
Estimation of parameters



Many families of probability laws depend on a small number of parameters: 

- Poisson family: λ, Gaussian family: μ, σ…

- Parameters are estimated from the data

- Need measures and tests of goodness of fit (later) 

Fitting probability laws to data

Classical example. Fitting Poisson Distribution to Emissions of α Particles

If the underlying rate of emission is constant over the period of 

observation (half-life >> time period of observation), if the particles 

come from a very large # of independent sources (atoms), the Poisson 

distribution is frequently used as a model for radioactive decay. 

(1) the underlying rate at which the events occur is constant in space or time,

(2) events in disjoint intervals of space or time occur independently,

(3) there are no multiple events. 



Berkson (1966) & National Bureau of Standards. 

Source of α particles: americium (镅/95号) 241. 

The experimenters recorded 10,220 times between successive emissions. 

Observed mean emission rate: .8392 emissions per sec. 

Fitting probability laws to data

View the 1207 counts as 1207 independent 

realizations of Poisson random variables, 

probability mass function

Average count in a 10s interval=8.392→

1. Estimate of λ is a random variable w. sampling 

distribution!

2. To what decimal place is 8.392 accurate? Need 

knowledge on sampling distribution

Qualitatively good fit!

Quantitative measures later.



Example A: Gaussian. (Usually justified 

using some version of CLT) 

Bevan, Kullberg, and Rice (1979): 肌肉细胞

膜中流体的随机波动性。细胞膜包含大量通
道，随机打开和关闭，假定彼此间均独立运
行。净流量为打开的通道通过的离子之和，
即近似独立流之和。

A smoothed histogram of values obtained 

from 49,152 observations of the net current 

and an approximating Gaussian curve. 

Estimated parameters μ and σ2 are used to 

extract useful microscopic information.

Parameter estimation



Example B: Gamma.
The family of gamma distributions provides a 

flexible set of densities for nonnegative

random variables. Two parameters:

Parameter estimation

Different reasons of fitting to data:

- Scientific theory suggests a distribution of 

direct interest (e.g. α particle emissions).

- Descriptive purposes, a method of data 

summary/compression (e.g. seeded storms)

- More complex modeling…(e.g. 水利专家规

划水资源调度和使用方式时，采用随机
模型模拟降水量)

Le Cam & Neyman (1967):

人工降雨的效果



Basic approach: The observed data are regarded as realizations of random variables 

X1, X2, . . . , Xn, whose joint distribution depends on unknown θ (can be a vector). 

i.i.d.: independent & identically distributed (独立同分布)

Usually the Xi is modeled as independent random variables all having the same 

distribution f (x|θ), their joint distribution is f (x1|θ) f (x2|θ) · · · f (xn|θ). 

An estimate of θ is a function of X1, X2, . . . , Xn, a random variable with a sampling

distribution. We use approximations to the sampling distribution to assess the

variability of the estimate (generally through its standard error).

Parameter estimation



Basic approach: The observed data are regarded as realizations of random variables 

X1, X2, . . . , Xn, whose joint distribution depends on unknown θ (can be a vector). 

i.i.d.: independent & identically distributed (独立同分布)

Usually the Xi is modeled as independent random variables all having the same 

distribution f (x|θ), their joint distribution is f (x1|θ) f (x2|θ) · · · f (xn|θ). 

An estimate of θ is a function of X1, X2, . . . , Xn, a random variable with a sampling

distribution. We use approximations to the sampling distribution to assess the

variability of the estimate (generally through its standard error).

General procedures for forming estimates so that each new problem does not 

have to be approached ab initio（从第一原理出发）.

- The method of moments

- The method of maximum likelihood (more useful in general)

Parameter estimation



If X1, X2, . . . , Xn, are i.i.d. random variables from a distribution, the sample moment

can be viewed as an estimate of μk. 

Two steps:

1. Find expressions for them in terms of the lowest possible order moments,

2. Substitute sample moments into the expressions. 

Suppose we wish to estimate θ1 & θ2, if they can be expressed in terms of first 2 

moments:

The method of moment estimates are

The method of moments



The construction of a method of moments estimate involves three basic steps:

1. Calculate low order moments, finding expressions for the moments in 

terms of the parameters. Typically, the number of low order moments 

needed will be the same as the number of parameters.

2. Invert the expressions found in the preceding step, finding new 

expressions for the parameters in terms of the moments.

3. Insert the sample moments into the expressions obtained in the second 

step, thus obtaining estimates of the parameters in terms of the sample 

moments. 

The method of moments



Example A. Gaussian.
The 1st and 2nd moments are

Therefore,

The sampling distribution of       is  

The method of moments

独立正态随机变量的组合还是正态 述而不证



Example B. Gamma.
The 1st and 2nd moments are

Express α, λ,

Since

In the previous precipitation（降水）problem (Le Cam & Neyman 1967),  

The method of moments

Recall: we used its mgf



In general, it is difficult to derive the exact forms of the sampling distributions of 

and    , because they are each rather complicated functions of X1, X2, . . . , Xn.

But this problem can be approached by simulation!

Imagine that we know the true values λ0 and α0. We can generate many, many samples 

of size n = 227 from the gamma distribution with these parameter values, from each of 

which we can calculate estimates of λ and α. 

A histogram of the values of the estimates of λ, for example, should then give us a good 

idea of the sampling distribution of      The only problem is we don’t know the true values.

Substitute our estimates of λ and α for the true values.

Monte Carlo simulation (bootstrap)

Calculate the standard deviations of 

1000 estimates to obtain estimated

Standard errors of               .



An estimate, θ, is said to be a consistent estimate of a parameter θ:

-- if θ approaches θ as the sample size approaches infinity. 

The method of moments: consistency

ˆ

ˆ

Recall: the weak law of large numbers implies that the sample moments 

converge in probability to the population moments. 

If the functions relating the estimates to the sample moments are continuous, 

the estimates will converge to the parameters as the sample moments converge 

to the population moments.

The method of moments estimates is consistent!

（相合估计）



1. We have shown how the method of moments can provide estimates of 

the parameters of a probability distribution based on a “sample” (an 

i.i.d. collection) of random variables from that distribution.

2. Variability or reliability of the estimates? We observe that if the sample 

is random, the parameter estimates are random variables having their 

sampling distributions. The standard deviation of the sampling 

distribution is called the standard error of the estimate. 

3. How to assess the variability of an estimate from the sample itself?

Sometimes the sampling distribution is of an explicit form depending on 

the unknown parameters, we can substitute our estimates for the 

unknown parameters in order to approximate the sampling distribution. 

In other cases the form of the sampling distribution is not obvious, but 

we can simulate it. 

4. By using the bootstrap we avoid doing difficult analytic calculations by 

instructing a computer to generate random numbers. 

A brief summary
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Maximum likelihood 
estimation 



The method of maximum likelihood

…is applied to a great variety of statistical problems (e.g. curving fitting, 

CMB analysis, galaxy formation modeling…)

• Mathematicians like it because of its nice theoretical properties

Note: We consider the joint density as a function of θ rather than a function of xi!!!

The likelihood function gives the probability of observing the given data as a 

function of the parameter θ. 

The maximum likelihood estimate (mle) of θ is the θ value that maximizes the 

likelihood, making the observed data “most probable” or “most likely.”



What you may have learned before…

If the Xi are i.i.d., their joint density = product of marginal densities,

Usually maximizing its logarithm is easier (equivalent, as log is monotonic). 

If i.i.d., the log likelihood is 

We simply need to find the maximum of log likelihood 

– You all have learned techniques in calculus on single variable or multiple 

variables. It’s time to fully utilize them!

Here “log” means “ln”



Example: Poisson.

If X1,…,Xn are i.i.d. and Poisson, joint frequency function = product of marginals

The log likelihood is

Setting 1st derivative to 0,

-- Agree with the method of moments.

MLE



Example: Gaussian.
If X1,…,Xn are i.i.d. and Gaussian, joint frequency function = product of marginals.

Regarded as a function of μ, σ, this is the likelihood function.

The partials w.r.t. μ and σ are

Setting them to 0,

-- Same as the method of moments.

MLE



Example: Gamma.

The likelihood of an i.i.d. sample, X1,…,Xn, is

Solving it numerically, one finds it to be

-- Different from the method of moments:

= 0= 0



Example: Gamma.

Solving it numerically, one finds

The method of moments gives

Solid - moments 

Dotted - MLE

Not in closed form, but we can do bootstrap!

Generate 1000 samples  n = 227 of gamma distributed 

random variables with α = .441 and λ = 1.96. For each 

of sample, the MLEs of α and λ are calculated. 



Example: Gamma.

Solving it numerically, one finds

The method of moments gives

Solid - moments 

Dotted - MLE

Not in closed form, but we can do bootstrap!

Generate 1000 samples  n = 227 of gamma distributed 

random variables with α = .441 and λ = 1.96. For each 

of sample, the MLEs of α and λ are calculated. 

α λ α λ 

Standard error = 0.03                      0.26                                      0.06                          0.34

Why is MLE significantly more precise than using moments?



Multinomial distribution -- Revisited!

Each of n independent trials can result in one of r types of outcomes, on each 

trial the probabilities of the r outcomes are p1, p2 ,…, pr .

Ni = total # of outcomes of type i in the n trials, i=1, …, r. (e.g. God is playing a 

dice…)  Any particular sequence of trials giving rise to N1=n1 , …, Nr=nr occurs 

with the probability 

How many such sequences are there? 

Equivalent question: What is the # of ways that n objects are grouped into r 

classes (types of outcomes) with ni in the ith class, i=1, …, r?

Joint frequency function:

Marginal distribution of Ni?   -- Direct summation is daunting!

Ni can be interpreted as # of success in n trials, each of which has pi of success.

Binomial random variable Ni renders



Suppose that X1, . . . , Xm, the counts in cells 1, . . . , m, follow a multinomial 

distribution with a total count of n and cell probabilities p1, . . . , pm.

We wish to estimate the p’s from the x’s. The joint distribution of X1, . . . , Xm is

Xi are not independent (constrained to sum to n, meaning pi sum to 1). Log likelihood:

To maximize it subject to the constraint, we should use a…

MLEs of Multinomial Cell Probabilities (多项单元概率) 



Suppose that X1, . . . , Xm, the counts in cells 1, . . . , m, follow a multinomial 

distribution with a total count of n and cell probabilities p1, . . . , pm.

We wish to estimate the p’s from the x’s. The joint distribution of X1, . . . , Xm is

Xi are not independent (constrained to sum to n, meaning pi sum to 1). Log likelihood:

To maximize it subject to the constraint, we should use a… Lagrange multiplier, and 

maximize, instead,

MLEs of Multinomial Cell Probabilities (多项单元概率) 

constraint



Setting the partial derivatives to 0, we find a system of equations:

Summing both sides,

Finally… Not surprising at all!

MLEs of Multinomial Cell Probabilities (多项单元概率) 

In some situations (e.g. frequently occur in genetics), the multinomial cell 

probabilities are functions of other unknown parameters θ; that is, pi=pi(θ). 

The log likelihood of θ is



Example: Hardy-Weinberg Equilibrium (Genetics)

最简单的估计：令θ2=187/1029，θ=0.4263，但显然没有充分利用信息；如果令
X1, X2, X3表示三个单元的观测数，n=1029，

显然已有 ，不必另引入限制条件。

MLEs of Multinomial Cell Probabilities (多项单元概率) 



Example: Hardy-Weinberg Equilibrium (Genetics)

偏导数设为0，得到

MLEs of Multinomial Cell Probabilities (多项单元概率) 

令θ2=187/1029，
θ=0.4263



How precise is the estimate? How many digits should 

be kept? Bootstrap!

Simulate many multinomial random variables with these 

probabilities and n=1029, and for each we form an 

estimate of θ. Histograms are ~ sampling distribution. 

θ is unknown, we use                  in its place, cell 

probabilities are .331, .489, .180.

1000 computer experiments, each has a θ*. Finally,

Example: Hardy-Weinberg Equilibrium (Genetics)

偏导数设为0，得到

MLEs of Multinomial Cell Probabilities (多项单元概率) 

令θ2=187/1029，
θ=0.4263



We will skip all the proofs of the theorems in this section.

Heuristically, we consider the case of an i.i.d. sample and a 1-d parameter.

θ – true value = θ0, estimate = 

Large sample theory for MLEs

I (θ) = E [l' (θ)]2

= −E [l" (θ)]

相合估计



The large sample distribution of a MLE is approximately Gaussian

-- mean = θ0 , variance =  

This is a limiting result that holds as the sample size → ∞, we say that

- MLE is asymptotically unbiased 

- variance of the limiting normal distribution = asymptotic variance of the mle

The MLE is the maximizer of the log likelihood function

The asymptotic variance is 

Large sample theory for MLEs

I (θ) = E [l' (θ)]2

= −E [l" (θ)]

At vicinity of θ0, 

large −l", small variance



Multidimensional case is similar: now θ is a vector

Mean of asymptotic distribution = vector of true parameters, θ0.

Covariance of

where the matrix I (θ) has an ij component

Conditions for the above to hold:

- True parameter value, θ0, is required to be an interior point of the set of

all parameter values. 

- (e.g. |α| ≤ 1, α0=1, inapplicable)

- The support of density/frequency function f (x|θ) (the set of values for which 

f (x|θ) > 0) does not depend on θ. 

- (e.g. uniform distribution on [0, θ], inapplicable)

Large sample theory for MLEs: multi-d



Recall that

- a confidence interval for θ is an (random) interval based on the sample values 

used to estimate θ.

- The probability of containing θ is called the coverage probability of the interval. 

Confidence intervals from MLEs

Three methods for forming confidence intervals for MLEs:

1. Exact methods

2. Approximations based on large sample properties of MLEs

3. Bootstrap confidence intervals

区间为平均值±数倍σ形式



Confidence intervals from MLEs: Exact methods

Example: Gaussian. First of all, let’s prove two important conclusions:

X1,…, Xn are independent N(μ, σ2) random variables. Sample mean and variance

Proof.

Meanwhile, LHS

Expanding the square,  LHS

/ ~ χ2
n−1

定义：标准正太的平方为自由
度1的卡方，n个独立自由度1

的卡方之和为自由度n的卡方

(1) 

S2 ~ ??



Confidence intervals from MLEs: Exact methods

Example: Gaussian. First of all, let’s prove two important conclusions:

/ ~ χ2
n−1

(1) 

In fact, W=U+V, S2 and X are independent (a theorem), mgf MW=MUMV ,
−

莫忘：卡方只是伽马分
布的特例，(n/2, 1/2)

(2) 

定义：Z~N(0, 1), U~χ2
n, Z与U

独立，则

~ tn~ χ2
n−1

~ N (0, 1)



Confidence intervals from MLEs: Exact methods

Example: Gaussian.

Confidence interval for μ.

Earlier in this lecture we found that MLEs from an i.i.d. normal sample are

Since

Let tn−1(α/2) denote the point beyond which tn−1 has probability α/2.
Symmetric 

about 0



Confidence intervals from MLEs: Exact methods

Example: Gaussian. Confidence interval for σ2.

Now that 

Let χ2
m(α/2) denote the point > which χ2

m has prob. α/2.

不对称!!

Simulation: Generate a random sample of size n=11 

from Gaussian with μ=10, σ2=9. Do 20 experiments.

Calculate 90% confidence intervals.

- 10% of the time true value falls outside?



Confidence intervals from MLEs: Large sample theory

Exact methods are the exception rather than the rule in practice.

If i.i.d, we know the distribution of                               is approximately standard 

normal.

θ0 is unknown, use                                      . 

In fact, the distribution of                                is also approximately standard 

normal.  

Confidence interval is   



Confidence intervals from MLEs: Large sample theory

Example: Poisson

MLE of  λ from a sample of size n from Poisson is

For large samples, let’s calculate I(λ) first.

-- probability mass function of a Poisson variable with λ.



Confidence intervals from MLEs: Large sample theory

Random multinomial counts: no longer i.i.d., variance of parameter estimate is 

not 1/[n I(θ)]. But it can be shown that

Example: Hardy-Weinberg Equilibrium again.

Substitute θ with    , the standard error of    :

An ~95% confidence interval is 

与自助法结果相同：



Confidence intervals from MLEs: Bootstrap

Suppose we know the distribution of

Denote α/2 and 1− α/2 quantiles by 

If θ0 is known, the distribution of              can be approximated arbitrarily well 

by simulation: randomly generate many, many samples of observations with θ0, 

for each sample, record              . Once we have this distribution, determine     

and     as accurately as desired. 

-- But θ0 is unknown! No worries, use     !        

Generate many, many samples (say, B in all) from a distribution with value ; 

for each sample construct an estimate of θ, say θj*,  j=1, 2,… ,B. Characterize 

the distribution of            , the quantiles of which then form an approximate 

confidence interval. 



Confidence intervals from MLEs: Bootstrap

Example. Hardy-Weinberg Equilibrium again.

Use bootstrap to find an ~95% confidence interval, then compare to results from 

large-sample theory for MLEs.

We already did 1000 bootstrap estimates, ready to use.

The 25th largest is .403, the 975th largest is .446: estimates of .025 and .975 quantiles.

distribution? Subtract 

.025 and .975 quantiles are estimated as

Our approximate 95% confidence interval is

大样本理论给出结果：



Problem set #4



The Bayesian approach to 
parameter estimation


