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- Gamma distribution, α=λ=1/2, becomes χ1
2 

distribution with degree of freedom / d.o.f. = 1.

- If X~N(μ, σ2), then (X−μ)/σ~N(0, 1), and 

[(X−μ)/σ]2 ~χ1
2.

Chi-square χ2, t and F distributions

α=0.5, 1, 

λ=1

α=5, 10, 

λ=1

Our old friend!



- Gamma distribution, α=n/2, λ=1/2, becomes χn
2 

distribution with d.o.f.=n.

- Its mgf is M(t)=(1−2t)−n/2

- Its mean is n, variance is 2n

- Reduced Chi-square χn
2 /n

- U and V are independent and U ~ χm
2 and V ~ χn

2, 

then U+V ~ χm+n
2.

Chi-square χ2, t and F distributions

The sum of independent gamma random variables 

with same λ follows a gamma distribution. (Why?)



- Note f (t)=f (−t). Bell-shaped.

- As dof → ∞, t → standard normal.

- For n>20-30, tails become lighter and 

the distributions are very close.

Chi-square χ2, t and F distributions

n=5, 10, 30

Standard normal

我们来讲点历史……
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- 统计学带头大哥Karl Pearson (1857-1936)打击Bayes学派

- 推断统计学创始人Ronald Fisher (1890-1962，好斗)竟然排挤
发展验证其理论的Jerzy Neyman, Egon Pearson（Karl之子）

- 美国统计首领Jerzy Neyman与Fisher争斗，也打击Bayes学派

- Bayes学派头号鼓吹者Leonard Savage也有强烈攻击性

- Gosset“居然”温和谦逊，关联Pearson和Fisher的工作，推
动了推断统计学的诞生

- Guinness啤酒公司职员，公司不准发表成果。Pearson赏识他
1904年的论文，急于要在其主编的《生物统计》发表。两
人商量出student笔名，从此30多年，神秘的student陆续发表

优秀论文，但很少人（只有活跃于英国的部分统计学者）
知道他是谁。

- 1908年，Gosset以笔名student发表《平均数的规律误差》，
为统计性推测的运用而发现了t分布。

硝烟不断的20世纪统计学

William Gosset 

(1876-1937), 

"Student"

Ronald Fisher 

(1890-1962)

Karl Pearson 

(1857-1936)

Jerzy Neyman 

(1894-1981)

Leonard Savage 

(1917-1971)



- For n>2, E(W) exists, =n/(n−2).

- Make a guess! What is the distribution of t2?

t: Gaussian / (χ2/n)1/2

Chi-square χ2, t and F distributions



- For n>2, E(W) exists, =n/(n−2).

- Make a guess! What is the distribution of t2?

t: Gaussian / (χ2/n)1/2

t2: Gaussian2/(χ2/n) or (χ2/1) /(χ2/n) ~ F1,n.

Chi-square χ2, t and F distributions



Limit Theorems, 
the summit of probability theory



Under consideration here is the limiting behavior of the sum of 

independent random variables as the number of summands becomes 

large. 

Many commonly computed statistical quantities, such as averages, can 

be represented as sums. 

Tossing a coin many times successively: Xi takes on 0 or 1 according to 

whether the ith trial results in a tail or a head, and the proportion of 

heads in n trials is approaching ½，



样本够大，样本均值趋近于期望值。

Jacob Bernoulli’s law of large numbers



In the case of a fair coin toss, the Xi are Bernoulli random variables with 

p = 1/2, E(Xi) = 1/2 and Var(Xi) = 1/4. If tossed 10,000 times 

Standard deviation is 0.005.

John Kerrich, a South African mathematician, tested this belief empirically while 

detained as a prisoner during World War II. He tossed a coin 10,000 times and 

observed 5067 heads. 

John E. Kerrich (1903–1985) is 

noted for a series of experiments 

in probability he conducted while 

interned in Nazi-occupied Denmark 

in the 1940s.

Until the advent of computer simulations, his study, published in 

1946, was widely cited as evidence of the asymptotic nature of 

probability. It is still regarded as a classic study in empirical 

mathematics.



If a sequence of random variables, {Zn}, is such that P(|Zn−α| > ε) 

approaches 0 as n→∞, for any ε > 0 and where α is some scalar, then 

Zn is said to converge in probability to α. 

The version of the law of large numbers stated and proved earlier 

asserts that Xn converges to μ in probability. This version is usually 

called the weak law of large numbers. 

Under the same assumptions, a strong law of large numbers, which 

asserts that Xn converges almost surely to μ, can also be proved.

Strong convergence or almost sure convergence:

Zn is said to converge almost surely to α if for every ε > 0, |Zn−α| > ε 

only a finite number of times with probability 1; that is, beyond some 

point in the sequence, the difference is always less than ε, but where 

that point is random. 

About rigorousness…



Monte Carlo Integration.
We wish to calculate

Where f(x) is crazy. Generate independent uniform random variables on [0, 1], 

X1, X2,…, Xn, compute

When n is large, by the law of large numbers, this should be close to E[f(X)], 

Compared to the standard numerical methods, not especially efficient in 1-d, but 

becomes increasingly efficient as the dimensionality grows.

Example:

If 1000 uniform points over [0, 1] are generated, one finds .3417 (exact value .3413).

1∙

均匀分布



Repeated measurements.
Unbiased measurements of a quantity, X1, X2,…, Xn, are made. How close the average is 

to the true value μ depends not only n but on the variance of error, σ2.

can be estimated: First,  

→

Second, it can be shown that if Zn, converges to α, g is a continuous function, then

Finally, 

More generally, it follows from the law of large numbers that the sample moments 

converge in probability to the moments of X,

→



生物学/医学实例：

肌肉或神经细胞膜有很多通道，这些通道打开时允许离子通过，关闭时不允许。

单个通道打开与否似乎是随机的。在平衡情形下，经常可假设通道打开与关闭相
互独立，且仅有少数通道在任一时刻是打开的。

设通道打开的概率是p（很小），总共有m个通道（不知道），欲通过所有通道的
总流量来测定单个通道可通过流量c。

在某时刻有N个通道打开，它是成功概率为p的m次试验所得二项随机变量。总流
量为S=cN，可以直接测量。于是

利用独立的测量值, S1, S2,…, Sn, 可估算出其平均值和方差, 从而不需知道多少个通
道的情况下，可估计出单个通道的流量c.



In applications, we often want to find P(a<X<b) when we do not know the 

cdf of X precisely; it is sometimes possible to do this by approximating FX. 

The approximation is often reached by some sort of limiting argument. 

Mgfs are often useful for establishing the convergence of distribution 

functions. The unique determination between mgf and distribution holds for 

limits as well. 



Example.
Poisson can be approximated by Gaussian for large λ. 

Let λ1, λ2,... be increasing with λn →∞, and let {Xn} be a 

sequence of Poisson random variables with these parameters. 

We know that E (Xn) = Var (Xn) = λn. The approximated 

Gaussian must have the same mean and variance as Poisson 

does. But, they are tending to infinity! Standardizing it,

Then E (Zn)=0, Var (Zn)=1. Its mgf should converge to standard normal.



Example.
A certain type of particle is emitted at a rate of 900/hr. What is the probability that 

more than 950 particles will be emitted in a given hour if the counts form a

Poisson process? 

Let X be Poisson with mean 900. We find P(X>950) by standardizing:

Exact value=0.4712.

A standardized Poisson random variable converges in distribution to a standard 

normal variable as λ approaches infinity. 

Practically, we wish to use this limiting result as a basis for an approximation 

for large but finite values of λ. 

For a  good approximation, λ does not have to be all that large (>10 or so).



Central limit theorem (CLT)

Sum of random variables: X1, X2,…, Xn is a sequence of independent random 

variables with mean μ and variance σ2.

The law of large numbers tells us Sn/n → μ in probability, since

CLT is concerned not with how Sn/n fluctuates around μ. Standardizing it, 

Zn has mean 0 and variance 1. CLT states that the distribution of it converges to 

the standard normal distribution.

实为(X−μ)/σ形式



Central limit theorem (CLT)

Standard normal cdf



Central limit theorem (CLT)

Proof. Let                                 We will show its mgf → standard normal.

Expand M(s) about 0, 

When n→∞,                      0,

- Standard normal mgf.

→ →

Why?



Central limit theorems
There are many central limit theorems of various degrees of abstraction and 

generality. The above is one of the simplest version of CLT.

Relaxing various assumptions:

1. It would only be necessary that 1st and 2nd moments exist. (The existence of 

mgf is a strong assumption, one can use characteristic functions). 

2. Further generalizations weaken the assumption that Xi have the same 

distribution, and apply to linear combinations of independent variables.

3. CLTs have also been proved that weaken the independence assumption and 

allow Xi to be dependent to some extent.



Central limit theorems
There are many central limit theorems of various degrees of abstraction and 

generality. The above is one of the simplest version of CLT.

Relaxing various assumptions:

1. It would only be necessary that 1st and 2nd moments exist. (The existence of 

mgf is a strong assumption, one can use characteristic functions). 

2. Further generalizations weaken the assumption that Xi have the same 

distribution, and apply to linear combinations of independent variables.

3. CLTs have also been proved that weaken the independence assumption and 

allow Xi to be dependent to some extent.

For practical purposes, itself is not of primary interest. Statisticians are more 

interested in its use as an approximation with finite values of n. 

How fast the approximation becomes good depends on the distribution. 

- If it is fairly symmetric and has tails that die off rapidly, the approximation 

becomes good for relatively small values of n.

- If the distribution is very skewed or if the tails die down very slowly, a larger 

value of n is needed for a good approximation. 



Example: approximation
Because uniform distribution on [0, 1] has mean 1/2 and variance 1/12 , the 

sum of 12 uniform random variables, minus 6, has mean 0 and variance 1. 

The distribution of this sum is quite close to normal; in fact, before better 

algorithms were developed, it was commonly used in computers for generating 

normal random variables from uniform ones. 

A histogram of 1000 values, 

each of which is the sum of 12 

uniform [-1/2,1/2] pseudorandom 

variables, with an approximating 

standard normal density. 

The fit is surprisingly good, despite 

that 12 is not that large a value of n. 



Example: approximation
The sum of n independent exponential random variables with λ = 1 follows a 

gamma distribution with λ = 1 and α = n. The exponential density is quite 

skewed; therefore, a good approximation of a standardized gamma by a 

standardized normal would not be expected for small n. 

The cdf’s of the standard 

normal and standardized 

gamma distributions for 

increasing values of n. 

The approximation 

improves as n increases. 

α=5, 10, 30

Standard normal



Example: measurement error.
X1, X2,…, Xn are repeated, independent measurements of a quantity, μ, and that 

E(Xi)=μ and Var(Xi)=σ2. The average,       is an estimate of μ. Law of large 

numbers makes us hope that the average is close to μ for large n. 

Chebyshev’s inequality allows for bounding the probability of an error of a 

given size, CLT gives a much sharper approximation to the actual error.

Suppose we wish to find                                 for some constant c. To use CLT, 

we standardize, using                        and                           :



Example: measurement error.
X1, X2,…, Xn are repeated, independent measurements of a quantity, μ, and that 

E(Xi)=μ and Var(Xi)=σ2. The average,       is an estimate of μ. Law of large 

numbers makes us hope that the average is close to μ for large n. 

Chebyshev’s inequality allows for bounding the probability of an error of a 

given size, CLT gives a much sharper approximation to the actual error.

Suppose we wish to find                                 for some constant c. To use CLT, 

we standardize, using                        and                           :

Suppose that 16 measurements are taken with σ=1. The probability that the 

average deviates from μ by less than .5 is approximately

The reasoning can be turned around: given c and γ, find n such that
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Example: Normal approximation to Binomial.
A Binomial random variable is the sum of independent Bernoulli random 

variables → its distribution can be approximated by Gaussian.

The approximation is best when p=1/2, due to symmetry.

A frequently used rule of thumb: approximation is reasonable when 

n p > 5 and n (1−p) > 5.

Question: If a coin is tossed 100 times and lands heads up 60 times. Should we 

be surprised and doubt that the coin is fair?

Method 1: If the coin is fair, # of heads, X, is a binomial random variable with n = 100 

trials and p = 1/2, so that E(X) = np = 50 and Var(X) = np(1−p) = 25. We could calculate 

P(X = 60), which would be a small number. But because there are so many possible 

outcomes, P(X = 50) is also a small number, so this calculation would not really answer 

the question. 

Method 2: Instead, we calculate the probability 

of a deviation as extreme as or more extreme 

than 60 if the coin is fair; that is, we calculate 

P(X ≥ 60). To approximate this probability from 

the normal distribution, we standardize 



Example: Particle size distribution.

The size distribution of grains of particulate matter is often quite skewed, with 

a slowly decreasing right tail. The lognormal distribution can be fit to it 

(meaning log X has a normal distribution). CLT gives a theoretical rationale for 

the use of the lognormal distribution in some situations.

Suppose that a particle of initial size y0 is subjected to repeated impacts, that on

each impact a proportion, Xi, of the particle remains, and that the Xi are 

modeled as independent random variables having the same distribution. After 

the first impact, the size of the particle is Y1 = X1y0; after the second impact, the 

size is Y2 = X2X1y0; and after the nth impact, the size is

CLT applies to log Yn. 



Example: theory of finance.

A similar construction is relevant to the theory of finance. An initial investment 

of value v0 is made and returns occur in discrete time, i.e. daily. 

If the return on the first day is R1, then the value becomes V1 = R1v0. After

day two the value is V2 = R2R1v0, and after day n the value is 

CLT: If the returns are independent random 

variables with the same distribution, then the

distribution of log Vn is approximately normally 

distributed. 



CLT is among the most remarkable theorems ever

• A little bit of summing/averaging will produce a Gaussian distribution of results 

no matter the shape of distribution from which the sample is drawn.

• Errors on averaged samples will always look “Gaussian”.

CLT shapes our entire view of experimentation.

=> error language of sigmas, describing tails of Gaussian distributions



An indication of the compelling power of CLT. The panels show successive 

amounts of “integration”: a) a single value has been drawn; b) 200 values 

have been taken from an average of two values; c) 200 values from an 

average of four; d) 200 values from an average of 16. 



Tasty appetizers: 

1. a fishing trip



Correlation - why do we try it?

When we make a set of measurements, it is instinct to try to correlate

the observations with other results. We might wish

(1) to check that other observers' measurements are reasonable,

(2) to check that our measurements are reasonable,

(3) to test a hypothesis, perhaps one for which the observations

were explicitly made,

(4) in the absence of any hypothesis, any knowledge, or anything

better to do with the data, to find if they are correlated with other

results in the hope of discovering some New and Universal Truth.

We are gonna do it – and we are going to fall into some deadly

traps. We already have.



The fishing trip

Suppose that we have plotted something against something, on a Fishing 

Expedition.



The fishing trip

Suppose that we have plotted something against something, on a Fishing 

Expedition.
-Expedition是“远航、考察”。可能来自出海探寻鱼群行踪的
远征。鱼儿潜游在茫茫大海里，捉摸不定，找到他们得靠机遇。
引伸：以搜罗挖掘不利于某人的证据为目的的调查行动。The 
senator says the investigation is a fishing expedition by his 
enemies to see if they can find anything he has ever done that 
might hurt his political career.



The fishing trip

Suppose that we have plotted something against something, on a Fishing 

Expedition.

1. Does the eye see much correlation? If not, formal testing for correlation is 

probably a waste of time. The eyeball is an excellent statistical device.

2. Could the apparent correlation be due to selection effects? Consider for 

instance the beautiful correlation obtained by Sandage (1972): 3CR radio 

luminosities vs distance.



Still on the fishing trip …

The plot proves luminosity evolution for radio sources? Are the more 

distant objects (at earlier epochs) clearly not the more powerful?

No! The sample is flux- (or apparent intensity) limited; the solid line shows 

the flux-density limit of the 3CR catalog. The lower right-hand region can 

never be populated; such objects are too faint to show above the limit of 

the 3CR catalog.

But the upper left? Provided that the luminosity function (the true space 

density in objects per Mpc3) slopes downward with increasing luminosity, 

the objects are bound to crowd towards the line.

This is the only conclusion to be drawn from the diagram!



Still on the fishing trip …

Astronomers produce many plots of this type, and say things like 

“The lower right-hand region of the diagram is unpopulated because of 

the detection limit, but there is no reason why objects in the upper left-

hand region should have escaped detection....”

Nonsense – probabilities rule! There are only low-luminosity sources to 

be seen at low redshifts because there’s not enough volume to pick up 

the high-luminosity counterparts.

This applies to any proposed correlation for variables with steep

probability functions dependent upon one of the variables plotted.

-- “Malmquist bias”



Still fishing …

3. If we are happy about (2), we can try formal calculation of the 

significance of the correlation. But, if there is a correlation, does the 

regression line (the fit) make sense?

4. If we are still happy - is the formal result realistic? 

Rule of Thumb – if 10% of the points are grouped by themselves so that 

covering them with the thumb destroys the correlation to the eye, then 

we should doubt it. Selection effects, data errors, or some other form of 

statistical conspiracy?

Suspect 

correlations: in 

each case formal 

calculation will 

indicate that a

correlation exists 

to a high degree 

of significance!



Fishing, fishing …

5. If still confident, remember that

a correlation does not prove a causal connection. Examples:

- The price of fish in Walmart Market and the size of feet in China.

- Number of violent crimes in cities versus number of churches.

- The quality of student handwriting versus their height.

- Stock market prices and the sunspot cycle.

- Cigarette smoking versus lung cancer.

- Health versus alcohol intake…

1. Lurking third variables

2. Similar time scales

3. Causal connection…

There are ways of searching for intrinsic correlation between variables 

when they are known to depend mutually upon a third variable. 

But… “known”???



“Correlations” show that higher income inequality correlates with higher crime rate, 

higher infant mortality, lower life expectancy, worse gender inequality, lower 

education standards, higher obesity (肥胖) rates……

Wilkinson & Pickett: The Spirit Level

Critique by Peter Saunders: Beware of False Prophets（先知）shows that it is (statistical) garbage. 

The “correlations” are false or of no significance. The data are selective. 

“Conclusion: There is no evidence of a significant association between the level of

income inequality in a country and its homicide rate.”

(谋杀) 



The end of the fishing trip – big fish are out there

Don’t get too discouraged by all the foregoing. Consider the example 

figure, a ragged correlation if ever there was one, although there are no 

nasty groupings of the type rejected by the Rule of Thumb.

An early Hubble 

diagram (Hubble 

1936); recession 

velocities of a 

sample of 24 

galaxies versus 

distance measure.

Formal correlation 

analysis later…



Tasty appetizers: 

2. power law distributions



Integral form: N(>L) = K Lγ+1, or

Differential form: dN = (γ+1) K Lγ dL

Scale-free or scale-independent distribution:

If f (x)=xγ, then f (ax)= aγ ∙ xγ = const ∙ xγ = const ∙ f (x)

- Distribution of fluctuations in the economic market

- Growth rates of firms

- Distribution of salaries

- Size distribution of avalanches (雪崩), earthquakes and forest fires.

Criticality: 

- The onset of avalanches

- Similarly, adding sand at the apex of a sand-pile to a point where it suddenly 

becomes unstable

- At criticality, no prescription as to whether a small region will slide and stop, or 

whether the entire side of the pile will be collectively triggered to break away 

and collapse…



Criticality: 

- earthquakes, stock-market fluctuations, forest fires, sub-networks on the internet 

(scale-free system). 

- The main feature in each case is a negative exponent. There are many more 

small things than large, many little sandslips go nowhere while very rare are the 

catastrophic（灾难性）collapses of the pile.

- not formally a probability distribution because ∫ = ∞, infinite mean & variance!

- normally there are physical bounds so that it works

- Experience gained from ordinary pdfs and Gaussian now becomes misleading…

In astronomy, slope is invariably negative, steep power laws −4 < γ < 0 pop up in 

astronomy frequently. 

e.g. Salpeter Mass Function, source counts (number-magnitude counts from a deep 

image), primordial fluctuation spectrum, luminosity functions…

In its pure form it does not obey the formal definition of a pdf. But there are those 

physical limits that generally set upper and lower bounds.



Thilker (2001): HIIphot software

HII region luminosity function (Liu et al. 2013)



Many pitfalls of the power law! It has no saving grace via approximation to 

familiar well-bounded distributions.

a) Is this power law and integral or differential distribution? – a common 

way of getting the index wrong by 1. (Rising or declining?)

b) Is the binning on a uniform or a log scale? If its differential form is binned 

via a uniform Δlog L scale instead of via ΔL, slope reduced by 1.

c) There is no characteristic scale or spread for such a distribution, although 

in practice the physical limits always provide high and low end-stops 

(Don’t rely on them to make power laws tractable in terms of normal 

means and standard deviations). 

Therefore, Wall & Jenkins comment:

Power-law distribution – the distribution from hell, because it does not 

conform, and our tacit (心照不宣)/ assumed reliance on Central Limit 

Theorem is lost. Many pitfalls to navigate regarding indices.


