
Testing Hypotheses and
Assessing Goodness of Fit 



Starting with an example – Coins again

I have two coins, coin 0 has probability of heads =0.5, coin 1 has 0.7. 

I choose one of the coins, toss it 10 times and tell you # of heads, but 

do not tell you whether it was coin 0 or coin 1. 

On the basis of the number of heads, your task is to decide which coin 

it was. How should your decision rule be?

X= # of heads

The likelihood ratio —

We observed 2 heads, P0(2)/P1(2)~30, coin 0 favored. 

We observed 8 heads, P0(8)/P1(8)~ 0.2, coin 1 favored. 



Starting with an example – Coins again

Specify 2 hypotheses and develop a Bayesian methodology:

H0 : Coin 0 was tossed          H1 : Coin 1 was tossed

Prior probabilities: P(H0) and P(H1).  Maybe  

Posterior probabilities

… and the ratio

The evidence provided by the data is contained in the likelihood ratio.

Prior ratio times likelihood ratio



Starting with an example – Coins again

X decreases, H0 increasingly favored; X increases, H1 increasingly favored.

If                                         then:

0-6 heads, H0 more probable; 7-10 heads, H1 more probable. 

Which one to choose? Larger posterior probability!

Choose H0 if 

Likelihood ratio

Critical value c depends on priors. Your decision is based on likelihood ratio: 

accept H0 if likelihood ratio > c, reject H0 if likelihood ratio < c.



Starting with an example – Coins again

Consequences of a particular decision rule… suppose c=1.

0-6 heads, H0 accepted; 7-10 heads, H0 rejected. 

Two possible errors: Reject H0 when it’s true, accept H0 when it’s false.

Likelihood ratio 1



Starting with an example – Coins again

Consequences of a particular decision rule… suppose c=1.

0-6 heads, H0 accepted; 7-10 heads, H0 rejected. 

Two possible errors: Reject H0 when it’s true, accept H0 when it’s false.

Now say c = 0.1,                                   :

0-8 heads, H0 accepted; 9-10 heads, H0 rejected – more extreme rejection evidence 

Likelihood ratio
0.1

c controls the tradeoff between the probabilities of the two types of errors. 

1



The Neyman-Pearson paradigm

Classically, Neyman & Pearson formulated hypothesis testing by casting it as a 

decision problem and making the 2 types of errors central (no prior needed)

An asymmetry is introduced: 

null hypothesis H0 vs. alternative hypothesis H1/HA （原假设，备择假设）.

Standard terminology:

• Rejecting H0 when it is true is called a type I error.

• Probability of a type I error = the significance level of the test, denoted by α.

• Accepting H0 when it is false is called a type II error and its probability is β.

• Probability that H0 is rejected when it is false is the power（势） of the test = 1−β.

• The likelihood ratio or # of heads above, is the test statistic （检验统计量）.

• The set of values of the test statistic leading to rejection of H0 is the rejection region, 

the set of values leading to acceptance is the acceptance region （接受/拒绝域）.

• The probability distribution of the test statistic when H0 is true is the null 

distribution （原分布，零分布）. 

“错杀”

“错放”



The Neyman-Pearson Lemma

• Accepting H0 when it is false is called a type II error and its probability is β.

• Probability that H0 is rejected when it is false is the power of the test = 1−β.

A simple hypothesis completely specifies the probability distribution.

e.g. binomial (10, 0.5) or binomial (10, 0.7) in our example.

For simple hypotheses, basing the test on the likelihood ratio is optimal!



The Neyman-Pearson Paradigm

Rejection:                                , 

• Null distribution of     is Gaussian with mean=μ0, variance=σ2/n.

Neyman-Pearson Lemma: among all tests with significance level α, the test

that rejects for small values of the likelihood ratio is most powerful.



The Neyman-Pearson Paradigm

Unfortunately, N-P Lemma is of little direct utility in most practical problems, the 

case of testing a simple null hypothesis vs. a simple alternative is rarely encountered. 

A composite hypothesis does not completely specify the probability distribution.

Example. Goodness-of-fit test

X1,…,Xn is a sample from a discrete probability distribution.

H0 : distribution is Poisson, with some unspecified mean (composite hypothesis)

H1 : distribution is NOT Poisson (composite hypothesis)



Neyman-Pearson approach has the strength that only the distribution

under H0  is needed in order to construct a test.

Large T supports H1, so rejection region has the form {T ≥ t0}, t0 is chosen

so that P(T ≥ t0 |H0) = the desired significance level of the test α. 

No need to specify the probability distribution under H1, but only notice that if H1

is true, the subject would correctly identify more suits than if purely guessing. 

In comparison, a fully Bayesian treatment would have to specify the distribution 

under the alternative as well as prior probabilities. 

Specification of the significance and the concept of a p-value



Criticism of the paradigm:

- How to choose α? The theory requires the specification of α, in advance

of analyzing the data, but gives no “how-to” guidance. 

- In practice it is almost always the case that the choice of α is essentially 

arbitrary, but is heavily influenced by custom. Small values, such as 0.01 and 

0.05, are commonly used.

- It is built on the assumption that one must either reject or not reject a 

hypothesis, when typically no such decision is actually required. The theory is 

thus often applied in a hypothetical manner. 

Specification of the significance and the concept of a p-value

Example: the subject above guessed the suit correctly 9 times. Since P(T ≥9|H0) = 

0.041, H0 would have been “rejected” at the significance level α = .05. 

A p-value is defined to be the smallest significance level at which H0 would be 

rejected. (p-value = 0.041 here.) 

Ronald Fisher: p-value is the probability under H0 of a result as or more extreme 

than that actually observed (e.g. chance of getting at least 9 correct by guessing).



There is an asymmetry in the Neyman-Pearson paradigm between the null 

and alternative hypotheses.

- It is conventional to choose the simpler of two hypotheses as the null, e.g. H0: 

distribution is Poisson, H1: it is not Poisson.

- The consequences of incorrectly rejecting one hypothesis may be graver than 

the other -- the former should be chosen as H0, because the probability of falsely 

rejecting it could be controlled by choosing α (e.g. screening new drugs). 

- In scientific investigations, the null hypothesis is often a simple explanation that

must be discredited in order to demonstrate the presence of some physical 

phenomenon or effect (科学精神是质疑，如超能力检验的例子：）The 

validity of the null hypothesis (purely guessing) would not be cast in doubt 

unless the results would be extremely unlikely under the null. 

Notes on the null hypothesis



Generalized Likelihood Ratio 
Tests



The likelihood ratio test is optimal for simple vs. simple hypotheses. 

Generalized likelihood ratio tests are for use when hypotheses are not simple. 

They are not generally optimal, but are typically non-optimal in situations where no 

optimal test exists, and they usually perform reasonably well. 

Wide utility, plays the same role in testing as MLE’s do in estimation.

Generalized likelihood ratio tests



The likelihood ratio test is optimal for simple vs. simple hypotheses. 

Generalized likelihood ratio tests are for use when hypotheses are not simple. 

They are not generally optimal, but are typically non-optimal in situations where no 

optimal test exists, and they usually perform reasonably well. 

Wide utility, plays the same role in testing as MLE’s do in estimation.

- Suppose that the observations X = (X1, . . . , Xn) have a joint distribution f (x|θ). 

- H0 may specify that θ∈ω0, where ω0 is a subset of the set of all possible θ values

- H1 may specify that θ∈ω1, where ω1 is disjoint from ω0. 

- Let Ω = ω0∪ω1. 

- A plausible measure of the relative tenability of the hypotheses is the ratio of their 

likelihoods. 

- Generalized likelihood ratio: discredit H0 if small
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The likelihood ratio test is optimal for simple vs. simple hypotheses. 

Generalized likelihood ratio tests are for use when hypotheses are not simple. 

They are not generally optimal, but are typically non-optimal in situations where no 

optimal test exists, and they usually perform reasonably well. 

Wide utility, plays the same role in testing as MLE’s do in estimation.

- Suppose that the observations X = (X1, . . . , Xn) have a joint distribution f (x|θ). 

- H0 may specify that θ∈ω0, where ω0 is a subset of the set of all possible θ values

- H1 may specify that θ∈ω1, where ω1 is disjoint from ω0. 

- Let Ω = ω0∪ω1. 

- A plausible measure of the relative tenability of the hypotheses is the ratio of their 

likelihoods. 

- Generalized likelihood ratio: discredit H0 if small

- In practical, use, instead,                                and note

- Rejection region: small values. 

Generalized likelihood ratio tests



Example. Testing a normal mean.

Numerator of likelihood ratio:

Denominator: ???

Generalized likelihood ratio tests



Example. Testing a normal mean.

Numerator of likelihood ratio:

Denominator:

(MLE: μ=    ) 

Likelihood ratio statistic is

Rejection region is small Λ values, or large

Generalized likelihood ratio tests



Rejection region is small Λ values, or large

Generalized likelihood ratio tests

Q: What is its distribution?



Rejection region is small Λ values, or large

Construction of a rejection region for any significance level α: the test rejects when

Rejection region is 

Generalized likelihood ratio tests



Rejection region is small Λ values, or large

Construction of a rejection region for any significance level α: the test rejects when

Rejection region is 

Generalized likelihood ratio tests

Wait! This is actually very obvious!

The test does not reject when μ0 lies in a 100(1−α)% confidence interval for μ. 



So far so good, but…

In order for the likelihood ratio test to have the significance level α, λ0 must be 

chosen so that P(Λ ≤ λ0)=α if H0 is true. 

- If the sampling distribution of Λ under H0 is known, we can determine λ0. 

- Generally, the sampling distribution is not of a simple form, what to do?
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A theorem as the basis for an approximation to the null distribution: 

Generalized likelihood ratio tests

Dim Ω and dim ω0 are # of free parameters under Ω and ω0, respectively.



So far so good, but…

In order for the likelihood ratio test to have the significance level α, λ0 must be 

chosen so that P(Λ ≤ λ0)=α if H0 is true. 

- If the sampling distribution of Λ under H0 is known, we can determine λ0. 

- Generally, the sampling distribution is not of a simple form, what to do?

A theorem as the basis for an approximation to the null distribution: 

Generalized likelihood ratio tests

Dim Ω and dim ω0 are # of free parameters under Ω and ω0, respectively.

The above Gaussian example: 

- H0 completely specifies μ and σ2, dim ω0 = 0

- Under Ω, σ is fixed, μ is free, dim Ω = 1

- Null distribution of −2 log Λ is approximately (exactly!) 



Generalized likelihood Ratio Tests for the Multinomial Distribution 

H0 specifies that p = p(θ), θ∈ω0, θ is a parameter (may be unknown);

H1 cell probabilities are free except that they are nonnegative and sum to 1.

# of cells is m, Ω is the set consisting of m nonnegative numbers summing to 1.

Likelihood ratio’s numerator is maximized when the MLE     is in place of θ:

Probabilities are unrestricted under Ω, denominator is maximized by the 

unrestricted MLE’s,



Generalized likelihood Ratio Tests for the Multinomial Distribution 

- Under Ω, cell probabilities are free but summing to 1, so dim Ω=m−1

- Under H0, probabilities            depend on a k-dimension parameter θ, dim ω0=k

- The large sample distribution of −2 log Λ is chi-square with dof=m−k−1.

Pearson’s chi-square statistic is commonly used to test for goodness of fit



Pearson’s chi-square test 

Pearson’s statistic & likelihood ratio are asymptotically equivalent under H0.

But Pearson’s chi-square test is easier in calculation and more widely used.

If H0 is true, n is large,                     Taylor series expansion of the function about x0 is

So,   

0, because Σp=1

Likelihood ratio



Pearson’s chi-square test: examples 

Hardy-Weinberg Equilibrium. Let’s test whether the model fits the data. 

MLE for θ gives                       multiplying the resulting probabilities by sample size 

n=1029, calculate expected counts, compare with observations:   

H0: multinomial distribution is as specified by the H-W frequencies, unknown θ

H1: multinomial distribution does not have probabilities of that specified form



Pearson’s chi-square test: examples 

Hardy-Weinberg Equilibrium. Let’s test whether the model fits the data.

Significance level for the test, α（“错杀”概率）, set to be 0.05 for no reason.

Large sample: −2 log Λ ~ χ2 (theorem), −2 log Λ ~ Pearson X2, so Pearson X2 ~ χ2

D.o.f. = dim Ω (3 cells − constraint of summing to 1) − dim ω0 (1 parameter) = 1

The upper 5% of χ2
1 is 3.84, so the test rejects if X2 > 3.84. 

Let’s calculate X2:                                                            So H0 is not rejected.



Pearson’s chi-square test: examples 

Hardy-Weinberg Equilibrium. Let’s test whether the model fits the data.

Significance level for the test, α（“错杀”概率）, set to be 0.05 for no reason.

Large sample: −2 log Λ ~ χ2 (theorem), −2 log Λ ~ Pearson X2, so Pearson X2 ~ χ2

D.o.f. = dim Ω (3 cells − constraint of summing to 1) − dim ω0 (1 parameter) = 1

The upper 5% of χ2
1 is 3.84, so the test rejects if X2 > 3.84. 

Let’s calculate X2:                                                            So H0 is not rejected.

Again, no reason to choose α=0.05, and why should we have to make the decision? 

Let’s use p-value instead! (smallest significance level at which H0 would be rejected).

Probability that a chi-square random variable ~χ2
1 is ≥0.0319 is 0.86=p-value:

if the model was correct, deviations this large or larger would occur 86% of the time.



Pearson’s chi-square test: examples 

Hardy-Weinberg Equilibrium. Let’s test whether the model fits the data.

Significance level for the test, α（“错杀”概率）, set to be 0.05 for no reason.

Large sample: −2 log Λ ~ χ2 (theorem), −2 log Λ ~ Pearson X2, so Pearson X2 ~ χ2

D.o.f. = dim Ω (3 cells − constraint of summing to 1) − dim ω0 (1 parameter) = 1

The upper 5% of χ2
1 is 3.84, so the test rejects if X2 > 3.84. 

Let’s calculate X2:                                                            So H0 is not rejected.

Again, no reason to choose α=0.05, and why should we have to make the decision? 

Let’s use p-value instead! (smallest significance level at which H0 would be rejected).

Probability that a chi-square random variable ~χ2
1 is ≥0.0319 is 0.86=p-value:

if the model was correct, deviations this large or larger would occur 86% of the time.

- Likelihood ratio test statistic is the same:



Pearson’s chi-square test: examples 

Hardy-Weinberg Equilibrium. Let’s test whether the model fits the data.

Significance level for the test, α（“错杀”概率）, set to be 0.05 for no reason.

Large sample: −2 log Λ ~ χ2 (theorem), −2 log Λ ~ Pearson X2, so Pearson X2 ~ χ2

D.o.f. = dim Ω (3 cells − constraint of summing to 1) − dim ω0 (1 parameter) = 1

The upper 5% of χ2
1 is 3.84, so the test rejects if X2 > 3.84. 

Let’s calculate X2:                                                            So H0 is not rejected.

Again, no reason to choose α=0.05, and why should we have to make the decision? 

Let’s use p-value instead! (smallest significance level at which H0 would be rejected).

Probability that a chi-square random variable ~χ2
1 is ≥0.0319 is 0.86=p-value:

if the model was correct, deviations this large or larger would occur 86% of the time.

- Likelihood ratio test statistic is the same:

- Actual max likelihood ratio                                              So H-W model is almost 

as likely as the most general possible model!



Pearson’s chi-square test: examples 

Bacterial clumps. Let’s test whether Poisson fits the data.

MLE gives us Poisson model with



Pearson’s chi-square test: examples 

Bacterial clumps. Let’s test whether Poisson fits the data.

MLE gives us Poisson model with

H0: Poisson, H1: multinomial

Chi-square statistic is X2=75.4, dof=dim Ω (8−1)−dim ω0(1) = 6.

Null hypothesis is conclusively rejected (p-value<0.005).

Reason: too many small counts and large counts to be Poisson.


