Estimation of parameters



Fitting probability laws to data

Many families of probability laws depend on a small number of parameters:
- Poisson family: A, Gaussian family: u, c...

- Parameters are estimated from the data

- Need measures and tests of goodness of fit (later)

Classical example. Fitting Poisson Distribution to Emissions of a Particles

If the underlying rate of emission is constant over the period of
observation (half-life >> time period of observation), if the particles
come from a very large # of independent sources (atoms), the Poisson
distribution is frequently used as a model for radioactive decay.

(1) the underlying rate at which the events occur is constant in space or time,
(2) events in disjoint intervals of space or time occur independently,

(3) there are no multiple events.



Fitting probability laws to data

Berkson (1966) & National Bureau of Standards.

Source of o particles: americium (85/955) 241.

The experimenters recorded 10,220 times between successive emissions.
Observed mean emission rate: .8392 emissions per sec.

observed in 1207 intervals, each of length 10 sec. View the 1207 counts as 1207 independent
1207 pr— realizations of Poisson random variables,
n Observed Expected probability mass function
k ,—\
0-2 18 12.2 Ae
3 28 27.0 = P(X =k) = X
4 56 56.5 . ' .
5 105 94.9 Average count in a 10s interval=8.392— ),
6 126 132.7 _ _ _ _
7 146 159.1 1. Estimate of 1 is a random variable w. sampling
8 164 166.9 distribution!
9 161 155.6
1(1) igi’ lggg 2. To what decimal place is 8.392 accurate? Need
12 74 697 knowledge on sampling distribution
13 53 45.0
14 23 27.0 ualitatively good fit!
15 15 15.1 Q o y9
16 9 7.9 Quantitative measures later.
17+ 5 7.1

1207 1207



Parameter estimation

Example A: Gaussian. (Usually justified
using some version of CLT)

Bevan, Kullberg, and Rice (1979): JLAI4HHE
FEHR AR BB B . AREGEKEE
E, FEYITHMKHE, RERILEYMIE
1T FREAITHREERS B M,
BRI AL SE 2 F0

P(x)

A smoothed histogram of values obtained
from 49,152 observations of the net current
and an approximating Gaussian curve.
Estimated parameters y and ¢ are used to
extract useful microscopic information.
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Parameter estimation

Example B: Gamma.

The family of gamma distributions provides a
flexible set of densities for nonnegative

random variables. Two parameters:

f(x|o, A) = Lk"‘xo‘_le_“
9 F((x) 3

-
A
o
A
3

Different reasons of fitting to data:

- Scientific theory suggests a distribution of
direct interest (e.g. a particle emissions).

- Descriptive purposes, a method of data
summary/compression (e.g. seeded storms)

- More complex modeling...(e.g. 7KF| L& K
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Parameter estimation

Basic approach: The observed data are regarded as realizations of random variables
Xy Xy, ooy X, Whose joint distribution depends on unknown @ (can be a vector).

i.i.d.: independent & identically distributed (Z%3Z [F] 43 47)
Usually the X; is modeled as independent random variables all having the same
distribution f (x|6), their joint distribution is f (x,]|0) f (x,|0) - - -f (X, |0).

An estimate of 4 is a function of X, X,, . .., X, a random variable with a sampling
distribution. We use approximations to the sampling distribution to assess the
variability of the estimate (generally through its standard error).



Parameter estimation

Basic approach: The observed data are regarded as realizations of random variables
Xy Xy, ooy X, Whose joint distribution depends on unknown @ (can be a vector).

i.i.d.: independent & identically distributed (Z%3Z. [F] 43 47)
Usually the X; is modeled as independent random variables all having the same
distribution f (x|6), their joint distribution is f (x,|0) f (x,|0) - - - (x,|0).

An estimate of 4 is a function of X, X,, . .., X, a random variable with a sampling
distribution. We use approximations to the sampling distribution to assess the
variability of the estimate (generally through its standard error).

General procedures for forming estimates so that each new problem does not
have to be approached ab initio (A —JHEI %) .

-  The method of moments

- The method of maximum likelihood (more useful in general)



The method of moments
e = E(X°)
If X, X,, ..., X, are i.i.d. random variables from a distribution, the sample moment

can be viewed as an estimate of y,. i
1
0, =— ) Xk
Mk n, Z i
Two steps: i=1

1. Find expressions for them in terms of the lowest possible order moments,
2. Substitute sample moments into the expressions.

Suppose we wish to estimate 6, & 6,, if they can be expressed in terms of first 2

moments:
oments 01 = fi(uy, na)
6, = fz(ﬂl, .Lbz)
The method of moment estimates are
6, = fi(iu1, t2)

0, = folfur, 1)



The method of moments

The construction of a method of moments estimate involves three basic steps:

1. Calculate low order moments, finding expressions for the moments in
terms of the parameters. Typically, the number of low order moments
needed will be the same as the number of parameters.

2. Invert the expressions found in the preceding step, finding new
expressions for the parameters in terms of the moments.

3. Insert the sample moments into the expressions obtained in the second
step, thus obtaining estimates of the parameters in terms of the sample
moments.



The method of moments

Example A. Gaussian.
The 1stand 2" moments are w=EX)=nu

o =EX)=p"+o°

Therefore,
H =
2

2
0 = M2 — Uy
The corresponding estimates of 4 and o> from the sample moments are

p=X

. — 1< _
ozzgz:xf—xzzgz(xf—)()z

i=l1

The sampling distribution of X is N{u,c?/n), né*/o% ~ x2%_;.
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The method of moments

Example B. Gamma.
The 15t and 2" moments are

o
n1 = X
B a(a+ 1)
K2 = 2
Express a, A, )\ — M1
- 2
M2 — MKy
2
7
o = )\'u'l — 1 2
M2 — [
Since 6% =1, — i},
1o X ;
= — o =
5.2

Recall: we used its mgf

In the previous precipitation ([%7K) problem (Le Cam & Neyman 1967),

X = .224 6% = .1338
and therefore & = .375 and A = 1.674.




Monte Carlo simulation (bootstrap)

In general, it is difficult to derive the exact forms of the sampling distributions of
& and A, because they are each rather complicated functions of X;, X,, ..., X,..
But this problem can be approached by simulation!

Imagine that we know the true values A, and a,. We can generate many, many samples
of size n = 227 from the gamma distribution with these parameter values, from each of

which we can calculate estimates of A and a.

A histogram of the values of the estimates of A, for example, should then give us a good
idea of the sampling distribution of A. The only problem is we don’t know the true values.

Substitute our estimates of A and a for the true values.

Calculate the standard deviations of 250

1000 estimates to obtain e§timated
Standard errors of & and A.
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The method of moments: consistency H&4H)

~

An estimate, 0, is said to be a consistent estimate of a parameter 6.
- if 6 approaches 6 as the sample size approaches infinity.

DEFINITION

Let 6, be an estimate of a parameter 6 based on a sample of size n. Then 6, is said
to be consistent in probability if 6, converges in probability to 6 as n approaches
infinity; that is, for any € > 0,

P(6,—6| >€)— 0 asn — o0 O

Recall: the weak law of large numbers implies that the sample moments
converge in probability to the population moments.

If the functions relating the estimates to the sample moments are continuous,
the estimates will converge to the parameters as the sample moments converge

to the population moments.

The method of moments estimates is consistent!



A brief summary

1. We have shown how the method of moments can provide estimates of
the parameters of a probability distribution based on a “sample” (an
.i.d. collection) of random variables from that distribution.

2. Variability or reliability of the estimates? We observe that if the sample
IS random, the parameter estimates are random variables having their
sampling distributions. The standard deviation of the sampling
distribution is called the standard error of the estimate.

3. How to assess the variability of an estimate from the sample itself?
Sometimes the sampling distribution is of an explicit form depending on
the unknown parameters, we can substitute our estimates for the
unknown parameters in order to approximate the sampling distribution.
In other cases the form of the sampling distribution is not obvious, but
we can simulate it.

4. By using the bootstrap we avoid doing difficult analytic calculations by
instructing a computer to generate random numbers.



The method of moments

The construction of a method of moments estimate involves three basic steps:

1. Calculate low order moments, finding expressions for the moments in
terms of the parameters. Typically, the number of low order moments
needed will be the same as the number of parameters.

2. Invert the expressions found in the preceding step, finding new
expressions for the parameters in terms of the moments.

3. Insert the sample moments into the expressions obtained in the second
step, thus obtaining estimates of the parameters in terms of the sample
moments.



The method of moments

Example A. Gaussian.
The 1stand 2" moments are w=EX)=nu

o =EX)=p"+o°

Therefore,
H =
2

2
0 = M2 — Uy
The corresponding estimates of 4 and o> from the sample moments are

p=X

. — 1< _
ozzgz:xf—xzzgz(xf—)()z

i=l1

The sampling distribution of X is N{u,c?/n), né*/o% ~ x2%_;.
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The method of moments

Example B. Gamma.
The 15t and 2" moments are

o
n1 = X
B a(a+ 1)
K2 = 2
Express a, A, )\ — M1
- 2
M2 — MKy
2
7
o = )\'u'l — 1 2
M2 — [
Since 6% =1, — i},
1o X ;
= — o =
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Recall: we used its mgf

In the previous precipitation ([%7K) problem (Le Cam & Neyman 1967),

X = .224 6% = .1338
and therefore & = .375 and A = 1.674.




Monte Carlo simulation (bootstrap)

In general, it is difficult to derive the exact forms of the sampling distributions of
& and A, because they are each rather complicated functions of X;, X,, ..., X,..
But this problem can be approached by simulation!

Imagine that we know the true values A, and a,. We can generate many, many samples
of size n = 227 from the gamma distribution with these parameter values, from each of

which we can calculate estimates of A and a.

A histogram of the values of the estimates of A, for example, should then give us a good
idea of the sampling distribution of A. The only problem is we don’t know the true values.

Substitute our estimates of A and a for the true values.

Calculate the standard deviations of 250

1000 estimates to obtain e§timated
Standard errors of & and A.
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The method of moments: consistency H&4H)

~

An estimate, 0, is said to be a consistent estimate of a parameter 6.
- if 6 approaches 6 as the sample size approaches infinity.

DEFINITION

Let 6, be an estimate of a parameter 6 based on a sample of size n. Then 6, is said
to be consistent in probability if 6, converges in probability to 6 as n approaches
infinity; that is, for any € > 0,

P(6,—6| >€)— 0 asn — o0 O

Recall: the weak law of large numbers implies that the sample moments
converge in probability to the population moments.

If the functions relating the estimates to the sample moments are continuous,
the estimates will converge to the parameters as the sample moments converge

to the population moments.

The method of moments estimates is consistent!



A brief summary

1. We have shown how the method of moments can provide estimates of
the parameters of a probability distribution based on a “sample” (an
.i.d. collection) of random variables from that distribution.

2. Variability or reliability of the estimates? We observe that if the sample
IS random, the parameter estimates are random variables having their
sampling distributions. The standard deviation of the sampling
distribution is called the standard error of the estimate.

3. How to assess the variability of an estimate from the sample itself?
Sometimes the sampling distribution is of an explicit form depending on
the unknown parameters, we can substitute our estimates for the
unknown parameters in order to approximate the sampling distribution.
In other cases the form of the sampling distribution is not obvious, but
we can simulate it.

4. By using the bootstrap we avoid doing difficult analytic calculations by
instructing a computer to generate random numbers.



Maximum likelihood
estimation



The method of maximum likelihood

...Is applied to a great variety of statistical problems (e.g. curving fitting,
CMB analysis, galaxy formation modeling...)

» Mathematicians like it because of its nice theoretical properties

Suppose that random variables Xy, ..., X, have a joint density or frequency
function f(xq, x», ..., x,|0). Given observed values X; = x;, wherei = 1,...,n,
the likelihood of @ as a function of x, x,, ..., x,, 1S defined as

lik(@) = f(x1, x2,...,x,]0)

Note: We consider the joint density as a function of 4 rather than a function of x;!!!

The likelihood function gives the probability of observing the given data as a
function of the parameter 6.

The maximum likelihood estimate (mle) of 4 is the 8 value that maximizes the
likelihood, making the observed data “most probable” or “most likely.”



What you may have learned before...

If the X; are i.i.d., their joint density = product of marginal densities,

lik®) = ] ] r(xi10)
i=l1

Usually maximizing its logarithm is easier (equivalent, as log is monotonic).
If i.i.d., the log likelihood is

[0) = loglf(X:10)]
i=l1

Here “log” means “In”

We simply need to find the maximum of log likelihood

—You all have learned techniques in calculus on single variable or multiple
variables. It’s time to fully utilize them!



MLE

Example: Poisson. 2 gk
P(X =x)=
x!
If X,,...,.X, are i.i.d. and Poisson, joint frequency function = product of marginals

The log likelihood is

[V =) (X;logh — A —log X;1)

i=1

=logh ) X;—ni—) logX;! —7or

i=1 i=l1 =72

Setting 1t derivative to 0,

I
=
=

) 1 < ~76
l(k):XEXi—nzo

Log likelihood
|
~J]
(o]

A=X

-- Agree with the method of moments.




MLE

Example: Gaussian.
If X,,...,X, are i.i.d. and Gaussian, joint frequency function = product of marginals.

n 1 1 X; — 1 2
e ter= ] oo (4[252])

i=1

Regarded as a function of , o, this is the likelihood function.
I, 0) = —nl " log 2 — - S(X, - 1y
M,0) = —nlogo 5 0g 27T F; i — M

The partials w.r.t. pand ¢ are

e

@ o i=1
a  n . )
8—6__0'—'_0 ;(XI—M)
Setting them to O, |
L =X 5=, |- ) (X;— X)?
p 6=\ -2 )

-- Same as the method of moments.



— A\¥xY e, 0<x <o

Example: Gamma. Flrla,h) =
()
The likelihood of an i.i.d. sample, X, ..., X, is
I, 2) =) [alogh + (@ — 1)log X; — AX; — logT'(e)]
i=1
= nolog A + (o — I)ZIOgX,- — AZX —nlogI'(a)
i=l1 i=l1

M NTx, =0

i=1

()

al .
— =nlogi log X; — —
o nlog +; og /”F(a) \

nloga—nlogX—i—ZlogX —nF( )
(04

i=l1

STES

Solving it numerically, one finds it to be

-- Different from the method of moments



Example: Gamma.
Solving it numerically, one finds & = .441 A =1.96

The method of moments gives & = .375 i = 1.674

Not in closed form, but we can do bootstrap!

Generate 1000 samples n =227 of gamma distributed
random variables with o = .441 and 4 = 1.96. For each
of sample, the MLEs of « and A are calculated.

Count
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100 H| f
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60}

Solid - moments
Dotted - MLE

1.0 1.5

Precipitation

2.0

2.5



160 |

140 |

Example: Gamma. Solid - moments

120H ¢

.. i . N S : D - MLE
Solving it numerically, one finds & = .441 A = 1.96 ool otted
The method of moments gives & = .375 1 = 1.674 ; 80
6o f| \:
Not in closed form, but we can do bootstrap! wl
Generate 1000 samples n =227 of gamma distributed 0l
random variables with o = .441 and 4 = 1.96. For each . ,
of sample, the MLEs of a and 4 are calculated. 0 . li;fedpitaﬁif 20
Standard error = 0.03 0.26 0.06 0.34
200 ¢ H 300 B B
250 [ ] H | [ ]
150 - 200 200 —]
| 200 - B
100 ] 150 - [ - >l >
Lol 100 100
50 F 50+ 50
—’—I_V_L ) _l— —I_l_ Al—li
0™=040 045 050 055 0.60 0™=15 20 25 30 35 S N R s 520 35 50
o A o A

Why is MLE significantly more precise than using moments?



Multinomial distribution -- Revisited!

Each of n independent trials can result in one of r types of outcomes, on each
trial the probabilities of the r outcomes are p,, p, ,..., p, -

N; = total # of outcomes of type i in the n trials, i=1, ..., ». (e.9. God is playing a
dice...) Any particular sequence of trials giving rise to N;=n, ..., N,=n.occurs

with the probability a .
pllp2~ rl'r

How many such sequences are there?
Equivalent question: What is the # of ways that n objects are grouped into r
classes (types of outcomes) with n; in the ith class, i=1, ..., »?

ny _.n2

n
Joint frequency function: p(ny,....,n.) = (n i )Pl py’ e py
Loeen,

n n!
niny---n, ni'np!---n,!

Marginal distribution of N;,? -- Direct summation is daunting!
N; can be interpreted as # of success in n trials, each of which has p; of success.

n n; n—n;
Pi (1 _ pl) I

i

Binomial random variable N; renders ~ Pw; (i) = (



MLEs of Multinomial Cell Probabilities (2 T JoiE=R)

Suppose that X, ..., X, the countsincells 1, ..., m, follow a multinomial
distribution with a total count of n and cell probabilities p, . . ., Py,
We wish to estimate the p’s from the X’s. The joint distribution of Xy, ..., X, IS
n! —
Fr, ooy Xl Ply ey P) = — prf ! —
Hxi! i=1 ny'ng! - ..nr!|p1 2 2
i=1

X; are not independent (constrained to sum to n, meaning p; sum to 1). Log likelihood:

[(p1. ..., pw) =logn! =) logx;!+ > x;log p;
i=1 i=1

To maximize it subject to the constraint, we should use a...




MLEs of Multinomial Cell Probabilities (2 T JoiE=R)

Suppose that X, ..., X, the countsincells 1, ..., m, follow a multinomial

distribution with a total count of n and cell probabilities p, . . ., Py,
We wish to estimate the p’s from the X’s. The joint distribution of Xy, ..., X, IS

n!
f@ o xnlpr e pw) = 5 [ P
b T e B " : l ke |Pn1p"’2..-pnr
Hxi! i=1 ‘nl!’ng!-“nr! 1 P2 r
i=1

X; are not independent (constrained to sum to n, meaning p; sum to 1). Log likelihood:

[(p1. ..., pw) =logn! =) logx;!+ > x;log p;
i=1 i=1

To maximize it subject to the constraint, we should use a... Lagrange multiplier, and
maximize, instead, /

L(pi,..., pm, ) =logn! — Zlogx,-! + Zx,- log p; + A ( pi — 1)
i=1 i=1 i=1

constraint



MLEs of Multinomial Cell Probabilities (2 T JoiE=R)

L(pi,..., pm,2) =logn! — Zlogx,-! —|—Zx,- log p; + A (pr — 1)
i=1 i=1 i=1

Setting the partial derivatives to 0, we find a system of equations:

A X j .
;= =, =1,...,m
Pj ) J
Summing both sides, —n
1= — A= —n
A
Finally... Not surprising at all! pi= atl
n

In some situations (e.g. frequently occur in genetics), the multinomial cell
probabilities are functions of other unknown parameters 9, that is, p;=p;(9).
The log likelihood of @ is

[(©) =logn! — > logx;!+ Y x;log p:(6)
i=1 i=1



MLEs of Multinomial Cell Probabilities (£ EJLHEZR)
Example: Hardy-Weinberg Equilibrium (Genetics)

il 8.5.1.1 (K- 4414 WRERMELFLENR, BaRERAL-BAR%ER, £H
B AA, Aa W aa TEREAEPHIAMBSARE (1 - 6)2, 201 —6) F 62. 7E 1937 FFHEFHBA
OBEKEAET, NEEEREMT, KF M N RLHRTUR:

m ;
M MN N , Bt
- 4 342 500 187 1029

=

BT 202=187/1029, 6=0.4263, {HEAREERSFIHE R, R4
Xl, Xz, Xg%%ﬂ?z/l\%fnﬁﬁm{ﬂﬂiﬁ, n=1029,

3
1(6) =logn! — ) log X!+ X1log(1 — 6)* + X2log 26(1 — 6) + X3log 6

i=1

3
=logn! — ) log Xi! + (2X; + X2)log(1 — 6) + (2X3 + X2)log 6 + X2 log 2

i=1

SO SO pi0) =1, R RN REIL



MLEs of Multinomial Cell Probabilities (2 T JoiE=R)

Example: Hardy-Weinberg Equilibrium (Genetics)
i FH 90, 153

b 2X5+ X»
O2X, 42X, 42X A 2=
2X,+ X, 2X3+ X, ! 2 3 2 6%=187/1029,
- + =0 2X3 + X, 6=0.4263
1-6 9 ==

_ 2x 1874500

= .4247
2 x 1029



MLEs of Multinomial Cell Probabilities (2 T JoiE=R)

Example: Hardy-Weinberg Equilibrium (Genetics)
i FH 90, 153

@ . 2X3 + XZ
22X, +2X, +2X A 2=
2X1 _|_ X2 2X3 _|_ X2 1 2 3 76 —187/10297
_ + =0 2X5+ Xo 60=0.4263
1—6 0 =
2n
2
_2x 187 4 500 _ 1047
2 x 1029
How precise is the estimate? How many digits should
be kept? Bootstrap!
Simulate many multinomial random variables with these T

probabilities and n=1029, and for each we form an
estimate of 6. Histograms are ~ sampling distribution.

100 - -

@ is unknown, we use 6 = .4247 in its place, cell
probabilities are .331, .489, .180.

1000 computer experiments, each has a 6*. Finally,
sp = .011

0.38 0.40 042 0.44 0.46




Large sample theory for MLEs

We will skip all the proofs of the theorems in this section.

Heuristically, we consider the case of an i.i.d. sample and a 1-d parameter.

10) = ) log f(xi]6)
i=l1
6 — true value = 6, estimate = 4

THEOREM A &4t

Under appropriate smoothness conditions on f, the mle from an i.1.d. sample is
consistent.

LEMMA A

Define 1(9) by | ((9) = = [|' ((9)]2

= —E[I" ()]

9 2
1(0)=FE [89 log f(XlQ)]

Under appropriate smoothness conditions on f, /(6) may also be expressed as

82
10) = —E [wlog f(X|9)}



Large sample theory for MLEs

The large sample distribution of a MLE is approximately Gaussian
-- mean = 0, , variance = 1/[n1 (6y)].

This is a limiting result that holds as the sample size — oo, we say that
- MLE is asymptotically unbiased

- variance of the limiting normal distribution = asymptotic variance of the mle

THEOREM B

Under smoothness conditions on f, the probability distribution of \/n 1 (6y) (@ —6p)
tends to a standard normal distribution.

At vicinity of 6,

The MLE is the maximizer of the log likelihood function large 1", small variance

[(6) = ) log f(Xil6)
i=l1

Log likelihood

The asymptotic variance is
1 1

1 (0) = E[I' ()] nl6)  EI"(60)
=-—F [l" ((9)] o0 2 2w 26 8 a0




Large sample theory for MLEs: multi-d

Multidimensional case is similar: now & is a vector
Mean of asymptotic distribution = vector of true parameters, 6.

Covariance of 6; and ; is given by the i entry of the matrix n~' 1~ (6y),
where the matrix | (6) has an ij component

E

d d 9*
5, 108 f(XIG)Bj‘,jlogf(Xlé?)] =—E [ae,-aej log f(X10)

Conditions for the above to hold:

- True parameter value, 6,, is required to be an interior point of the set of
all parameter values.
- (e.9.]0| =1, 05=1, inapplicable)

- The support of density/frequency function f (x|6) (the set of values for which
f (x|¢) > 0) does not depend on 6.
- (e.g. uniform distribution on [0, 4], inapplicable)



Confidence intervals from MLES

Recall that

- aconfidence interval for @ is an (random) interval based on the sample values
used to estimate 6.

- The probability of containing & is called the coverage probability of the interval.

Three methods for forming confidence intervals for MLES:
1. Exact methods
2. Approximations based on large sample properties of MLESs

3. Bootstrap confidence intervals

X —pu

X

P (—Z(Of/Z) < < z(a/2)> ~1 -«

fz)

|P(X = z(@/2)05 < 1 = X + 2(0/2)05) ~ 1 — ]

X [E 9 F#1E + i fE o TE 3\




Confidence intervals from MLESs: Exact methods

Example: Gaussian. First of all, let’s prove two important conclusions:

X4, X are independent N(u, ¢%) random variables. Sample mean and variance
2 1 " _
E E(X)=pn  Var(X) - \) — E (X )

i=1

The distribution of (n — 1)5% /o2 is the chi-square distribution with n — 1 degrees
(1)

of freedom.
Proof. X — u\? EXE’J gf/ﬁilz§§£$7§z§ E 1
= Z( ; o 1 2 R B i s

. 1 < -
Meanwhile, LHS = — ;[(Xs - X)+ (X - p)?

><|

2
Expanding the square, LHS = — Z(X -X)’ + ( ) Z(X - X)=0
— o/vn =1
| \
~ X2 S2~ 27 ~ xi

n

Y (X=X o? ~ o2

i=l1




Confidence intervals from MLESs: Exact methods

Example: Gaussian. First of all, let’s prove two important conclusions:

The distribution of (n — 1)5? /o2 is the chi-square distribution with n — 1 degrees

of freedom.
X —p\? - N2 A2 2
7 20 = 3o+ Sk 2= X0 o7 ~

In fact, W=U+V, S2and X are independent (a theorem), mgf M,=M M,

Mw(t) _ (1—2t)7"* — (1= 2t)~(r=1/2 %E:L%ER%THD%%
My(t) (1-2t)"1/2 TR, (n/2, 1/2)

My(t) =

EX: Z~N(0, 1), U~¢2, Z5U
Xk Aol/n o T

=~ X -1 Z/\/U/n~tn




Confidence intervals from MLESs: Exact methods

Example: Gaussian.
Confidence interval for .

Earlier in this lecture we found that MLEs from an i.i.d. normal sample are

~ 1 _
= X 52 = — J— 2
Z 6% = - E(Xl X)
: V(X — p)
Since S ~
Let t,_,(a/2) denote the point beyond which t,_, has probability o/2. igg;rtngt”c

P (—tn_l(oc/Z) < ﬁ(};— ) < tn_l(a/2)> =1-«a

_ S — S
P (X — Etn—l(a/Z) <pu<X+ \/—Etnl(a/2)> =1—-«




Confidence intervals from MLESs: Exact methods

Example: Gaussian. Confidence interval for ¢2.

12

no 5
Now that 5 7 Xn-1 1

Let ¥%.(a/2) denote the point > which x? has prob. a/2. 10

9_

2 ng’ 2
Pl —a/D) = — < gy @/2) | =1 -«

né? 5 né? 7L
P 5 <0< — =]1—«
Xn—](a/z) Xn—l(l — a/2) 50
AHFFRN
40
Simulation: Generate a random sample of size n=11 30
from Gaussian with 4=10, ¢°=9. Do 20 experiments.
Calculate 90% confidence intervals. 20

- 10% of the time true value falls outside? 1o

8_

simulation

;
—t
—

- LL:H)

Q
I
O




Confidence intervals from MLEs: Large sample theory

Exact methods are the exception rather than the rule in practice.

If i.i.d, we know the distribution of /T (6y)(6 — 6y) is approximately standard
normal.

6, is unknown, use () in place of I(6p).

In fact, the distribution of \/nI(0)(@ — 0y)is also approximately standard
normal.

P (—z(a/z) <\/nl©)©O —6) < z(a/2)> Xl -«

Confidence interval is

6+ z(xt/2)

1
Vnl(9)



Confidence intervals from MLEs: Large sample theory

Example: Poisson
MLE of X from a sample of size n from Poisson is r=X

For large samples, let’s calculate I1(A) first.

f(x|A) -- probability mass function of a Poisson variable with 2.

log f(x|A) = xlogA — A — log x!
2

d X
ﬁlogf(Xlk) =—2

92 ] E(X) 1
— A2 A

1) = —E [ﬁ log f(X|A)

Thus, an approximate 100(1 — o) % confidence interval for A is

—_ X
X:I:z(cx/2)\/;



Confidence intervals from MLEs: Large sample theory

Random multinomial counts: no longer i.i.d., variance of parameter estimate is
not 1/[n 1(0)]. But it can be shown that

1 1
E['(00)°]  EI"(00)]
Example: Hardy-Weinberg Equilibrium again.

2X X 2X X
l”(@) _ 1 + 2 . 3 + 2
(1—6)2 92

Since the X; are binomially distributed, we have

Var(f) ~

E(X,) = n(1 —0)?

E(X,) = 2n6(1 — ) E[l"®)] = ~81=0)
E(X3) = no’
Substitute @ with @, the standard error of @ : \
| AA 55 E B4 AR
Sp = —F——— = 90_9):011 sp = .011
A /_Iff(é) n ’ o6 — -

An ~95% confidence interval is
0 £ 1.96s;, or (.403, .447)



Confidence intervals from MLEs: Bootstrap

Suppose we know the distribution of A = 6 — 6,

f(z)
i

Denote a/2 and 1- a/2 quantiles by 8 and &

0 o N N o A & o
P — = = PO — 5H=1— = o o
PE<0—-0<8)=1—« e I I ST R

A z(p)

PO—-5<6,<0-8=1—« s .

If 8, is known, the distribution of 6 — 0, can be approximated arbitrarily well
by simulation: randomly generate many, many samples of observations with 6,
for each sample, record & — 6,. Once we have this distribution, determine &
and § as accurately as desired.

-- But 4, is unknown! No worries, use 6!

Generate many, many samples (say, B in all) from a distribution with value 0:
for each sample construct an estimate of 6, say 6*, j=1, 2,... ,B. Characterize
the distribution of 6*—8, the quantiles of WhICh then form an approximate
confidence interval.



Confidence intervals from MLEs: Bootstrap

Example. Hardy-Weinberg Equilibrium again.

Use bootstrap to find an ~95% confidence interval, then compare to results from

large-sample theory for MLEs.

We already did 1000 bootstrap estimates, ready to use.

The 25™ largest is .403, the 975! largest is .446: estimates of .025 and .975 quantiles.

6* — @ distribution? Subtract # = .425 from each 6;*

.025 and .975 gquantiles are estimated as
§d = .403 — 425 = —.022
5§ = .446 — 425 = .021

Our approximate 95% confidence interval is
O —35,0 —§) = (.404, .447)

REARH R4 AR (403, .447)

f(z)

0" —

b

7




Problem set #4

Consider simple random sampling with replacement.
a. Show that

s? = ! i(x,»—f)z

n—1~34
i=1

is an unbiased estimate of o2.

Is s an unbiased estimate of o ?

Show that n~'s? is an unbiased estimate of a%.

Show that n~! N?s? is an unbiased estimate of o'2.

Show that p(1 — p)/(n — 1) is an unbiased estimate of aif.

e =0T

Consider our old friend the regression line, for which we have values of ¥, measured
at given values of the independent variable X;. Our model is y(a, b) = ax + b and
assuming that the Y; have a Gaussian scatter, each term in the likelihood product is

Li(wl(a,b)) = exp | - 1= (;j; + b))

i.e. the residuals are (¥,—model), and our model has the free parameters (a, b).
Maximizing the log likelihood and show that the estimates should take the form of
the ordinary least square fit:
XY-XY — =
a—ﬁ_@?_, b=Y—aX




The Bayesian approach to
parameter estimation



