Distributions derived from
the normal distribution



Chi-square y?, t and F distributions
DEFINITION

Our old friend!
If Z is a standard normal random variable, the distribution of U = Z? is called
the chi-square distribution with 1 degree of freedom.

o

0
g(r) =

2;c:(—l —M’ t > 0
Fa) =

g(1)
=

Gamma distribution, a=A=1/2, becomes y,?
distribution with degree of freedom / d.o.f. = 1.



Chi-square y?, t and F distributions
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If Z is a standard normal random variable, the distribution of U = Z? is called

the chi-square distribution with 1 degree of freedom.
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Gamma distribution, a=A=1/2, becomes y,?
distribution with degree of freedom / d.o.f. = 1.
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Chi-square y?, t and F distributions

DEFINITION

ItU,, U,, ..., U, are independent chi-square random variables with 1 degree of
freedom, the distribution of V. = U; 4+ U, 4 - - - 4 U, is called the chi-square
distribution with n degrees of freedom and is denoted by X,f. |

The sum of independent gamma random variables
with same A follows a gamma distribution. (Why?)

Gamma distribution, a=n/2, A=1/2, becomes y,2
distribution with d.o.f.=n.

1
— n/2)—1 _—v/2 - 0
f) ST (/D) e 7, v >

Its mgf is M(t)=(1-2t) "2
Its mean is n, variance is 2n

Reduced Chi-square y,2/n

U and V are independent and U ~ y,.2and V ~ y,2,
then U+V ~ v ,..2.

Probability density function
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Chi-square y?, t and F distributions

DEFINITION
If Z~ N(,1)and U ~ x? and Z and U are independent, then the distribution
of Z//U/n is called the ¢ distribution with n degrees of freedom. |

Tl +1)/2] £2\ "2
1O = T (Hﬁ)

Standard normal

- Note f (t)=f (—t). Bell-shaped.

As dof — oo, t — standard normal.

Density

- For n>20-30, tails become lighter and
the distributions are very close.
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Chi-square y?, t and F distributions
DEFINITION

Let U and V be independent chi-square random variables with m and n degrees
of freedom, respectively. The distribution of

U/m
W =
V/n
1s called the F' distribution with m and n degrees of freedom and is denoted by
Eipn. O
I 2 m/2 —(m+n)/2
Jw) = R (ﬂ) w7 (1 + Ew) , w >0
I'm/2)'(n/2) \n n

- For n>2, E(W) exists, =n/(n—2).
- Make a guess! What is the distribution of t2?

t: Gaussian / (y4/n)Y2



Chi-square y?, t and F distributions
DEFINITION

Let U and V be independent chi-square random variables with m and n degrees
of freedom, respectively. The distribution of

U/m
W =
V/n
1s called the F' distribution with m and n degrees of freedom and is denoted by
Eipn. O
I 2 m/2 —(m+n)/2
Jw) = R (ﬂ) w7 (1 + Ew) , w >0
I'm/2)'(n/2) \n n

- For n>2, E(W) exists, =n/(n—2).
- Make a guess! What is the distribution of t2?

t: Gaussian / (y2/n)Y2

t2: Gaussian?/(y2/n) or (x4/1) I(x?/n) ~ F,,.



Limit Theorems,

the summit of probability theory



Under consideration here is the limiting behavior of the sum of
independent random variables as the number of summands becomes
large.

Many commonly computed statistical quantities, such as averages, can
be represented as sums.

Tossing a coin many times successively: X takes on 0 or 1 according to
whether the ith trial results in a tail or a head, and the proportion of
heads in n trials is approaching Y2,

1
X, = ;;XI

THEOREM A Law of Large Numbers

Let X1, X5,...,X;... be a sequence of independent random variables with
E(X;) = pand Var(X;) = o®. Let X, =n~' >_"_, X;. Then, for any & > 0,

P(X,—ul>e)—>0 asn— oo



Jacob Bernoulli’s law of large numbers
THEOREM A Law of Large Numbers

Let X;,X5,...,X;... be a sequence of independent random variables with
E(X;) = pand Var(X;) = o%. Let X, =n~' > | X;. Then, for any ¢ > 0,

P(X,—pul>¢)—0 asn — 0o

FEARUE R, FEARYE L T I E.

Proof
We first find E(X,,) and Var(X,,):

_ 1 <&
EXy) =) EX)=pu
i=1
Since the X; are independent,
_ 1 <& 2
Var(X,) = — 3 Var(X;) = %
=1

The desired result now follows immediately from Chebyshev’s inequality, which
states that

Var(X,) o?

g2 ne?

P(X,—pul>¢) < — 0, as n — o0 L
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In the case of a fair coin toss, the X; are Bernoulli random variables with
p =1/2, E(X) = 1/2 and Var(X;) = 1/4. If tossed 10,000 times

V&I'(Y]0,0oo) =25 X 10_5
Standard deviation is 0.005.

John Kerrich, a South African mathematician, tested this belief empirically while
detained as a prisoner during World War Il. He tossed a coin 10,000 times and
observed 5067 heads.

Until the advent of computer simulations, his study, published in
1946, was widely cited as evidence of the asymptotic nature of
probability. It is still regarded as a classic study in empirical
mathematics.

by J. E Kerrich (Author)
AN EXPERIMENTAL Be the first to review this item
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About rigorousness...

If a sequence of random variables, {Z }, is such that P(|Z,—a| > €)
approaches 0 as n—wx, for any € > 0 and where a is some scalar, then
Z is said to converge in probability to a.

The version of the law of large numbers stated and proved earlier
asserts that X, converges to u in probability. This version is usually
called the weak law of large numbers.

Under the same assumptions, a strong law of large numbers, which
asserts that X, converges almost surely to y, can also be proved.

Strong convergence or almost sure convergence:

Z, is said to converge almost surely to a if for every € >0, [Z,—a| > ¢
only a finite number of times with probability 1; that is, beyond some
point in the sequence, the difference is always less than &, but where
that point is random.



Monte Carlo Integration.
We wish to calculate

1
1(f) = f F(x) dx
0

Where f(x) is crazy. Generate independent uniform random variables on [0, 1],
X1, Xy, ..., X, COMpute

n | —
= ; f(X:)
When n is large, by the law of large numbers, this should be close to E[f(X)],
1
E[f(X)] = / 1-f (x) dx = I(f)
0
2l By il

Compared to the standard numerical methods, not especially efficient in 1-d, but
becomes increasingly efficient as the dimensionality grows.

1 by,
I(f)zE/O e /% dx

If 1000 uniform points over [0, 1] are generated, one finds .3417 (exact value .3413).

Example:

1000
1

. 1 e
1= To0o (m) ;e




Repeated measurements.
Unbiased measurements of a quantity, X;, X,,..., X,,, are made. How close the average is

to the true value p depends not only n but on the variance of error, ¢2.
2

— o
Var(X) = —
n

can be estimated: First, ,
—_ n
n~' Y X7 - E(X?)

Second, it can be shown that if Z,, converges to a, g is a continuous function, then
8(Z,) — g(a)

X = [E(X)]
Finally,
| « 2 2 2 2
—Y " X?-X - E(X*) — [E()T = Var(X)
n

i=1

More generally, it follows from the law of large numbers that the sample moments
converge in probability to the moments of X,

Ty X] > EOC)
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In applications, we often want to find P(a<X<b) when we do not know the
cdf of X precisely; it is sometimes possible to do this by approximating F.
The approximation is often reached by some sort of limiting argument.

DEFINITION

Let X, X5, ... be a sequence of random variables with cumulative distribution
functions Fi, F>, ..., and let X be a random variable with distribution function
F'. We say that X, converges in distribution to X if

lim F,(x) = F(x)

at every point at which F is continuous. |

Mgfs are often useful for establishing the convergence of distribution
functions. The unique determination between mgf and distribution holds for
limits as well.

THEOREM A Continuity Theorem

Let F, be a sequence of cumulative distribution functions with the corresponding
moment-generating function M,,. Let F' be a cumulative distribution function with
the moment-generating function M. If M, (t) — M (t) for all # in an open interval
containing zero, then F, (x) — F(x) at all continuity points of F. [



Example.
Poisson can be approximated by Gaussian for large A. o4

Let 1, 4,,... be increasing with A, —oo, and let {X_} be a 5 ; ERE 5 lb)izj e
sequence of Poisson random variables with these parameters. om0

We know that E (X)) = Var (X,) = 4,. The approximated o rﬂ”ﬂ

ol

- . . | Y——
Gaussian must have the same mean and variance as Poisson PRETATOTE T
does. But, they are tending to infinity! Standardizing it,

3
0.12¢
:..,:0.08

Z _ Xn — E(Xn) . Xn - An &0'04>-
n — —_— 01 234567829 ]glll? 13141516 17 18 19 20
v/ Var (X,,) vV An @ A=to

Then E (Z,)=0, Var (Z,)=1. Its mgf should converge to standard normal.

My (1) = ™~V Y = a+bX,then Y has the mgf My (1) = e My (bt)

log My, (1) = —t\/Ay + Ap(e/V —1) &8 =305

12 .
lim log Mz, (1) = > lim Mz, (1) = "/

n—oo



Example.

A certain type of particle is emitted at a rate of 900/hr. What is the probability that
more than 950 particles will be emitted in a given hour if the counts form a
Poisson process?

Let X be Poisson with mean 900. We find P(X>950) by standardizing:
X —900 950 — 900)

P(X > 950) = P(

=
/900 /900
~1-o()
= .04779

Exact value=0.4712.

A standardized Poisson random variable converges in distribution to a standard
normal variable as A approaches infinity.

Practically, we wish to use this limiting result as a basis for an approximation
for large but finite values of A.

For a good approximation, A does not have to be all that large (>10 or so).



Central limit theorem (CLT)

Sum of random variables: X, X,,..., X, is a sequence of independent random
variables with mean p and variance o2.

Sn — i Xr'
i=1

The law of large numbers tells us S./n — x in probability, since

S, 1 o2
Var | — | = —2Var(Sn) = — =0
n

n n

CLT is concerned not with how S /n fluctuates around . Standardizing it,

Sn —ni >
Z}«I = — "‘_"j\’ = ; k‘

Z has mean 0 and variance 1. CLT states that the distribution of it converges to
the standard normal distribution.




Central limit theorem (CLT)

Let X, X5, ... be a sequence of independent random variables having mean 0
and variance o2 and the common distribution function F and moment-generating
function M defined in a neighborhood of zero. Let

Sn = zn: X;
i=1

Then

S Standard normal cdf
- n
hmP( <x):d>(x), — 0 <X <X

n—oo o'\/ﬁ _

EE 5.3.2 (POWMREE) 4 X1, Xo, - REYMEAHAOFFLEA O HBRIMNEFAF,
EHMEANIABKF, EERFBE M EESHEREZL 4 |

S,,,=i;x,;

lim P( Sn é:c):@(m), —00 < T < 00

n—oo o

3



Central limit theorem (CLT)

Proof. Let Z, = S./(oy/n). We will show its mgf — standard normal.
n _ B t \1"
=Y M, ()=MOP — M= (-]

Expand M(s) about 0,
M(s) = M(0) + sM’(0) + %s‘?M”(D) te

E(X) =0, M'(0) =0, M"(0) = o2
When n—oo, t/{oy/n) —0, Why? (0) 0)=0

- Standard normal mgf.



Central limit theorems
There are many central limit theorems of various degrees of abstraction and
generality. The above is one of the simplest version of CLT.

Relaxing various assumptions:

1. It would only be necessary that 15t and 2" moments exist. (The existence of
mgf is a strong assumption, one can use characteristic functions).

2. Further generalizations weaken the assumption that X; have the same
distribution, and apply to linear combinations of independent variables.

3. CLTs have also been proved that weaken the independence assumption and
allow X; to be dependent to some extent.



Central limit theorems
There are many central limit theorems of various degrees of abstraction and
generality. The above is one of the simplest version of CLT.

Relaxing various assumptions:

1. It would only be necessary that 15t and 2" moments exist. (The existence of
mgf is a strong assumption, one can use characteristic functions).

2. Further generalizations weaken the assumption that X; have the same
distribution, and apply to linear combinations of independent variables.

3. CLTs have also been proved that weaken the independence assumption and
allow X; to be dependent to some extent.

For practical purposes, itself is not of primary interest. Statisticians are more
interested in its use as an approximation with finite values of n.

How fast the approximation becomes good depends on the distribution.

- If it is fairly symmetric and has tails that die off rapidly, the approximation
becomes good for relatively small values of n.

- If the distribution is very skewed or if the tails die down very slowly, a larger
value of n is needed for a good approximation.



Count

Example: approximation
Because uniform distribution on [0, 1] has mean 1/2 and variance 1/12 , the
sum of 12 uniform random variables, minus 6, has mean 0 and variance 1.

The distribution of this sum is quite close to normal; in fact, before better
algorithms were developed, it was commonly used in computers for generating
normal random variables from uniform ones.

250 F A histogram of 1000 values,
each of which is the sum of 12
200 - i uniform [-1/2,1/2] pseudorandom
[ variables, with an approximating
50l ZZ \ standard normal density.
The fit is surprisingly good, despite
100 - 7[ that 12 is not that large a value of n.
50 -
Ly p— 0 2 4 6



Cumulative probability

Example: approximation

The sum of n independent exponential random variables with 4 = 1 follows a
gamma distribution with 4 =1 and a = n. The exponential density is quite
skewed; therefore, a good approximation of a standardized gamma by a
standardized normal would not be expected for small n.

Standard normal
1.0

The cdf’s of the standard
normal and standardized
gamma distributions for
increasing values of n.

a=5, 10, 30 /
6 5

The approximation
Improves as n increases.




Example: measurement error.

Xy, X,,..., X, are repeated, independent measurements of a quantity, p, and that
E(X;)=n and Var(X;)=¢?. The average, X, is an estimate of . Law of large
numbers makes us hope that the average is close to u for large n.

Chebyshev's inequality allows for bounding the probability of an error of a
given size, CLT gives a much sharper approximation to the actual error.

Suppose we wish to find P(|X — u| < ¢) for some constant c. To use CLT,
we standardize, using E(X) = p and Var(X) = o2%/n :

P(|X—pu|l<c)=P(—c <X —pn<c)

=7 (G/_} < f/:/’f < o/i/ﬁ)
o) o

g g




Example: measurement error.

Xy, X,,..., X, are repeated, independent measurements of a quantity, p, and that
E(X;)=n and Var(X;)=¢?. The average, X, is an estimate of . Law of large
numbers makes us hope that the average is close to u for large n.

Chebyshev's inequality allows for bounding the probability of an error of a
given size, CLT gives a much sharper approximation to the actual error.

Suppose we wish to find P(|X — u| < ¢) for some constant c. To use CLT,
we standardize, using E(X) = p and Var(X) = o2%/n :

P(|X—pu|l<c)=P(—c <X —pn<c)

=7 (G/_} < f/:/’f < o/i/ﬁ)
o) o

g g

Suppose that 16 measurements are taken with ¢=1. The probability that the
average deviates from p by less than .5 is approximately

P(IX —pul<.5)=o(5x4) —d(—.5x4)=.954
The reasoning can be turned around: given c and v, find n such that
P(X—ul<c)zvy



Example: Normal approximation to Binomial.
A Binomial random variable is the sum of independent Bernoulli random

variables — its distribution can be approximated by Gaussian.

The approximation is best when p=?



Example: Normal approximation to Binomial.
A Binomial random variable is the sum of independent Bernoulli random
variables — its distribution can be approximated by Gaussian.

The approximation is best when p=1/2, due to symmetry.
A frequently used rule of thumb: approximation is reasonable when
np>5andn(-p)>5.

Question: If a coin is tossed 100 times and lands heads up 60 times. Should we
be surprised and doubt that the coin is fair?



Example: Normal approximation to Binomial.
A Binomial random variable is the sum of independent Bernoulli random
variables — its distribution can be approximated by Gaussian.

The approximation is best when p=1/2, due to symmetry.
A frequently used rule of thumb: approximation is reasonable when
np>5andn(-p)>5.

Question: If a coin is tossed 100 times and lands heads up 60 times. Should we
be surprised and doubt that the coin is fair?

Method 1: If the coin is fair, # of heads, X, is a binomial random variable with n = 100
trials and p = 1/2, so that E(X) = np = 50 and Var(X) = np(1—p) = 25. We could calculate
P(X = 60), which would be a small number. But because there are so many possible
outcomes, P(X =50) is also a small number, so this calculation would not really answer
the question.



Example: Normal approximation to Binomial.
A Binomial random variable is the sum of independent Bernoulli random
variables — its distribution can be approximated by Gaussian.

The approximation is best when p=1/2, due to symmetry.
A frequently used rule of thumb: approximation is reasonable when
np>5andn(-p)>5.

Question: If a coin is tossed 100 times and lands heads up 60 times. Should we
be surprised and doubt that the coin is fair?

Method 1: If the coin is fair, # of heads, X, is a binomial random variable with n = 100
trials and p = 1/2, so that E(X) = np = 50 and Var(X) = np(1—p) = 25. We could calculate
P(X = 60), which would be a small number. But because there are so many possible
outcomes, P(X =50) is also a small number, so this calculation would not really answer
the question.

Method 2: Instead, we calculate the probability
of a deviation as extreme as or more extreme
than 60 if the coin is fair; that is, we calculate
P(X > 60). To approximate this probability from
the normal distribution, we standardize = .0228

X —-50 60-50
P(X260)=P( )

>
5 7 5
~1—®12)



Example: Particle size distribution.

The size distribution of grains of particulate matter is often quite skewed, with
a slowly decreasing right tail. The lognormal distribution can be fit to it
(meaning log X has a normal distribution). CLT gives a theoretical rationale for
the use of the lognormal distribution in some situations.

Suppose that a particle of initial size y, is subjected to repeated impacts, that on
each impact a proportion, X;, of the particle remains, and that the X; are
modeled as independent random variables having the same distribution. After
the first impact, the size of the particle is Y, = XY, after the second impact, the
size is'Y, = X,X,Y,; and after the nth impact, the size is

Probability densitv functien

0=0.25, 1120

Yn — Xan—l " 'X2X1y0

1.5

1.0

PDF

logY, =logy, + Zlog X;

i=1
0.5 0=0.5, =0

+o=1; ].1=0

CLT appliestolog Y. 0




Example: theory of finance.

A similar construction is relevant to the theory of finance. An initial investment
of value v, is made and returns occur in discrete time, i.e. daily.

If the return on the first day is Ry, then the value becomes V, = R,v,. After
day two the value is V, = R,R,v,, and after day n the value is

Vn — Ran—'l T RIUO

log V, =log vy + Z log R;

i:l Probability densitv functien

0=0.25, n=0
CLT: If the returns are independent random L5
variables with the same distribution, then the
distribution of log V,, is approximately normally EI-O
distributed.

0.5 0=0.5, =0

+o=1; ].1=0
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“I have had my results for a long time: but | do not yet know how | am to arrive at them.”

CLT is among the most remarkable theorems ever

* A little bit of summing/averaging will produce a Gaussian distribution of results
no matter the shape of distribution from which the sample is drawn.

* Errors on averaged samples will always look “Gaussian”.

CLT shapes our entire view of experimentation.
=> error language of sigmas, describing tails of Gaussian distributions



An indication of the compelling power of CLT. The panels show successive
amounts of “integration”: a) a single value has been drawn; b) 200 values
have been taken from an average of two values; ¢) 200 values from an
average of four; d) 200 values from an average of 16.
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Tasty appetizers:

1. a fishing trip



Correlation - why do we try it?

When we make a set of measurements, it is instinct to try to correlate
the observations with other results. We might wish

(1) to check that other observers' measurements are reasonable,
(2) to check that our measurements are reasonable,

(3) to test a hypothesis, perhaps one for which the observations
were explicitly made,

(4) in the absence of any hypothesis, any knowledge, or anything
better to do with the data, to find if they are correlated with other
results in the hope of discovering some New and Universal Truth.

We are gonna do it — and we are going to fall into some deadly
traps. We already have.



The fishing trip

Suppose that we have plotted something against something, on a Fishing
Expedition.



The fishing trip

Suppose that we have plotted something against something, on a Fishing

Expedition.

-Expedition/z “iEfii. %7 . AlRERH HBIR T BT ERT
Ak ) LSRR R, JEEAE, RTINS,
g DR Y240 AR T H N BESE v B KB E4T8). The
senator says the investigation is a fishing expedition by his
enemies to see if they can find anything he has ever done that
might hurt his political career.



The fishing trip

Suppose that we have plotted something against something, on a Fishing
Expedition.

1. Does the eye see much correlation? If not, formal testing for correlation is
probably a waste of time. The eyeball is an excellent statistical device.

2. Could the apparent correlation be due to selection effects? Consider for

instance the beautiful correlation obtained by Sandage (1972) 3CR radio
luminosities vs distance. ————— I : —
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Radio luminosities of 3CR radio sources versus distance modulus



Still on the fishing trip ...

The plot proves luminosity evolution for radio sources? Are the more
distant objects (at earlier epochs) clearly not the more powerful?

No! The sample is flux- (or apparent intensity) limited; the solid line shows
the flux-density limit of the 3CR catalog. The lower right-hand region can
never be populated; such objects are too faint to show above the limit of
the 3CR catalog.

But the upper left? Provided that the luminosity function (the true space
density in objects per Mpc3) slopes downward with increasing luminosity,
the objects are bound to crowd towards the line.

This is the only conclusion to be drawn from the diagram!



Still on the fishing trip ...

Astronomers produce many plots of this type, and say things like

“The lower right-hand region of the diagram is unpopulated because of
the detection limit, but there is no reason why objects in the upper left-
hand region should have escaped detection....”

Nonsense — probabilities rule! There are only low-luminosity sources to
be seen at low redshifts because there’s not enough volume to pick up
the high-luminosity counterparts.

This applies to any proposed correlation for variables with steep
probability functions dependent upon one of the variables plotted.

- «Malmquist bias»



Still fishing ...

3. If we are happy about (2), we can try formal calculation of the
significance of the correlation. But, if there is a correlation, does the
regression line (the fit) make sense?

4. If we are still happy - is the formal result realistic?

Rule of Thumb — if 10% of the points are grouped by themselves so that
covering them with the thumb destroys the correlation to the eye, then
we should doubt it. Selection effects, data errors, or some other form of
statistical conspiracy?

Suspect
- . . S S - correlations: in

. each case formal
- calculation will
ot indicate that a
' correlation exists
to a high degree
of significance!




Fishing, fishing ...

5. If still confident, remember that
a correlation does not prove a causal connection. Examples:

- The price of fish in Walmart Market and the size of feet in China.
- Number of violent crimes in cities versus number of churches.

- The quality of student handwriting versus their height.

- Stock market prices and the sunspot cycle.

- Cigarette smoking versus lung cancer.

- Health versus alcohol intake...

1. Lurking third variables
2. Similar time scales
3. Causal connection...

There are ways of searching for intrinsic correlation between variables
when they are known to depend mutually upon a third variable.

But... “known”???



Wilkinson & Pickett: The Spirit Level

“Correlations” show that higher income inequality correlates with higher crime rate,
higher infant mortality, lower life expectancy, worse gender inequality, lower
education standards, higher obesity (AEf¥) rates......

Figure 5a: Wilkinson and Pickett’s plot of inequality against Figure 5b: Wilkinson and Pickett’s plot of inequality against

homicide rates3??
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Critique by Peter Saunders: Beware of False Prophets (JG%1) shows that it is (statistical) garbage.
The “correlations™ are false or of no significance. The data are selective.

“Conclusion: There is no evidence of a significant association between the level of
income inequality in a country and its homicide rate.”



The end of the fishing trip — big fish are out there

Don’t get too discouraged by all the foregoing. Consider the example
figure, a ragged correlation if ever there was one, although there are no
nasty groupings of the type rejected by the Rule of Thumb.

T T T An early Hubble
I (a) . ] diagram (Hubble
- ) . 1936); recession
I l velocities of a
sample of 24
galaxies versus
distance measure.
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Tasty appetizers:

2. power law distributions



Integral form: N(>L) = K L"*!, or
Differential form: dN = (y+1) K L” dL

Scale-free or scale-independent distribution:
If f (X)=x?, then f (ax)=a” - x” = const - x” = const - /' (X)

- Distribution of fluctuations in the economic market

- Growth rates of firms

- Distribution of salaries

- Size distribution of avalanches (Z i), earthquakes and forest fires.

Criticality:

- The onset of avalanches

- Similarly, adding sand at the apex of a sand-pile to a point where it suddenly
becomes unstable

- At criticality, no prescription as to whether a small region will slide and stop, or
whether the entire side of the pile will be collectively triggered to break away
and collapse...



Criticality:

earthquakes, stock-market fluctuations, forest fires, sub-networks on the internet
(scale-free system).

The main feature in each case is a negative exponent. There are many more
small things than large, many little sandslips go nowhere while very rare are the
catastrophic (2K E14:) collapses of the pile.

not formally a probability distribution because [ = oo, infinite mean & variance!
normally there are physical bounds so that it works
Experience gained from ordinary pdfs and Gaussian now becomes misleading. ..

In astronomy, slope is invariably negative, steep power laws —4 <y <0 pop up in
astronomy frequently.

e.g. Salpeter Mass Function, source counts (number-magnitude counts from a deep
image), primordial fluctuation spectrum, luminosity functions...

In its pure form it does not obey the formal definition of a pdf. But there are those
physical limits that generally set upper and lower bounds.
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Many pitfalls of the power law! It has no saving grace via approximation to
familiar well-bounded distributions.

a) Is this power law and integral or differential distribution? —a common
way of getting the index wrong by 1. (Rising or declining?)

b) Is the binning on a uniform or a log scale? If its differential form is binned
via a uniform Alog L scale instead of via AL, slope reduced by 1.

c) There is no characteristic scale or spread for such a distribution, although
in practice the physical limits always provide high and low end-stops
(Don’t rely on them to make power laws tractable in terms of normal
means and standard deviations).

Therefore, Wall & Jenkins comment:

Power-law distribution — the distribution from hell, because it does not
conform, and our tacit (:C>& A 'E)/ assumed reliance on Central Limit
Theorem is lost. Many pitfalls to navigate regarding indices.



