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Survey sampling

Opening the gate to mathematical statistics



Sample surveys

are used to obtain information about a large population by examining only
a small fraction of that population.

» Governments survey human populations, conduct health surveys and census
surveys.

* In agriculture, to estimate such quantities as the total acreage of wheat in a state
by surveying a sample of farms.

» Sampling studies of rail and highway traffic. In one such study, records of
shipments of household goods by motor carriers were sampled to evaluate the
accuracy of preshipment estimates of charges, claims for damages, and other
variables.

* In the practice of quality control, the output of a manufacturing process may be
sampled in order to examine the items for defects.

« During audits (8 11") of the financial records of large companies or institutions
(e.g. USTC!), sampling techniques may be used when examination of the entire
set of records is impractical.



Sample surveys

Probabilistic in nature -- each member has a specified probability of being included
in the sample, and the actual composition of the sample is random.

Sampling schemes in contrast: particular members are included in the sample
because they are thought to be typical in some way — may be effective in some
situations, but there is no way mathematically to guarantee its unbiasedness or to
estimate the magnitude of any error committed.
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complete enumeration — Why?
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Sample surveys

Probabilistic in nature -- each member has a specified probability of being included
in the sample, and the actual composition of the sample is random.

Sampling schemes in contrast: particular members are included in the sample

because they are thought to be typical in some way — may be effective in some
situations, but there is no way mathematically to guarantee its unbiasedness or to
estimate the magnitude of any error committed.

The selection of sample units at random is a guard against investigator biases,
even unconscious ones. (i)

A small sample costs far less and is much faster to survey than a complete

enumeration. CEREEK A

Results from a small sample may actually be more accurate than those from a
complete enumeration -- data quality more easily monitored and controlled, a
complete enumeration may require a much larger (and thus more poorly trained)
staff. (FEAEHE)

Random sampling techniques make possible the calculation of an estimate of the
error due to sampling. (AJ&i%ZE)

In designing a sample, it is frequently possible to determine the sample size
necessary to obtain a prescribed error level. (3% 7 ¥#it)



Population parameters

Numerical characteristics, or parameters, of the population that we will
estimate from a sample. Population size = N, numerical values X;, X,,...,
Xy, are age, weight, ..., or dichotomous (0 or 1).

Example: Herkson (1976). The population consists of N = 393 short-stay hospitals.
Let x; denote the number of patients discharged from the ith hospital during
January 1968. See histogram: # of hospitals that discharged 0-200, 201-400,...,

2801-3000 patients were plotted.
80 [
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Population parameters

Dichotomous (0 or 1) case.

Population mean = proportion p, of individuals having the particular characteristic.
Population total = total # of members possessing the characteristic of interest.

Population variance:

| N

2 2 2

o° = Exi—u
N =

=p—7p°
= p(l —p)

1 N N
7= (D)
i=1 =1
1 N
2 2 2
= — > _ONp:+N

i=1

1 N
_ L 2_ 2
NZ?‘LL

... and population standard deviation is also defined.



C A4

Simple random sampling ({5 BBENLIFE)

The most elementary form is s.r.s.

Each particular sample of size n has the same probability of occurrence --
each of the (N) possible samples of size n taken without replacement has

n

the same probability.

- We assume no replacement so that each member appears in the sample at most
once (e.g. balls in an urn, no replacement).

Sample composition is random
= sample mean is random

—> accuracy analysis where sample mean approximates population mean is
probabilistic in nature.

= Let’s look at sample mean...



Sample Mean: Its expectation and variance

Population size=N, sample size=n, values of sample members X;, X,,..., Xy.
Sample mean as an estimate of population mean:

1
X=;;Xi

T=NX

Sample mean (and others) has so-called “sampling distribution”.

Estimate of population total:
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mean of a sample of size 16. In principle, we could form all ( 16 ) samples,
compute the mean per each, find the sampling distribution (~102811),



Sample Mean: Its expectation and variance

Population size=N, sample size=n, values of sample members X;, X,,..., Xy.
Sample mean as an estimate of population mean:

1 <
:;;Xi
T=NX

Sample mean (and others) has so-called “sampling distribution”.

Estimate of population total:

Example. 393 hospitals again. We want to find the sampling d|953tr|but|on of the
mean of a sample of size 16. In principle, we could form all ( 16 ) samples,
compute the mean per each, find the sampling distribution (~102811),

Employ a technigue known as simulation: estimate the sampling distribution of
the mean of a sample of size n by drawing many samples of size n, computing
the mean of each sample, and then forming a histogram of the collection of
sample means.



Sample Mean: Its expectation and variance

—
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Sample sizes of 8, 16, 32, 64, with 500 replications for each sample size.

1. All the histograms are centered about the population mean, 814.6.

2. As the sample size increases, the histograms become less spread out.

3. Although the shape of the histogram of population values is not
symmetric about the mean, the histograms are more nearly so.



Sample Mean: Its expectation and variance

If all members are distinct, P(X;=x;)=1/N.
If not distinct (e.g. dichotomous: 0 or 1), k members are same, then P(X;={)=k/N.

With or without replacement, we have a lemma:

Denote the distinct values assumed by the population members by ¢y, &, . .., &,
and denote the number of population members that have the value ¢; by n;, j =

1,2,...,m. Then X; 1s a discrete random variable with probability mass
function

P(X;=¢;) = J
Xl_éj _N
AISO,

E(X;)) =
Var(X;) = o?



Sample Mean: Its expectation and variance
The sampling distribution is centered at u, a theorem:

With simple random sampling, E(X) = u.
With simple random sampling, E(T) = 7.

Proof

E(T) = E(NX)
= NE(X)
= Nu
=T

In the dichotomous case, i = p, and X is the proportion of the sample that
possesses the characteristic of interest. In this case, X will be denoted by p. We have

shown that E( p) = p.

If we estimate a population parameter 0, by a function of the sample, then if
E(®) = 6, whatever the value of & may be, we say that § is unbiased.

LX R T 53512 p A B




Sample Mean: Its variance

We next find Var(X). Since X = n~' Y| X;,

Var(X) = niz Z iCov(Xi, X;)

i=1 j=1
If the sampling were done with replacement (7] 55 & #1#%), then X are independent,
for i # j we would have Cov(X;, X;) = 0, whereas Cov(X;, X;) = Var(X;) = o’

0'2 g

— 1 &
VarX = — ; Var (Xi) = — K= Im standard error

Sampling without replacement introduces dependence, though if n<<N then this
results holds to a good approximation.

For simple random sampling without replacement,

Cov(X;, X;) =—0*/(N —1)  ifi #j



Proof. Cov(X;, X)) =—0’/(N=1)  ifi#]
Using the identity for covariance established at the beginning of Section 4.3,
Cov(X;, X;) = E(X;X;) — E(X;)E(X;)

and

m

E(X;X;)= ZZQCJP(X;' = and X; = §))

k=1 [=1
=3 uPX =20 4P(X; = 4lXi = &)
k=1 =l

from the multiplication law for conditional probability. Now,

_ N /(N =1, ifk #1
P(Xj—§l|Xi—§k)—{(nl_l)/(N_l), S

Now if we express
—1

& . o . n N
;C:P(Xj—Clle —Q)—;QN_I -I—CkN_l

T 4&'N-1 N-1




Proof. Cov(X;, X;) = —0”/(N—1) ifi#j

the expression for E(X; X ;) becomes
Z Ck Z q gk — Z Ce Mk
— 1 — ] N(N —1) k

T 1 5
“NWN—-1) NN-1 ;C"”"

Nu? 1 5 5
“N-1 N1t
2
_,2__9
—H TN

Finally, subtracting E(X;)E(X;) = p* from the last equation, we have
2

N —1

COV(XI', Xj) = —

fori # j.



Sample Mean: Its variance
Using Cov(X;, X;) = —c*/(N—1)  ifi#j
we now have the following theorem:

With simple random sampling,

_ o2 (N—n)
Var(X) =

n \N—1
_o*2 i n—1
" n N-—1

Proof
From Corollary A of Section 4.3,

Var(X) = % Zn: ZH:COV(XI', X;)

=1 =
— % ZVar(X,-) + % Z Z Cov(Xi, X;)
—

i=1 j#i

_02 1 ( 0 o2
a nznn N —1

n
After some algebra, this gives the desired result.




Sample Mean: Its variance

Variance of the sample mean in sampling without replacement differs from
that in sampling with replacement by the finite population correction:

n—1
] —
()
Frequently the sampling fraction n/N is very small, and the standard error
of X is

Apart from the usually small finite population correction, the spread of the
sampling distribution and thus the precision of X-bar are determined by the
sample size (n) and not by the population size (N).

With simple random sampling,

varcr) = (%))




Sample Mean: Its variance

Example. Hospitals again: Sampling without replacement, sample size=32,

@\f n—1 _580.7 [ 31

N—-1 V32 392
= 104.2 x 0.96 = 100.0




Sample Mean: Its variance
Example. Hospitals again: Sampling without replacement, sample size=32,

@\f n—1 _580.7 [ 31

N—-1 V32 392
= 104.2 x 0.96 = 100.0

Example. Still hospitals. Estimating a proportion.

A proportion p = .654 had fewer than 1000 discharges. If this proportion were
estimated from a sample as the sample proportion p, the standard error of p

_\/p(l—p)\/1
PENT VT

0.654 x 0.346 31
- 1] — — —
7 \/ 32 \/ 393 — 0:08

For n=32,




Estimation of the population variance

A sample survey is used to estimate population parameters and assess
and quantify the variability of the estimates. We saw how the standard
error of an estimate may be determined from the sample size and the
population variance.

So far so good... No, the population variance is unknown! Estimate it?

This looks natural:

1 o —
A2 2
O’_——E X; — X
ni:l( )

But actually, this estimate is biased.



Estimation of the population variance

A sample survey is used to estimate population parameters and assess
and quantify the variability of the estimates. We saw how the standard
error of an estimate may be determined from the sample size and the
population variance.

So far so good... No, the population variance is unknown! Estimate it?

This looks natural:

n

1 _
A2 2
62= -3 (X, - X

But actually, this estimate is biased.

With simple random sampling,

EG?Y) = o n—1 N
n N —1




With simple random sampling,
@) =02 (21} X
n N -1

Expanding the square and proceeding as in the identity for the population variance
in Section 7.2, we find

Proof

1 « _
6= - ; X? - X?
Thus,
[ _
E@6?) = - ; E(X}) - EX?)
Now, we know that
E(X}) = Var(X;) + [E(X)P
— o2 + 12
Similarly, from Theorems A and B of Section 7.3.1,
E(X? = Var(X) + [E(X)]?
:G—2<1— n_1>+M2
n N -1
Substituting these expressions for E(X?) and E (X ?) in the preceding equation
for E(62) gives the desired result. o




Estimation of the population variance
For N>n, n—1 N

<1
n N-—1

so that E(6%) < o2:|6?2 thus tends to underestimate o 2.

Correcting with this factor, an unbiased estimate is

n—i—l (1 ~ %) g(xi - X)2.



Estimation of the population variance

For N>n, n—1 N

<1
n N-—1

so that E(6%) < o2:|672 thus tends to underestimate o

2

Correcting with this factor, an unbiased estimate is

n—i—l (1 ~ %) g(x,; - X)2.

An unbiased estimate of Var(X) is

N —n

Since ~2
—. d?(N-—-n s2 = ? !
Var(X)s; N 1 X n \n—1
2
we know: _ (1 _n
n N
where

) (5

)(

N -1

Sample variance: | $

)



Estimation of the population variance

Similarly, an unbiased estimate of the variance of T, the estimator of the
population total is

sz =N 25%
For the dichotomous case, in which each X; is O or 1,
1 < —2 g -2
ni;(Xz X)? = ZX X" =p(1-p)
2 n . A
= — H(1 —
s* = ——p(1 —P)

Therefore, we have

An unbiased estimate of Var(p) is

2 pd—p) (1—2)
P n—1

N



Examples.

A A simple random sample of 50 of the 393 hospitals was taken. From this sample,
X = 938.5 (recall that, in fact, © =814.6) and s =614.53 (0 =590). An estimate
of the variance of X is

2

:%(1—%):6592

2
54

The estimated standard error of X is

SY = 81.19
(Note that the true value is o3 = \% 1 — % = 78.) This estimated standard error

gives a rough idea of how accurate the value of X is; in this case, we see that the
magnitude of the error is of the order 80, as opposed to 8 or 800, say. In fact, the error
was 123.9, or about 1.5 s+. m

Mean=814.6,
Total=320,138,
Variance=347,766
Standard deviation=589.7




Examples.

B

From the same sample, the estimate of the total number of discharges in the population
of hospitals 1s

T = NX = 368,831

Recall that the true value of the population total 1s 320,139. The estimated standard
error of 7 is

st = Nsyx = 31,908

Again, this estimated standard error can be used as a rough gauge of the estimation
error. O

Mean=814.6,
Total=320,138,
Variance=347,766
Standard deviation=589.7




Examples.
C Let p be the proportion of hospitals that had fewer than 1000 discharges—that is,

p = .654. In the sample of Example A, 26 of 50 hospitals had fewer than 1000

discharges, so

26

h— 2 _ 50
P=7%0

The variance of p is estimated by

L
s%:u(l—ﬁ)z.oms
p n—1 N

Thus, the estimated standard error of p is

Sf, = .067

In fact, the error was .134 or about 2 x ;.

Mean=814.6,
Total=320,138,
Variance=347,766
Standard deviation=589.7




Everything together!

The quantities s, s7, and s, are called estimated standard errors. If we knew
them, the actual standard errors, o, or and o5, would be used to gauge the accuracy
of the estimates X, T and p. If they are not known, which is the typical case, the
estimated standard errors are used in their place.

standard errors

estimated

standard errors

Population
Parameter Estimate Variance of Estimate Estimated Variance
v 1 n 2 o2 ( N—n 2 52 n
M X=,2.% Gy_?(Nl) SY_?( _N)
~ . 2 (1-p) ( N— 2 p(1—p)
p p = sample proportion o5 = &~ (N’i") 55 = 5 (1 - %)
T T=NX o? = N%o2 sz = N2sZ
X X
2 _ 1
a ( N)
2
where s* = = 3" | (X; — X).



Normal approx. to sampling distribution of sample mean

Ideally, we desire to know the sampling distribution, which can tell us everything
we hope to know about the accuracy of the estimate. However, this is not feasible
without knowledge of the population itself.

But we notice that the simulation of sample mean is roughly Gaussian. — We recall that
CLT is so overwhelming that n does not have to be that large... We can use CLT to
deduce an approximation to the sampling distribution, and find probabilistic bounds
for the estimation error using this approximation.

Consider a sequence of independent and identically distributed (i.i.d.) random
variables, X, X, . . . having the common mean and variance x and ¢2. The sample
mean is

_ 1 < _ o2
Xn - — Xi E Xn == Y —
- ; X)=n  Va®X)="=
CLT says that, for a fixed number z,
Yn — K ) Y — U
P <z|)—> P asn — oo )2 " d
( U/\/E ( O'Yn =)= (Z)
“Standardized” Cdf of standard

normal distribution



Normal approx. to sampling distribution of sample mean

However, the context here is not exactly like that of CLT!

- Sampling without replacement, X; are not independent of each other
- It makes no sense to have n tend to infinity while N remains fixed...

- Butwe have many CLTs, other CLTs have been proved appropriate to the
sampling context: if n is large, though still small relative to N, then the mean of a
simple random sample is approximately normally distributed

Probability that the error made in estimating « by X-bar is less than some
constant o:

P(X—pl<8) =P(=8<X—-pu<9)

_ Px) Dixl
Ox Oox Ox x"'.
)-e)
~o| — )| - ——
O'Y UY R | e I
5 —z) =1 —
_ow (_) . O(—z) =1— ()
Ox



Normal approx. to sampling distribution of sample mean

Example A: The population of 393 Hospitals again. Sample size n=64, using the
finite population correction, sample mean’s standard deviation is

o n—1
oy = —\/1 — Mean=814.6,
vn N-1 Total=320.138,
5897 . 63 675 Standard deviation=589.7
I 392

Use CLT to approximate the probability that the sample mean differs from the
population mean by more than 100 is ~14% (16.4% is a real number):

P(|X — p] > 100) =~ 2P (X — p > 100)

P(X—pu>100)=1—P(X —pn < 100)




Normal approx. to sampling distribution of sample mean

Example B: For a sample of size 50, the standard error of the sample mean number
of discharges is

O—Y — 78
X =938.5,50 X — 0 = 123.9.
What is the probability of an error this large or larger?

P(X —u| >123.9) =1 — P(X — u| < 123.9)

123.9
~1— (20— ) 1
o ()

=2 —29(1.59)

=11 Mean=814.6,

Total=320,138,
Standard deviation=589.7




Normal approx. to sampling distribution of sample mean

Example C: We find from the sample of size 50 an estimate p = .52 of the

proportion of hospitals that discharged fewer than 1000 patients; in fact, the actual
proportion in the population is .65. Thus,

p—pl|=.13

What is the probability that an estimate will be off by an amount this large or larger?

(,A_\/P<1—P>\/1_ n—1
P n N —1

= .068 x .94 = .064 Mean=814.6.
Total=320,138,
P(lp—p|>.13)=1—=P(p— p| <.13) Standard deviation=589.7

— P 13
:1_P(Ip plS )
O'f, (o

P

~2[1 — ®(2.03)] = .04



Confidence interval

A confidence interval for a population parameter, 6, is a random interval, calculated
from the sample, that contains 6 with some specified probability.

A 95% confidence interval for y is a random interval that contains uy with probability

.95; if we were to take many random samples and form a confidence interval from
each one, about 95% of these intervals would contain p.

If the coverage probability=1—aq, the interval is called a 100(1-a)% confidence interval.

For 0 <a <1, let z(«) be the number such that
the area under the standard normal pdf to the

right of z(«) is a. (LaZ3 A7 i) 2(1~0)="2(a)

If Z~N(0,1), P(~z(a/2) < Z < 2(a/2) =1

X

CLT: p (—z(a/z) Xor z(a/z>) ~1—a

f(2)

|P(X = z(@/2)05 < 1 = X + 2(0/2)05) ~ 1 — ]

X T8 8 F1E + HifE o 3\




Confidence interval

P(X —z(@/2)ox < u < X +z(a/2)op) ¥ | —«

The probability that  lies in the interval X + z(a/2)ox is approximately 1-a.

Note and understand that this interval is random

In practice, o is assigned small values, 0.1, 0.05, 0.01, for large coverage probability

Population variance is typically unknown, o7 is substituted by S5 if sample is large

How large is large? Rule of thumb: n greater than 25 or 30 is usually adequate

1200

Example. 20 samples each of size
n=25 are drawn from the population
of hospital discharges. From each
samples, an approximate 95%
confidence interval for u, the mean
number of discharges, was
computed. Among the 20 confidence
intervals (vertical lines), ~1 out of
20 does not include .

1000

b A At b A - 1=814.6

Number of discharges
800

600

400



Confidence interval

Example D. A particular area contains 8000 condominium (A &) units. In a survey
of the occupants, a simple random sample of size 100 yields the information that
the average number of motor vehicles per unit is 1.6, with a sample standard
deviation of 0.8. The estimated standard error of X-bar is thus

- 1 Note that the finite population correction makes
e n N almost no difference. Since z(.025)=1.96, a
8 100 95% confidence interval for the population
= —/1—- = is X + 1.96 5%
10 3000 average iIs X = 1.96 5%, or (1.44,1.76).
= .08

An estimate of the total number of motor vehicles is T=8000 X 1.6=12,800.
The estimated standard error of T is Ss= N Sy = 640. A 95% confidence interval
for the total # of motor vehicles is T = 1.96s;, or (11,546, 14,054).



Confidence interval

Example D’. In the same survey, 12% of the respondents said they planned to sell
their condos within the next year; p =.12 is an estimate of the population
proportion p. The estimated standard error is

gA:\/M 1_ﬂ: 03
P n—1 8000

A 95% confidence interval for p is p & 1.96sj, or (.06, .18).

The total number of owners planning to sell is estimated as T = N § = 960. The
estimated standard error of T is s; = Ns; = 240. A 95% confidence interval for the
number in the population planning to sell is T == 1.96s;, or (490, 1430).



Confidence interval

Example D’. In the same survey, 12% of the respondents said they planned to sell
their condos within the next year; p =.12 is an estimate of the population
proportion p. The estimated standard error is

gA:\/M 1_ﬂ: 03
P n—1 8000

A 95% confidence interval for p is p & 1.96sj, or (.06, .18).

The total number of owners planning to sell is estimated as T = N § = 960. The
estimated standard error of T is s; = Ns; = 240. A 95% confidence interval for the
number in the population planning to sell is T == 1.96s;, or (490, 1430).

Proper interpretation of this interval is a little subtle. We cannot state that the
probability is 0.95 and that the # of owners planning to sell is between 490 and
1430 (that # is either in this interval or not).

95% of intervals formed in this way will contain the true number in the long run.

In the long run, 95% of those intervals will contain the true number of discharges,
but in the figure any particular interval either does or doesn’t contain the true
number (cf. figure on slide pp. 43).



Confidence interval

The width of a confidence interval is determined by the sample size n and the
population standard deviation o.

If o I1s known approximately, perhaps from earlier samples of the population, n can
be chosen so as to obtain a confidence interval close to some desired length.

-- An important aspect of planning the design of a sample survey.

Example E.

The interval for the total # of owners planning to sell in Example D might be
considered too wide for practical purposes; reducing its width would require a larger
sample size.

Suppose that an interval with a half-width of 200 is desired. Neglecting the finite
population correction, the half-width is
p(l — p) 5095

1.96s7 = 1.96 N =
n—1 n—1

Set it to 200 yields n=650 as the necessary sample size.



Summary

- Fundamental result: the sampling distribution of the sample mean is
approximately Gaussian.

- This approximation can be used to quantify the error committed in
estimating the population mean by the sample mean, giving us a good
understanding of the accuracy of estimates produced by a simple
random sample.

- confidence interval, a random interval that contains a population
parameter with a specified probability, and thus provides an assessment
of the accuracy of the corresponding estimate of that parameter.

- We have seen in our examples that the width of the confidence interval
Is a multiple of the estimated standard deviation of the estimate a
confidence interval for y is X = ksy, where the constant k depends on
the coverage probability of the interval.



Estimation of a ratio



Estimation of a ratio

Suppose that for each member of a population, two values, x and y, may be
measured. The ratio of interest is N

Z Yi
i=1

Hy

N
Z xi Mx
i=1

- Ify is the # of unemployed males aged 20-30 in a household and x is the
# of males aged 20-30 in a household, then r is the proportion of unemployed males aged
20-30.

- Ify is weekly food expenditure and x is # of inhabitants, then r is weekly food cost per
inhabitant.

- Ify is the # of motor vehicles and x is the number of inhabitants of driving
age, then r is the # of motor vehicles per inhabitant of driving age.

- Inasurvey of farms, y might be the acres of wheat planted and x the total acreage.

- Inaninventory audit (78 11) , y might be the audited value of an item and x the
book value (IKTHI{E) .



Estimation of a ratio

First of all, note 1 i Vi
N — Xi

The natural estimate of r is S
R=Y/X.

We wish to derive expressions for E(R), Var(R), but for this non-linear
function we need the approximation methods we developed before.

To calculated the approx. variance of R, we need
Var(X), Var(Y), and Cov(X, ).

For the last quantity, we define the population covariance of x and y to be
N

1
Oxy = N Z(-xi — Mx)(yz — /*Ly)
=1
Then it can be shown that

Analogous to
Cov(X;, X;) =—c*/(N—1) ifi#j



Estimation of a ratio

With simple random sampling, the approximate variance of R = Y /X is

1
Var(R) ~ (1’20g + cr 2r0'ﬁ)
u?

X

I n—1\ I
T (1_ N—l) i (rox oy = 2row)

The population correlation coefficient is defined as
Oyy

1 — 1 1
Var(R) ~ — (1 _ ) (r2(72 + O’ — 2rpax0'y)
n N—-1) u?



Problem set #3

Utilizing the powerful mgfs, prove an important property of the y? distribution:
if U and V are independent and U ~ y2and V ~ y,2, then U+V ~ y,...2.

Prove that the mgf of y,2 distribution is M(t)=(1-2t) "2, and thus the mean is n
and the variance is 2n. Plot the reduced y? distribution for n=2, 4, 6, you need
some intuition about this distribution, which prevails over the whole astronomy.

Find expressions for the approximate mean and variance of Y = In x.

In Lecture 5 we examined the accuracy of our approximations for the case of
g(x)=x¥2. Do the same thing for g(x)=x13, i.e. suppose X is uniform on [0, 1] and
on [1, 2], compare the approximated mean and variance to their corresponding
exact values, and show on which interval the approximation works better.

. Verify that the Gaussian integral in our example is indeed .3417, when the
Monte Carlo method is employed. Change the integration limits to [0, 5] and see
if it is close to 2.

In problem set #1, you learned how to create exponential random variables.
Based on that, reproduce the four panels of the figure on the last page
(overplotting the best-fit Gaussian profile is optional). Note: you need to do
averaging here instead of summing, though they are virtually the same.



