
The Bayesian approach to 
parameter estimation



From Lec 3
Three interesting examples -- 3. Bayesian Inference
A freshly minted coin has a certain probability of coming up heads if it 
is spun on its edge (may not be ½). Say, you spin it n times and see X 
heads. What has been learned about the chance Θ it comes up heads?

Posterior is Beta density, a=x+1, b=n−x+1.  

prior

posterior

Totally ignorant about it, we might represent our 
knowledge by a uniform density on [0, 1], the prior 
density 



Unknown parameter θ treated as a random variable
    -  Assumed to be continuous without loss of generality
    -  No longer an unknown constant as before!

Prior distribution fΘ(θ) represents what we know about it before observing data, X.

For a given value, Θ=θ, data have the probability distribution 

Joint distribution of X, Θ:

Basic thoughts



Unknown parameter θ treated as a random variable
    -  Assumed to be continuous without loss of generality
    -  No longer an unknown constant as before!

Prior distribution fΘ(θ) represents what we know about it before observing data, X.

For a given value, Θ=θ, data have the probability distribution 

Joint distribution of X, Θ:

Marginal distribution of X:

Distribution of Θ given data X:

Basic thoughts

Posterior distribution
= what’s known about 
Θ having observed data



Example: Poisson.

λ is an unknown parameter, with a prior distribution fΛ(λ). Data are n i.i.d. observations
X1,…,Xn are i.i.d. and Poisson for a given λ:

Their joint distribution given λ is the product of marginals:

Posterior distribution of Λ given X:

To evaluate posterior distribution, we have to do two things:

1. Specify prior distribution

2. Carry out the integration in denominator



Two Bayesians: “he” and “she”…
He is an orthodox Bayesian, takeing very seriously the model that the prior 
distribution specifies his prior opinion -- a meticulous approach.

n=23,   Σ xi=573



Two Bayesians: “he” and “she”…
He is an orthodox Bayesian, takeing very seriously the model that the prior 
distribution specifies his prior opinion -- a meticulous approach.

• Note: this specification should be done before seeing the data, X.
• He decides to quantify his opinion by specifying a prior mean μ1=15, σ=5, 
Gamma distribution (math will work out nicely!)

2nd moment is 

Parameters (λ→ν):

Prior distribution

Posterior density



Posterior mean

Posterior mode                          = 24.6

Variance of posterior distribution

It must be a gamma density!

Bayesian analogue of 90% confidence interval: 

Interval from the 5th percentile to the 95th 
percentile of the posterior, [23.02, 26.34]. 

A common alternative: use high posterior density 
(HPD) interval, i.e. a horizontal line cuts the density 
corresponding to 90% probability.



She is a more utilitarian Bayesian, believing that it is implausible that the 
mean count λ could be larger than 100. She uses a simple prior uniform 
on [0, 100], without trying to quantify her opinion more precisely.

Posterior density is 

Two Bayesians: “he” and “she”…

Statistician 1

Statistician 2Numerical evaluations: 

 - posterior mode = 24.9

 - posterior mean = 25.0

 - posterior standard deviation = 1.04. 

 - Interval from 5th to 95th percentile = [23.3, 
26.7] 

Gaussian-ish…
Why?



- Important: Her posterior density is directly proportional to the likelihood for 0 ≤ λ ≤ 
100, because prior is flat over this range.

- His prior opinion was inconsistent with data, but data strongly modified the prior to 
produce a posterior close to hers.

“he”             “she”
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100, because prior is flat over this range.
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Bayesian interpretation of the confidence intervals:
Λ is a random variable, “Given the observations, the probability that it is in the interval 
[23.3, 26.7] is 90%.” The interval refers to the state of knowledge about λ and not to λ itself. 
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- Important: Her posterior density is directly proportional to the likelihood for 0 ≤ λ ≤ 
100, because prior is flat over this range.

- His prior opinion was inconsistent with data, but data strongly modified the prior to 
produce a posterior close to hers.

Bayesian interpretation of the confidence intervals:
Λ is a random variable, “Given the observations, the probability that it is in the interval 
[23.3, 26.7] is 90%.” The interval refers to the state of knowledge about λ and not to λ itself. 

Frequentist framework:
Such a statement makes no sense, λ is a constant, it either lies in [23.3, 26.7] or doesn’t – no 
probability is involved. Before the data are observed, the interval is random, one can state 
that the probability that the interval contains the true value is 90%, but after the data are 
observed, nothing is random anymore. 

“he”             “she”



Example: Gaussian.
Replacing σ2 by ξ=1/σ2; ξ is called the precision; also using θ in place of μ,

Consider three cases:

1. Unknown mean, known variance
2. Unknown variance, known mean
3. Unknown mean, unknown variance

Case 1: precision is known, ξ = ξ0, mean θ is unknown (random variable Θ)
Prior distribution is                    , flat and uninformative when ξprior is small.

θ-dependent 
terms only 



Case 1: Unknown mean, known precision

                                                          二项式，肯定可以配方

Expand the terms and identify the coefficients of θ2, θ, 

Let’s find



Posterior density of θ is normal:
precision has increased (surely it should!)
posterior mean is a weighted combination of sample mean and prior mean.

Try to better understand it --  

Consider what happens when ξprior << nξ0, which would be the case if n 
were sufficiently large, or if ξprior were small (as for a very flat prior) 

Posterior mean (same as MLE)

Posterior precision
X-bar in non-
Bayesian setting

When a flat prior with very small ξprior is used, 



Case 2: Known mean, unknown precision
Precision is treated as a random variable Ξ, prior distribution 

Dependence on ξ indicates analytical convenience to specify the prior to be a 
gamma density. 

−1

−1



Case 3: Unknown mean, unknown precision
Bayesian approach requires specification of a joint 2-d prior distribution. For 
convenience we take the priors to be independent: 

Has to be done numerically… but often the primary interest is θ, good thing 
about Bayesian: θ marginalized

Recognizing Gamma density,

Gamma form



Still consider the case n is large or the prior is quite flat (α, λ, ξprior are small)

             maximize the posterior.
How is this related to MLE results?

Rearrange it,

We saw this in confidence interval for MLE (exact method)



We saw: if prior for a Poisson parameter is chosen to gamma, posterior is gamma. 
If prior for a normal mean with known variance is normal, then posterior is normal.
 

“Conjugate priors”: if the prior distribution belongs to a family G and, conditional 
on the parameters of G, the data have a distribution H, then G is conjugate to H if the 
posterior is in the family G. 

Prior, prior…

In scientific applications, it is usually desirable to use a flat, or “uninformative”, prior 
so that the data can speak for themselves. 

Even if a scientific investigator actually had a strong prior opinion, he or she might 
want to present an “objective” analysis so that the conclusions, as summarized in
the posterior density, are those of one who is initially unopinionated or unprejudiced. 

The objective prior thus has a hypothetical status: if one was initially 
indifferent to parameter values in the range in which the likelihood is large, 
then one’s opinion after observing the data would be expressed as a 
posterior proportional to the likelihood. 



If α and ν are very small, the gamma prior is quite flat and the posterior is proportional 
to the likelihood function. Formally, if α and ν are set equal to zero, then the prior is 

But this is not probability density, it does not integrate to 1!!!
Similarly, for a Gaussian prior, the precision is set to 0 to make the prior flat:

These are improper priors.

Using an improper prior may still lead to well-defined posterior density.

For the Poisson example, if 

Prior, prior… Improper?!

Resulting in a proper (Gamma) posterior



Prior, prior… Improper?!

(we used Gaussian, gamma)

Conditional on ξ, θ is normal with mean x-bar and precision nξ. 
By integrating out ξ, we can find the marginal distribution of θ and relate it to the 
t distribution as was done earlier. 

Only in the range where likelihood is large, the prior makes practical difference
— truncate the improper prior well outside this range to produce a proper prior 



We often see that posterior is nearly normal, mean=MLE, standard deviation close to 
asymptotic deviation of MLE. Why??

Posterior is

 

Large sample normal approximation to the posterior

If sample is large, posterior dominated by 
likelihood, prior is nearly flat where likelihood is 
large, Statistician 1

Statistician 2

Gaussian-ish…
Why?

MLE

Posterior is approximately normal with the 
mean = the MLE,     , and variance 
approximately equal to 



Efficiency and the 
Cramér-Rao lower bound



There are a variety of possible parameter estimates: sample mean estimate, method of 
moments, MLE… How would we choose which to use? Choose the one with a sampling 
distribution most highly concentrated about the true parameter value.

To define this aim operationally, we need to specify a quantitative measure of such 
concentration. Mean squared error is the most commonly used, largely because of its 
analytic simplicity. 

 

Efficiency and the Cramér-Rao lower bound

The variances are often of the form

In this case, interpreted as ratio of sample sizes necessary to obtain same variance 
for both estimates.



Example: Muon decay

Mean:

So the methods of moments estimate is

While MLE is the solution of this equation 

To find efficiency, need variances.   



Example: Muon decay

The asymptotic relative efficiency:



Example: Muon decay

- When α~0, MLE is not much better than 
moments

- As α tends to 1, MLE is increasingly better

- Note: we used the asymptotic variance of 
MLE, calculated an asymptotic relative 
efficiency

- To gain more precise information for a 
given sample size, conduct a simulation of 
the sampling distribution of MLE

- Simulation studies allow for analyzing the 
behavior of the bias as n and α vary (MLE 
is only asymptotically unbiased, there may 
be bias for a finite sample size)



In searching for an optimal estimate, we want to ask: 
Is there a lower bound for the MSE of any estimate? 

If it exists, it would function as a benchmark against which estimates could be 
compared. If our estimate achieves this lower bound, we know that it could not 
be improved upon. 

Answer: For unbiased estimates, Yes!

 

Cramér-Rao lower bound

Does it ring a bell to you?

I is the Fisher information metric



- A lower bound on the variance of any unbiased estimate is given
- An unbiased estimate whose variance achieves this bound is efficient
- Asymptotic variance of MLEs = the lower bound, MLEs are asymptotically efficient
- If n<∞, MLEs may be not efficient. Not the only asymptotically efficient estimates 

Cramér-Rao lower bound



- A lower bound on the variance of any unbiased estimate is given
- An unbiased estimate whose variance achieves this bound is efficient
- Asymptotic variance of MLEs = the lower bound, MLEs are asymptotically efficient
- If n<∞, MLEs may be not efficient. Not the only asymptotically efficient estimates 

Cramér-Rao lower bound

Example. Poisson distribution
Now we know for any unbiased estimate T of λ, based on an i.i.d. Poisson sample,

MLE of λ was found to be 

S follows a Poisson distribution with parameter nλ, Var(S) = nλ, 

But there could be a biased estimator of λ with a smaller mean squared error!



Sufficiency and theoretical 
support of using MLEs



Suppose X1, X2,…, XN is a sample from a probability distribution f (x|θ). 

Question: Is there a statistic, a function T(X1, X2,…, XN), that contains all the 
information in the sample about θ? 

If so, reduction of the original data to a statistics without loss of information is 
possible.

Sufficiency



Suppose X1, X2,…, XN is a sample from a probability distribution f (x|θ). 

Question: Is there a statistic, a function T(X1, X2,…, XN), that contains all the 
information in the sample about θ? 

If so, reduction of the original data to a statistics without loss of information is 
possible.

Sufficiency

Example. 
A sequence of Bernoulli trials with unknown probability of success, θ.
The total # of successes is sufficient, by intuition (e.g. order of successes adds 
nothing to it.)

Given T, the sufficient statistic, we can gain no more knowledge about θ from 
knowing more about the probability distribution of X1, X2,…, XN.



Sufficiency
Example. 

Numerator: t 1s and (n−t) 0s, probability

Denominator: total # of 1s is binomial with n trials. RHS is

Given the total # of 1s, the probability that they occur on any particular set 
of t trials is the same for any value of θ, so that set of trials contains no 
additional information about θ.



Motivation. The definition of sufficiency is hard to work with: 

- it does not indicate how to go about finding a sufficient statistic

- Given a candidate statistic, T, it is typically very hard to conclude whether it 
was sufficient due to the difficulty in evaluating the conditional distribution.

Sufficiency: A factorization theorem



Motivation. The definition of sufficiency is hard to work with: 

- it does not indicate how to go about finding a sufficient statistic

- Given a candidate statistic, T, it is typically very hard to conclude whether it 
was sufficient due to the difficulty in evaluating the conditional distribution.

Sufficiency: A factorization theorem

The factorization theorem provides a convenient means of identifying sufficient 
statistics.

Fisher–Neyman factorization theorem



Sufficiency: A factorization theorem
Example. 
Consider a sequence of independent Bernoulli random variables, X1, X2,…, Xn.

RHS depends only on x1, x2,…, xn through the sufficient statistic



Sufficiency: A factorization theorem
Example. 
Consider a random sample from a normal distribution, mean and variance unknown. 

Just a function of                                         sufficient statistics (2-dimensional).



Sufficiency: A factorization theorem



Theoretical support to use MLEs

The Rao-Blackwell theorem


