS.
Y



Example.

In a system, a component and a backup unit both have mean lifetimes
equal to u. If the component fails, the system automatically substitutes
the backup unit, but there is probability p that something will go wrong
and it will fail to do so. What is the expected total lifetime?

Let T be the total lifetime, let X = 1 if the substitution of the backup
takes place successfully, and X = 0 if it does not.

E(T|X = 1) = 2
E(TIX=0)=u

E(T)
—E(TIX=DP(X=1D)+E(TIX=0P(X =0)
= (2 — p)



Example. Random sums.
1. R ARE—FENIRBINERE, FEHENX, X, ... X, SIEFCNT.
2. WK TINYER, BLHER X, X, ..., X, B EHEAT.

3. 3H6H, NMANTEREH—FN, IS InLAETREES), & A
X, X, X, B HEBAI RN T

E(T)?

Make a guess!



Example. Random sums.
1. IREEARIE—FENIBINERE, BERENX, X, ..., X, BEEHCONT.
2. WK TINYER, BLHER X, X, ..., X, B EHEAT.

3. 3H6H, NMANTEREH—FN, IS InLAETREES), & A
X, X, X, B HEBAI RN T

E(T) = E[E(T|N)]

|
i1M-
<

Since E(T|N = n) = nE(X), E(T|N) = NE(X) and thus

E(T) = E[NE(X)] = E(N)E(X)



What about the variance? (We do not prove it.)
Var(Y) = Var[E(Y|X)] + E[Var(Y|X)]

Example. Random sums again.
Additional assumptions: X; are independent random variables with the
same mean, £(X), and the same variance, Var(X).

Var(T) = E[Var(T|N)] + Var[E(T|N)]
Because E(T|N) = NE(X),
Var[E(T|N)] = [E(X)]*Var(N)
Also, since Var(T|N = n) = Var(}_/_, X;) = n Var(X),
Var(T|N) = N Var(X)
E[Var(T|N)] = E(N)Var(X)

Var(T) = [E(X)]*Var(N) + E(N)Var(X)



Example. Random sums again.

Var(T) = [E(X)]*Var(N) + E(N)Var(X)

Suppose that # of insurance claims in a certain time period (a
Poisson random variable) has expected value 900 and standard
deviation 30. Suppose that the average claim value is $1000 and
the standard deviation is $500.

Then the expected value of the total, 7', of the claims i1s
E(T) =900 - 1000 = $900,000
and the variance of 7'1s
Var(7)=10002- 302+ 900 - 5002 =1.125 - 10°
Standard deviation is $33541.

If total # is not variable, fixed at N=900, Var(7)=E(N) Var(X), standard
deviation is $15,000, much smaller.



Prediction

Predicting the value of one random
variable from another



Examples.

1. Predict the age of a fish through measuring its length. Lengths and ages
are joint random variables.

2. In forestry, estimate the volume of a tree from its diameter. Diameter
and volume are joint random variables.

3. Predict your fate from your appearance. (??!!)



Examples.

1. Predict the age of a fish through measuring its length. Lengths and ages
are joint random variables.

2. In forestry, estimate the volume of a tree from its diameter. Diameter
and volume are joint random variables.

3. Predict your fate from your appearance. (??!!)

Trivial case: predicting ¥ by means of a constant value c.

Need some measure of the prediction effectiveness, widely used mean
squared error should be minimized:

MSE = E[(Y — ¢)?]

E[(Y —¢)®] = Var(Y —¢) + [E(Y — )]
= Var(Y) + (u — ¢)?

-- Should use c=u=E(Y).



Predicting Y by some function 2(X).
Minimize MSE=E{[Y-h(X)]}.
E{[Y — h(X)]*} = E(E{[Y — h(X)]*|X})

For every x, the inner expectation is minimized by setting /4(x) equal to
the constant E(Y | X=x), according to the preceding trivial case.

h(X) = EY|X)

Unfortunately, this optimal prediction scheme depends on knowing the joint
distribution of Y and X to find E£(Y]X), which is often N/A.



Predicting Y by some function 2(X).
Minimize MSE=E{[Y-h(X)]}.
E{[Y — h(X)]*} = E(E{[Y — h(X)]*|X})

For every x, the inner expectation is minimized by setting /4(x) equal to
the constant E(Y | X=x), according to the preceding trivial case.

h(X) = EY|X)

Unfortunately, this optimal prediction scheme depends on knowing the joint
distribution of Y and X to find E£(Y|X), which is often N/A.

Instead of trying to find the best function # among all function, we optimize our
linear predictor (s L PEFIINI T) h(x) = o + Bx.
E[(Y —a—B8X) ]=Var(Y —a — BX)+[E(Y —a — BX)]
= Var(Y — BX) +[E(Y —a — BX)]?
(no a) (zero if | = uy — Bux])




E[(Y —a—B8X)]=Var(Y —a — BX)+[E(Y —a — BX)]
= Var(Y — BX) + [E(Y —a — BX))?
(no a) (zero if o =y — Bux')

Var(Y — BX) = o2 + B202 — 2Boyy

Minimum of the quadratic function of f is found by setting the derivative
w.r.t. f equal to zero

Oxy Oy B lati .
ﬁ = — = p— p=correlation coefficient

The minimum MSE predictor is

& Oxy
Y=a+ﬁquy+7(X—ux)
X

The mean squared prediction error is

oxy
Var(Y — BX)—JY XYUX—2—2—ny
C'X Ox
2 aiy 2 9.3 2 2
=0y ——3 =0y —p oy =|oy(l—p’)
X



Notes:
1. Optimal linear predictor depends on joint distribution of X, Y only through their
means, variances, and covariance, unlike general optimal predictor E(Y|X).

2. Mean squared prediction error depends only on 6, and p, small if p is about 1.

3. For the bivariate normal distribution, direct calculation shows exactly the same
form as the optimal linear predictor

(0}
EY|X)=puy + p— (X — uy)
Ox



Notes:

1.

Optimal linear predictor depends on joint distribution of X, Y only through their
means, variances, and covariance, unlike general optimal predictor E(Y|X).

2. Mean squared prediction error depends only on 6, and p, small if p is about 1.

For the bivariate normal distribution, direct calculation shows exactly the same
form as the optimal linear predictor

(0}
EY|X)=puy + p— (X — uy)
Ox

Example. Two exams are given in a course. The scores of a student on the mid-
term and final exams, X and Y, are jointly distributed. Suppose that the exams are
scaled to have the same means i = uy = uy and standard deviations ¢ = gy = oy .
Then, the correlation p = oy /o and the best linear predictor ¥ = 4+ p(X — ).

By the equation Y —p=p(X —p)
we predict that student’s score on the final exam to differ from the overall mean u
by less than did the score on the mid-term. In case of positive correlation:

-- Encouraging for students below average, bad news for those above average

This phenomenon is often referred to as regression to the mean.



The moment-
generating functions



Moment-generating functions (mgf, JEEEpRE. FEA LR %) are

very useful tools that can dramatically simplify certain calculations.

M(t) = E(e'*)

Discrete case: Continuous case:

M) =) e px) M(t) = / ™ £(x) dx
PROPERTY A
If the moment-generating function exists for 7 in an open interval containing
zero, it uniquely determines the probability distribution. o

If two random variables have the same mgf in an open interval containing zero,
they have the same distribution.

For some problems, we can find the mgf and then deduce the unique probability
distribution corresponding to it.



The rth moment of a random variable, if exists, is E(X ).
Central moments: E{|X— E(X)]"}

15t ordinary moment: mean. 2nd central moment: variance.
3rd central moment: Skewness, asymmetry of a pdf.
Negatively skewed Normal (no skew) Positively skewed
Mean
Median
Mode
: E
f 5
E x
represents a pertec
-symmetrical n

4t central moment: Kurtosis, spikiness of a pdf.

9&111%?5 {+) Leptokurtic General
Forms of
"%"m%?ff\ {0) Mesokurtic Kurtosis

{Normal)

'ﬂﬁlll%,{‘\ {-) Platykurtic




The rth moment of a random variable, if exists, is £ (X').
Central moments: E{|X— E(X)]"}

The mgf M(t) = / e F(x) dx

o

M'(t) = %/oo & flx)dx = / xe™ f(x)dx

M'(0) = / xf(x)dx = E(X)

o

Differentiating r times,
M"(0) = E(X")

PROPERTY B
If the moment-generating function exists in an open interval containing zero,
then MW (0) = E(X"). =

To find the moments we must sum a series or carry out an integration.
But if mgf is found, the difficult process of integration or summation can
be replaced by the mechanical process of differentiation!




Example: 00 Ak
Poisson distribution M(t) = Z ek

ek(e’—l)

Differentiating,
Ml(t) = )Lete)n(et—l)

M”(f) _ ketek(e’—l) = k262rex(e’—l)

Evaluating them at /=0,
E(X)=A

E(X?) =2+ A
Var(X) = E(X?) = [E(X)]? = A

Mean and variance of a Poisson distribution are both A.



Example:
Gamma distribution

Differentiating,

M (t)

00 p:
/ etx xa—le—kx dx
0

}\‘Qf

I'(«)
00
xa—l ex(f—)t) dx

['(a) Jo

)\‘0!

Gamma density with o, A—¢

')

I'(x) B A “
((k—t)“) B (A—l‘)

M'(0) = E(X) = %

1" Od(Ol + 1)
M'(0) = E(X*) = —5—
Var(X) = E(X?) — [E(X)]?

aled+1) o
Y
(04

)L2



Example: Normal distribution
Standard normal distribution first:

M(t) = \/_\/ 1x —x2/2 dx

Ly AT 1 . .
?—tmz—é( 2t:l:+t2)——2— —(:c—t)z——Q—
et2/2 00 ey
M(t) = — e o l“dx lUu=x—t
V21

Gaussian integrates to 1,

M) = e/




Example: Normal distribution
Standard normal distribution first:

M(t) = \/_\/ 1x —x2/2 dx

ALy i3 X P .
?—tm=5( 2ta:+t2)——2— —(a:~~t)2—E
€t2/2 o0 ; )9/2
M(t) = — e o l“dx lUu=x—t
V2T

Gaussian integrates to 1,

M) = e/

PROPERTY €

If X hasthe mgf Mx(t) and Y = a+bX,then Y has the mgf My () = e* My (bt).
PI’OOf My(t) —_ E(etY) — E(eat+th) — E(eateth) — eatE(eth) — eatMX(bt)

For a general Gaussian, |My (1) = e Mx(ot) = e"'e” /2




PROPERTY D

If X and Y are independent random variables with mgf’s Mx and My and Z =
X 4+ Y, then M;(t) = Mx(t)My(t) on the common interval where both mgf’s

exist.
Proof: Mz(t) = E(etz) = E(e!X 1) = E(etxety)
Independence, Mz(t) = E (e!X)E(etY) = Mx(t) My (t)

7 ALY &, EREI AT,
FBE R B A RIPE R —, Al AR — 255 R (R T )

Example: The sum of two independent Poisson random variables
with parameters A and p 1s...?



PROPERTY D

If X and Y are independent random variables with mgf’s Mx and My and Z =
X 4+ Y, then M;(t) = Mx(t)My(t) on the common interval where both mgf’s

exist.
Proof: Mz(t) = E(etz) = E(e!X 1) = E(etxety)
Independence, Mz(t) = E (e!X)E(etY) = Mx(t) My (t)

7 ALY &, EREI AT,
FBE R B A RIPE R —, Al AR — 255 R (R T )

Example: The sum of two independent Poisson random variables
with parameters A and p 1s...?

ek(e’—l)eu(e’—l) - e(kﬂt)(e’—l)

B R ZME— PR RE 70 AT !




Example: The sum of independent normal random variables is...?

If X ~ N(u, 02) and, independent of X, Y ~ N (v, t2), then the mgf of X + Y is

2 .2 2.2 2.2 2
e,u,tet o /Zevtet T f2 — e(,u—}—v)tet (o0°4+17)/2

which is the mgf of a normal distribution with mean p + v and variance o + t2. The

sum of independent normal random variables i1s thus normal. C



Example: The sum of independent normal random variables is...?

If X ~ N(u, 02) and, independent of X, Y ~ N (v, t2), then the mgf of X + Y is

2 .2 2.2 2.2 2
e,u,tet o /2€vtet T f2 — e(,u—|—v)tet (o0°4+17)/2

which is the mgf of a normal distribution with mean p + v and variance o + t2. The
sum of independent normal random variables i1s thus normal. C

Example:

If X follows a gamma distribution with parameters oy and A and Y follows a gamma
distribution with parameters o, and A, the mgf of X + Y is

X (43 A o2 A o1+ o
(A—I) (A—t) - (x—t)

Note: Gamma density reduces to exponential when a,=1, then a;+a,+...+ a,=n.

AC!

g(t) — m-)'ta_le_'\t

N P

Sum of n independent exp. random variables with A follows gamma with n, A.

Poisson process: The time between n consecutive events in time follows gamma.

(e.g. Length of time to serve n customers in a queue)



Note: These cases are atypical, the sum may not follow the same distribution.

Example: Random sums.
X; are independent & with the same mgf My, N has M), and indep. of X; .

N
S = ; X Mq(t) = E(e’S) — E[E(e’S|N)]
Given N=n, Mg(t) = [Mx(t)]"
Thus, Ms(t) = E[Mx ()]

— E(eNlog MX(I))

= My[log Mx(1)]

The major limitation of the mgf is that it may not exist. The characteristic
function of a random variable X is defined to be

¢(t) = E(e"™)



Approximate methods



In many applications, only the 15t and 27 moments of a random variable,
instead of the entire probability distribution, are known approximately.

Why? Repeated independent observations of a random variable allow reliable
estimates to be made of its mean and variance.



In many applications, only the 15t and 27 moments of a random variable,
instead of the entire probability distribution, are known approximately.

Why? Repeated independent observations of a random variable allow reliable
estimates to be made of its mean and variance.

In reality, suppose we can measure X and determine its mean and variance,
Y=g(X), where g is a fixed function. How to determine E(Y) and, at least
approximately, Var (Y), in order to assess the accuracy of the indirect
measurement process?



In many applications, only the 15t and 27 moments of a random variable,
instead of the entire probability distribution, are known approximately.

Why? Repeated independent observations of a random variable allow reliable
estimates to be made of its mean and variance.

In reality, suppose we can measure X and determine its mean and variance,
Y=g(X), where g is a fixed function. How to determine E(Y) and, at least
approximately, Var (Y), in order to assess the accuracy of the indirect
measurement process?

E(Y) and Var(Y) cannot be calculated easily, unless g is linear. However, if g is
nearly linear in a range in which X has high probability, it can be approximated
by a linear function and approximate moments of ¥ can be found.

When confronted with a nonlinear problem hard to solve, we linearize.

In probability and statistics, this method is called propagation of error,
or the 0 method.



Taylor series expansion of g about uy, to the first order,

Y =g(X) =~ g(ux) + (X — ux)g' (ux)

Approximately linear!
Recall: if U=a+bV, then E(U)=a+bE(V) and Var(U)=b*Var(V),

my ~ g(ix) E(Y) # g(E(X))

oy ~ oglg (nx)]

Expanding to 2d order to improve it,

Y =g(X) ~ g(ux) + (X — ux)g (ux) + 3 (X — nx)*g" (ux)

Taking expectation of RHS, note E(X — uy) =0,

E(Y) ~ g(ux) + 3038 (ux)|

How good such approximations are depends on how nonlinear g is in a
neighborhood of uy and on the size of oy.



Example: The relation of voltage, current, and resistance is V=IR.
Suppose that the voltage is held constant at V,, across a medium
whose resistance fluctuates randomly, say, of random fluctuations at
the molecular level. The current therefore also varies randomly.

Suppose that it can be determined experimentally to have mean y; and variance
0. We wish to find the mean and variance of R.

VO ’ VO 1 2V0
R=g)=— 8gWD=—73 g (ur) = —
& I 5 5
VO VO 2
pr N — + —0 -
R I M3 1 - oy depends on both mean and variance
! of L.
V2
ol ~ 0 52 - For small /, change of / leads to large
K M’}l ! variations in R=V/I.

- For small Z, 2n order correction for
1s large.

- When /—0, function is highly non-
linear, not a good approximation.




Example: Test the accuracy of the approximations. g(x) = /x
Consider two cases: X uniform on [0, 1]; X uniform on [1, 2].

Exact result. Let Y = /X, for X uniform on [0, 1],

1
E(Y):/ Jxdx =
0

Wb

1
E(Y? =/ xdx =1
0

Var(Y) = 5 — (%)2 = & and oy = .236. )
Approx. X uniform on [0, 1], uy=1/2, Var (X)=1/12,
1..—1/2 "(x) V2
/ — —_
g'(x) = 3x7" §x) =5
82 ) V2
§'00) == ==
1 1( 2
=~ - — — — o
E(Y) ﬁ . (12 . 2) 678 | 0.667 (1.6%)
Var(Y) =~ 3 x 35 = .042
oy A~ 204 0.236 (13%)

More linear on [1, 2],
better approximation?

1 1 1 1 1
0 5 1.0 1.5 20
X

E(Y) ~ g(ux) + 3038" (x)

oy ~ oglg (ux)]



Example: Test the accuracy of the approximations. g(x) = /x
Consider two cases: X uniform on [0, 1]; X uniform on [1, 2].

Exact result. For X uniform on [1, 2],
oy =.119.

Mean=1.219, Var(Y)=.142,

— VX

Approx. X uniform on [1, 2], uy=3/2, Var (X)=1/12,

g'(nx) = 408
g'(ux) = —.136

3 1 /.136

4082

Var(Y) =~ = 0138

oy ~ 118

1.219 (0%)

0.119 (1%)

g(x)

Indeed!!

More linear on [1, 2],
better approximation?

1 1 1 1 1
0 5 1.0 1.5 20
X

E(Y) ~ g(ux) + 3038" (x)

oy ~ oglg (ux)]



The case of 2-variables Z =g(X,6 Y)
Taylor series expansion of g about (uy, uy) — denoted as y — to 1st order,

g(u) dg(u)

Z=gX,Y)~g(u)+ (X — ux) + (¥ — puy) 3y

Approximately linear!

E(Z) ~ g(u)

d . P P
el e G R C S G

Expanding to 2nd
order for an Z=gX,Y)~g(u + (X — pux) g(“) LY - %(yﬂ)

improved estimate,

Bzg(u) ,0%g (1)
f= ( pr* s

+§(X— mx)?

I*g(1)

+ (X — ux)(Y — py) 50y

Taking expectations of RHS,

1 ,9%°g(n) , 078 (1) d*g ()
~ 1.2 .0
E(Y) ~ g(ux) + ;058" (ux) E(Z)=~ g(u)+ < > X 522 +§ Y 5y2 + Ooxy 3x9y




Example: Expectation and variance of a ratio.
A chemist measures the concentrations of two substances, both with

some measurement error that is indicated by their standard deviations,

and then report the relative concentrations in the form of a ratio.

What is the approximate standard deviation of the ratio, Z=Y/X ?

Small if oy, oy are
small, measured
accurately; large if
Uy 1s small.

For g(x, y) = y/x, 9 -y 99 _1
or 2 Oy =z
g _w g_, % _ -1
8r2 3 0y2 = Oxby x2
1 ,08%g(u) ,0%g () 9%g ()
E(Z)~ 1 = t+o
( ) g(l"l’) 2 X a 9 2 Y 8)7 XY axay
1
EZ)~2 4o 2“Y—"X”=“—Y+—(02‘91— oxo )
) px vy ik px o opEk \Xax  POXY
98 (1)’ 98 (1)’ 9g(1) (9g(1)
ar(Z) ~ o2 + o5 + 2 ~a
|V (Z) Ux( Ix ) Oy 3y Ixy B dy
2 2
Ky | Oy Ky 1 2 By . BY
Var(Z) = 0% X + X — 20xy = (a + 02 — 2poxo —--)
Xk T uk Wy pg N\ Xpa TOY T EPXOY

Quite variable if
Uy 1s small. Var(Z)
decreases if p and
Uy/uy are of the
same sign.




Laplace’s law of succession

Suppose that the sun has risen z times in succession; what is the
probability that it will rise once more?

Laplace used an “urn model” to study successive sunrise as a random process. A
sunrise 1s assimilated to the drawing of a black ball from an urn of unknown
composition. The various possible compositions are assimilated to so many
different urns containing various proportions of black balls. Finally, the choice of
the true value of the proportion is assimilated to the picking of a random number
in [0, 1]. Clearly, these are weighty assumptions calling forth serious objections
at several levels.

- Is sunrise a random phenomenon or is it deterministic?

- Assuming that it can be treated as random, is the preceding simple urn model
adequate to its description?

- Assuming that the model is appropriate in principle, why should the a priori
distribution of the true probability be uniformly distributed, and if not how
could we otherwise assess it?



Problem set #2

Suppose that in a numerical simulation. you need to generate some fake noise that follows a
standard normal distribution. Since the cdf has no closed form, let us do it in two ways:

&

Rejection method. (cf. Lec 3, pp. 28). Although a Gaussian 1s defined on (—0, ). you can

approximate it by a large enough interval (e.g. [-3. 3]. [5. 5]). and choose m (x) to be
uniformly distributed. Plot a histogram using your output data.

Polar method. In Lec 4 we find that i1f X, Y are Gaussian. © 1s uniform on [0. 27]. R has a
Rayleigh density. Let 7=R2, by calculating the cdf (Lec 2, pp. 32). we obtain

{ 1 ~£/2 - ; ] I o )
frt) = e, L 1 el B} =— [ =18

2 21 L2

where the joint density 1s due to the fact that T, ® are also independent. R?1s exponential!

Therefore, we can the do following: First. you generate independent random variables U,
and U, , both uniformly distributed on [0, 1]. Then —2 log U, 1s exponentially distributed
with parameter *2, and 2z U, 1s uniform on [0, 2x]. Therefore, the following X, Y are
independent standard normal random variables. Again. plot a histogram demonstrating
that your output indeed follows N(0. 1).

X =+/—2log U, cos(2nU>) Y = y/—2log U, sin(2rx U,)



