
The likelihood ratio test is optimal for simple vs. simple hypotheses. 
Generalized likelihood ratio tests are for use when hypotheses are not simple. 

They are not generally optimal, but are typically non-optimal in situations where no 
optimal test exists, and they usually perform reasonably well. 

Wide utility, plays the same role in testing as MLE’s do in estimation. 

- Suppose that the observations X = (X1, . . . , Xn) have a joint distribution f (x|θ). 
- H0 may specify that θ∈ω0, where ω0 is a subset of the set of all possible θ values
- H1 may specify that θ∈ω1, where ω1 is disjoint from ω0. 
- Let Ω = ω0∪ω1. 
- A plausible measure of the relative tenability of the hypotheses is the ratio of their 

likelihoods. 

- Generalized likelihood ratio: discredit H0 if small

- In practical, use, instead,                                and note

- Rejection region: small values. 

Generalized likelihood ratio tests



So far so good, but…

In order for the likelihood ratio test to have the significance level α, λ0 must be 
chosen so that P(Λ ≤ λ0)=α if H0 is true. 
- If the sampling distribution of Λ under H0 is known, we can determine λ0. 
- Generally, the sampling distribution is not of a simple form, what to do?

A theorem as the basis for an approximation to the null distribution: 

Generalized likelihood ratio tests

Dim Ω and dim ω0 are # of free parameters under Ω and ω0, respectively.

The above Gaussian example: 
- H0 completely specifies μ and σ2, dim ω0 = 0
- Under Ω, σ is fixed, μ is free, dim Ω = 1
- Null distribution of −2 log Λ is approximately (exactly!) 



Generalized likelihood Ratio Tests for the Multinomial Distribution 
H0 specifies that p = p(θ), θ∈ω0, θ is a parameter (may be unknown);
H1 cell probabilities are free except that they are nonnegative and sum to 1.
# of cells is m, Ω is the set consisting of m nonnegative numbers summing to 1.

Likelihood ratio’s numerator is maximized when the MLE     is in place of θ:

Probabilities are unrestricted under Ω, denominator is maximized by the 
unrestricted MLE’s,



Generalized likelihood Ratio Tests for the Multinomial Distribution 

- Under Ω, cell probabilities are free but summing to 1, so dim Ω=m−1
- Under H0, probabilities            depend on a k-dimension parameter θ, dim ω0=k
- The large sample distribution of −2 log Λ is chi-square with dof=m−k−1.

Pearson’s chi-square statistic is commonly used to test for goodness of fit



Pearson’s chi-square test 

Pearson’s statistic & likelihood ratio are asymptotically equivalent under H0.
But Pearson’s chi-square test is easier in calculation and more widely used.

If H0 is true, n is large,                     Taylor series expansion of the function about x0 is

So,   

0, because np=1

Likelihood ratio



Pearson’s chi-square test 

Because in general, you cannot make it even more general/fuzzy/vague…

Okay, but why do we choose multinomial distribution as H1?

H0: Any “real” distribution = all the parameters pi describing data in each bin are 
strongly correlated.

H1: Multinomial distribution = almost no correlation between the parameters pi  
describing data in each bin, # of parameters = # of outcomes − 1. Way too many!

E.g. Poisson: all pi’s are determined by 
a single parameter.



Poisson Dispersion test
Likelihood ratio test, Pearson’s chi-square test are w.r.t. the general form of H1: cell 
probabilities are completely free (that’s why they are so useful). 
But if one has a specific H1 in mind, better power may be obtained by testing against 
that H1 rather than against a more general alternative. 

Poisson dispersion test is w.r.t. H0: a distribution is Poisson.

Key assumptions (the rate is constant, the counts in one interval of time or space 
are independent of the counts in disjoint intervals) are often not met.
 

- Count insects on leaves of plants. Different sizes, various locations on different 
plants; rate of infestation may well not be constant over the different locations.

- If insects hatched from eggs that were deposited in groups, then clustering of 
insects and the independence assumption might fail. 

- Motor vehicle counts for traffic studies typically vary cyclically over time. 

Background and the need for it:



Poisson Dispersion test
Given counts x1,…,xn.
H0: Counts are Poisson with the common parameter λ.     (ω0)
H1: Counts are Poisson but with different rates, λ1,…, λn.  (Ω)

MLE for ω0:                     MLE for Ω:       = xi 

D.o.f.=dim Ω−dim ω0=n−1(Taylor expansion)                                    =  n

Sensitive to (=has high power against) alternatives that are overdispersed relative to 
Poisson (e.g. negative binomial distribution.)
The ratio            is sometimes used as a measure of clustering of data. 



Poisson Dispersion test
Example.

Poisson dispersion test:                                     Likelihood ratio test:

D.o.f.=23−1=22, p-value=0.21 

The evidence against the null hypothesis is not persuasive. 



Pearson’s chi-square test: examples 
Bacterial clumps. Let’s test whether Poisson fits the data.
 

MLE gives us Poisson model with

H0: Poisson, H1: multinomial
Chi-square statistic is X2=75.4, dof=dim Ω (8−1)−dim ω0(1) = 6.
Null hypothesis is conclusively rejected (p-value<0.005).

Reason: too many small counts and large counts to be Poisson.



Poisson Dispersion test
Example. (细菌凝块)

Under H0, T ~ chi-square distribution with d.o.f.=399. 
Chi-square with d.o.f. m = sum of m independent N(0, 1) squared, 
CLT says for large m it is ~normal. 

Chi-square: mean = d.o.f., variance = 2 d.o.f., p-value can be found by 
standardizing the statistic:

Poission doesn’t fit!



Informal (graphical) 
techniques for assessing 

goodness of fit



Hanging Rootograms



Probability plots
Extremely useful graphical tool for qualitatively assessing the fit of data to a theoretical 
distribution. 

Consider a sample of size n from a uniform distribution on [0, 1]. Denote the ordered 
sample values by X(1)<X(2)· · · <X(n) (called order statistics).

Question: What is the expectation of X(j)?

Make a guess!



Probability plots
Extremely useful graphical tool for qualitatively assessing the fit of data to a theoretical 
distribution. 

Consider a sample of size n from a uniform distribution on [0, 1]. Denote the ordered 
sample values by X(1)<X(2)· · · <X(n) (called order statistics).

The expectation of X(j) is

Plot the ordered observations X(1),…, X(n) 
against their expected values 1/(n+1), . . . , 
n/(n+1), in the case of a uniform distribution, 
it must be roughly linear. 



Probability plots
Now suppose Y=U1/2+U2/2, then Y’s distribution is (by convolution) triangular:

Generate Y1 to Yn, plot Y(1) to Y(n) against the points 1/(n+1), . . . , n/(n+1).

Data = triangular, theory = uniform, 
plot deviates from linearity:

- Left tail: order statistics > expected 
for a uniform distribution

- Right tail: opposite

- Tails are lighter than uniform



Probability plots
The technique can be extended to other continuous probability laws this way: 
If X is a continuous random variable with a strictly increasing cdf, FX, and if Y = FX 
(X), then Y has a uniform distribution on [0, 1]. 

The transformation Y = FX (X) is known as the probability integral transform. 

Procedure: Suppose X is hypothesized to follow a certain distribution with cdf F. 
Given a sample X1,…, Xn, we plot

(e.g. normal)
μ=location parameter
σ=scale parameter

Or the result would be approximately a straight line if 
the model were correct: 



Probability plots
Slight modifications of the procedure are sometimes used:

This is because it can be shown that

So we can plot             X(k) vs. E(X(k))     --  back to our first uniform example.

Viewed from another perspective: 

F−1[k/(n + 1)] is the k/(n + 1) quantile of the distribution F, the point such that the 
probability that a random variable with cdf F is less than it is k/(n + 1). 

We are thus plotting the ordered observations (can be viewed as the observed or 
empirical quantiles) versus the quantiles of the theoretical distribution. 



Probability plots: examples

Theoretical model=Gaussian, plot is close to straight line, a qualitatively good fit.

Use cautions: 
- Probability plots are by nature monotonically increasing and they all tend to look fairly 

straight. Some experience is necessary in gauging “straightness.” 
- Simulations are very helpful in sharpening one’s judgment 

A set of 100 observations, which are Michelson’s determinations of the velocity of light made 
from June 5, 1879 to July 2, 1879; 299,000 has been subtracted from the determinations to give 
the values listed [Stigler (1977)]: 



Probability plots: examples

Its tails die off at the rate exp(-|x|), slower 
than Gaussian, exp(-x2). 

Plot bends down at the left and up at the 
right: observations in the left tail more 
negative than expected for Gaussian, 
observations in the right tail more positive.

The extreme observations were larger in 
magnitude than extreme observations
from a Gaussian. 

The tails of the double exponential are 
“heavier” than those of a Gaussian.

Nonnormal distributions. Below is a normal probability plot of 500 pseudorandom 
variables from a double exponential distribution: 



Probability plots: examples

Bowlike – skewed/nonsymmetric.

Nonnormal distributions: Gamma. 500 pseudorandom numbers from a gamma 
distribution with scale parameter λ=1, shape parameter α=5.



Gamma probability plot of the precipitation amounts.
A computer was used to find the quantiles of a gamma distribution with parameter α = .471 and 
λ = 1. The plot is observed sorted values of precipitation versus the quantiles. 

Probability plots: examples

Qualitatively, the fit is 
reasonable, there is no gross 
systematic deviation from a 
straight line. 

Probability plots for grouped data （分组数据）. Suppose that the grouping gives the 
points x1,…, xm+1 for the histogram’s bin boundaries and that in the interval [xi , xi+1) there 
are ni counts, where i = 1, . . . , m. We denote the cumulative frequencies by                  Then 
N1 < N2 < · · · < Nm and Nm = total size n. One can plot 



Summarizing data



Methods of describing and summarizing data that are in the form of one or more 
samples, or batches. These procedures often generate graphical displays, are useful 
in revealing the structure of data. 

In the absence of a stochastic model, the methods are useful for purely descriptive 
purposes. If it is appropriate to entertain a stochastic model, the implications of 
that model for the method are of interest. 

“Sample”: xi are i.i.d. with some distribution function
“Batch”: imply no such commitment to a stochastic model 

Suppose x1,…, xn is a batch of numbers. The empirical cdf (ecdf) is defined as

Denote the ordered batch of numbers by x(1)≤x(2)≤… ≤x(n). 
Then if x≤x(1), Fn(x)=0; if x(1)≤x<x(2), Fn(x)=1/n, if x(k)≤x≤x(k+1), Fn(x)=k/n…

Single observation with value x, Fn has a jump of height 1/n at x; 
r observations with same value x, Fn has a jump of height r/n at x

F(x) gives the probability that X ≤ x 
Fn(x) gives the proportion of the collection of numbers less than or equal to x 

Empirical cdf



Example: White, Riethof & Kushnir (1960) 蜂蜡化学性质的研究数据，研究目
的是通过一些化学试验，探测蜂蜡中人造蜡的存在（影响熔点）。作者得到
59个纯蜂蜡的样本，熔点（摄氏度）如下：

Empirical cdf: example.

Conveniently summarizes the natural 
variability in melting points.

We see about 90% of the samples had 
melting points < 64.2◦C, about 12% 
had melting points < 63.2 ◦C.



Elementary statistical properties of the ecdf in the case in which X1, . . . , Xn is a 
random sample from a continuous cdf, F: 

It is convenient to express Fn as: 

Empirical cdf: example.

In fact, the random variables I(−∞,x](X) are independent Bernoulli random variables:

As an estimate of F(x), Fn(x) is unbiased and has a maximum variance at that value
of x such that F(x) = 0.5, that is, at the median. As x becomes large or small, the 
variance tends to zero.



We considered Fn for fixed x, but much deeper analysis focuses on the stochastic 
behavior of Fn as a random function (consider all x values simultaneously).

Surprisingly, it turns out that the following does not depend on F if F is 
continuous!

This result forms the foundation of the famous and extremely widely used 
Kolmogorov-Smirnov test:

This maximum difference corresponds to a unique p-value (ready from mathematician) 
for rejecting the hypothesis that the two (e)cdfs are from the same distribution.

1-sample K-S test: data vs. model 2-sample K-S test: data vs. data



Quantile-quantile (Q-Q) plots are useful for comparing distribution functions. 
The pth quantile of the distribution was defined before as

In a Q-Q plot, the quantiles of one distribution vs. those of another. 
F(x): model for data of a control group; G(y): model for data of a treatment group.

Simplest effect #1: increase expected response of every member of the treatment group 
by the same h. Then yp = xp + h, Q-Q plot is a straight line with slope 1, intercept h. 
Cdf’s relation:

Simplest effect #2: The response is multiplied by a constant c. Then the quantiles are 
related as yp = c xp , Q-Q plot is a straight line with slope c, intercept 0. Cdf’s relation



The effect of a treatment can be much more complicated

- an educational program that places very heavy emphasis on elementary 
skills  may be a treatment that benefits weaker individuals but harm stronger 
individuals. 

Given a batch of numbers, or a sample from a pdf, quantiles are constructed 
from the order statistics. Given n observations and the order statistics X(1), . . . , 
X(n), the k/(n+1) quantile of data is assigned to X(k). → we did this for 
probability plots to informally assess goodness of fit.

Quantile-quantile plots

To compare two batches of n numbers with order statistics X(1), . . . , X(n) and
Y(1), . . . , Y(n), a Q-Q plot is simply constructed by plotting the points (X(i), Y(i)). 

If the batches are of unequal size, an interpolation process can be used. 



Quantile-quantile plots

加法效应 乘法效应

臭氧：最高分位值
在平日，其他所有
分位值周日较大

CO, NO, 气雾剂：
分位数差别随浓度
的增大而增大

太阳辐射：极高和
极低的分位数在周
日和平日近同



Histograms, density curves, 
stem-and-leaf plots



…displays the shape of the distribution of data values in the same sense that a 
density function displays probabilities.

- The range of data is divided into intervals/bins, plot counts OR proportion 
of the observations falling in each bin.

- Often recommended: plot the proportion of observations falling in the bin 
divided by the bin width, then the area under the histogram is 1.

Histograms

Bin width:
- Too small: histogram too 

ragged

- Too wide: oversmoothed 
and obscured

- Usually made subjectively 
in an attempt to strike a 
balance…



- frequently used to display data for which there is no assumption of any 
stochastic model 

- or, may be viewed as an estimate of the probability density: regarded in this 
sense, the histogram suffers from not being smooth…

Histograms

How to construct a smooth probability density estimate?

Let w(x) be a nonnegative, symmetric weight function, centered at zero, 
integrating to 1 (e.g. standard normal density). A rescaled version of w is

h→0, concentrated and peaked about zero. h→∞, spread out and flatter.
If w is standard normal, wh(x) is normal density with standard deviation h. 
If X1, . . . , Xn is a sample from pdf f, an estimate of f is

Called a kernel probability density estimate.



Histograms

A kernel probability density estimate consists of “hills” centered on the 
observations. If w is standard normal, wh(x−Xi) is normal with parameters Xi, h

h controls the bandwidth of the estimating function, controls its smoothness 
and corresponds to the bin width of the histogram.

h too small

Good

h too wide

“Smoothing kernel”



Stem-and-leaf plots
- One disadvantage of a histogram or a probability density estimate is that 

information is lost; neither allows the reconstruction of the original data. 
- A histogram does not allow for calculating a statistic such as a median; one can

tell which bin but not the actual value. 

Tukey (1977): stem-and-leaf plots convey info about shape while retaining the 
numerical info. Easy for human AND computers.

列1：累计个数（至中位数，双向）

列2：每个茎的叶数

列3：数据X10的整数

列4：数据X10后的小数

Shape inform
ation



Measures of location



Measures of Location

Let us discuss simple numerical summaries of data that are useful when there is not 
enough data to justify constructing a histogram or an ecdf, or when a more concise 
summary is desired. 

A measure of location is a measure of the center of a batch of numbers.

- If data result from different measurements of the same quantity, it is used in the 
hope that it is more accurate than any single measurement

- Otherwise, used as a simple summary of data

- The arithmetic mean

- The median

- The trimmed mean

- M estimates



The arithmetic mean

The most commonly used measure of location

Example: A set of 26 measurements of the heat of sublimation of platinum (铂) 
from an experiment (Hampson & Walker, 1961). 

A common statistical model for the variability of a measurement process is 



The arithmetic mean

When observations are acquired sequentially, it is often informative to plot them in 
order: most striking aspect is the presence of five extreme observations that 
occurred in groups of three and two (outliers). 

- improperly calibrated equipment
- Recording and transcription errors by equipment malfunctions
- Careful reexamination of data and circumstances
- But are often unexplainable aberrations

Is our model for measurement error 
appropriate for this data set?

The outliers occur in groups of 2 
and 3, rather than being randomly 
scattered, making the independence 
model somewhat implausible. 



The arithmetic mean

Arithmetic mean is 137.05… look at 
the stem-and-leaf plot!
Clearly not a good descriptive measure 
of the “center” of this batch of 
numbers.

If the data are modeled as a sample from a probability law, an approximate 
100(1−α)% confidence interval for the population mean can be obtained from CLT:

Blindly applying it to data, with α=0.05, we find (135.3, 138.8). Look at the plot!

By changing a single number, arithmetic mean can become arbitrarily large or 
small. Need careful attention!!

When data are automatically acquired, stored as files on disks, and not visually 
examined, this danger increases. 

Need measures of location that are robust, insensitive to outliers.



The median

Sample size is odd, median = middle value of the ordered observations
Sample size is even, median = average of the two middle values

Moving extreme observations does not affect the median at all! Very robust.
(above example: median=135.1)

When the data are a sample from a continuous probability law, the sample median 
can be viewed as an estimate of the population median, η, for which a simple 
confidence interval is of the form 

The coverage probability is 



The median

By definition, the median satisfies

We assume the n observations to be i.i.d., distribution of # of observations > 
median is binomial, n trials, ½ chance of success.



The median

These probabilities can be found from cdf of binomial distribution

For example, with n=26:

If we choose k=8, P(Y < k)= P(Y > n−k+1)= P(Y > 19)=.0145, therefore
                     is a 1−.0145−.0145=97% confidence interval.

- This is an exact confidence interval, and does not depend on the form of the 
underlying cdf, only need continuous cdf and independent observations

-  Platinum example: confidence interval is (134.8, 135.8) – based on mean: 
(135.3, 138.8). Much better.

Y~Bin (n, 1/2)



The trimmed mean (截尾均值)

100α% Trimmed mean 
              = arithmetic mean with lowest 100α% and highest 100α% discarded
                   
           α is generally recommended to be from 0.1 to 0.2.

Formally, 

- [nα] = the greatest integer ≤ nα

- Median = 50% trimmed mean

Platinum example:
- 20% trimmed mean = 135.9, rejecting 5 and 5 (0.2x26=5.2) 
- Median = 135.1
- Arithmetic mean = 137.05



Least squares estimate

If underlying distribution is normal, sample mean = MLE of location parameter μ
Equivalently, it maximizes likelihood 

→ minimize negative log likelihood (least squares estimate)

Each term ~ χ2
1, sum of n terms ~ χ2

n−1, our bread-and-butter technique for curve 
fitting: Minimizing χ2. A good fit should have reduced χ2

n/n ~ 1. Why?



Least squares estimate

If underlying distribution is normal, sample mean = MLE of location parameter μ
Equivalently, it maximizes likelihood 

→ minimize negative log likelihood (least squares estimate)

Each term ~ χ2
1, sum of n terms ~ χ2

n−1, our bread-and-butter technique for curve 
fitting: Minimizing χ2. A good fit should have reduced χ2

n/n ~ 1. Why?

Deviation of data from model should be 
comparable to the length of the error bar (~1σ), 
so χ2~n (actually n−1), reduced χ2~1.

If reduced χ2 is <<1, often an indication that 
the measurement uncertainties are 
overestimated!



least squares

Outliers have a great effect on this 
estimate, deviation is squared.

Anscombe's quartet (1973)

Least squares estimate



Median is the minimizer of

(d|x|/dx=sign(x), differentiating the sum yields       sign (Xi−μ) = 0 if μ is median)

least absolute deviations

least squares

Outliers have a great effect on this 
estimate, deviation is squared.

Least squares vs. absolute deviations

Anscombe's quartet (1973)



Median is the minimizer of

(d|x|/dx=sign(x), differentiating the sum yields       sign (Xi−μ) = 0 if μ is median)

least absolute deviations

least squares

Outliers have a great effect on this 
estimate, deviation is squared.

最小二乘、一乘、零乘

最小零乘本质上是找一个数代表
全体，跟它不一致的最少：众数
（mode, 直方图的峰）

Least squares vs. absolute deviations

Anscombe's quartet (1973)



Huber (1981) proposed a class of M estimates, which are the minimizers of

Ψ is a compromise between the weight functions for the mean and median.

A wide variety of weight functions exist. E.g. by Huber himself:
weight functions that are quadratic near 0 and are linear beyond a cutoff point, k.
- k→∞: always quadratic = mean method
- k→0: always linear = median method
- A common choice is k=1.5, influence of observations >1.5σ away is reduced.
- If M is a convex function, minimizer is unique 

Platinum example:
- 20% trimmed mean = 135.9
- Median = 135.1
- Arithmetic mean = 137.05
- M estimate (k=1.5)=135.38

M estimates

Definition in your textbook is likely opposite to the international standard!!

（下）凸函数

（下）凹函数



Which one is best? No simple answer… Bear in mind what’s being estimated by the 
location estimates and to what purpose the estimate is being put.
Underlying distribution is symmetric: 
- trimmed mean, sample mean, sample median, M all estimate center of symmetry.
When NOT symmetric, estimate 4 different population parameters:
- population mean/median/trimmed mean, a functional of the cdf determined by 

weight function Ψ.

Comparison of location estimates



Andrews et al. (1972): a large # of simulations from symmetric distributions

• 10% or 20% trimmed mean overall quite effective: 
- Its variance never much larger than mean’s (even for Gaussian, mean is optimal)
- can be a lot smaller when the underlying distribution is heavy-tailed relative to 

the Gaussian. 
• Median is quite robust, but has a substantially larger variance in Gaussian case 
than the trimmed mean
• Trimmed mean and median have appealing simplicity, easy for statistics dummies
• M estimates perform quite well, generalize naturally to curve fitting etc. But hard 
to compute, have less immediate intuitive appeal. 

• Often useful to compute more than one measure of location, compare them…

Which one is best? No simple answer… Bear in mind what’s being estimated by the 
location estimates and to what purpose the estimate is being put.
Underlying distribution is symmetric: 
- trimmed mean, sample mean, sample median, M all estimate center of symmetry.
When NOT symmetric, estimate 4 different population parameters:
- population mean/median/trimmed mean, a functional of the cdf determined by 

weight function Ψ.

Comparison of location estimates



Estimating variability of location estimates by bootstrap



Estimating variability of location estimates by bootstrap



Example. Platinum data again, using bootstrap to approximate sampling distribution of 
20% trimmed mean and its standard error. 1000 samples of size n=26 drawn randomly 
from the collection of 26 values, with replacement.

Estimating variability of location estimates by bootstrap

Estimated standard error of 
20% trimmed mean = 0.64

Replicates of 
the 5 outliers

The computer calculation tells us: 20% trimmed mean is not that robust, due to an 
extremely heavy-tailed distribution, a sample of 26 may contain many outliers. 

Estimated standard 
error of median = 0.24



Measures of dispersion



If the observations are a sample from Gaussian with variance σ2 (we proved it!),                                        

→ confidence intervals for σ2, but not robust against deviations from normality.

Sample standard deviation is sensitive to outliers. Simple robust measures:

(1) Interquartile range (IQR, 四分位差)                                                                   
- difference between two sample quantiles (25th and 75th percentiles)

(2) Median absolute deviation from the median (MAD, 中位数绝对偏差)  
      - median of the numbers 
         

… gives a numerical indication of “scatteredness” of a batch of numbers.
Simple summaries of data often = measure of location + measure of dispersion

Most commonly used is sample standard deviation s,

(Q: is s an unbiased estimate of σ?)

Measure of dispersion

Sample median



(1) Interquartile range (IQR, 四分位差)                                                                   - 
difference between two sample quantiles (25th and 75th percentiles)

(2) Median absolute deviation from the median (MAD, 中位数绝对偏差)  
      - median of the numbers

For Gaussian, IQR, MAD are converted into σ estimates by dividing by 1.35, 0.675.
(Q: how to do this conversion?)

Now compare all three measures of dispersion for the platinum data:

                                     - heavily influenced by outliers

                                     

                                       give measures of spread of 
                                       central portion of data
         

Measure of dispersion

Sample median



Boxplots



Invented by Tukey, showing 
- A measure of location (the median)
- A measure of dispersion (the interquartile range, IQR)
- Presence of possible outliers
- Indication of symmetry or skewness

Boxplots

Construction procedure:

- Horizontal lines at median, upper 
& lower quartiles

 

- Make it a box

- A vertical line from upper quartile 
to the most extreme data point that 
is within a distance of 1.5 (IQR) of 
the upper quartile. 

- Same for lower quartile, add hats

- Data points beyond the ends are 
marked with • or *

Indicating that central part of distribution 
is skewed toward high values. 



Chambers et al. (1983): The data plotted are daily maximum concentrations in parts 
per billion of sulfur dioxide in Bayonne, N.J., from Nov 1969 to Oct 1972 grouped 
by month. There are thus 36 batches, each of size about 30. 

Boxplots

- A general reduction in SO2 
through time due to gradual 
conversion to low Sulphur fuels

- Higher concentrations during 
winter months due to using 
heating oil

- Skewed toward high values

- Spread is larger when general 
level of concentration is higher

Very effective method of presenting and summarizing data, 
generally useful for comparing batches of numbers.



Exploring relationships 
with scatterplots



Allison and Cicchetti (1976) examined the relationships of possible correlates of 
sleep behavior in mammals. 

Linear vs. logarithmic plots

Two mammals with very large brains sleep 
very little, otherwise no relationships are 
apparent. 

There is in fact a relationship, obscured 
because brain weights vary over orders of 
magnitude: 

- 0.14g (lesser short-tailed shrew)
- 5,712g (African elephants)

Much more informative to plot sleep vs. 
the logarithm of brain weight

小短尾鼩鼱（qú jīng)



Linear vs. logarithmic plots
It is now clear that 
mammals with 
heavier brains tend 
to sleep less!



Correlation coefficients: simple numerical summary of the strength of a relationship. 
Pearson correlation coefficient:

Scatterplots

r measures the strength of a linear relationship. 

- brain weight vs. sleep: −0.36; log brain weight vs. sleep: −0.56. 

- different because a nonlinear transformation is applied and r measures the 
strength of a linear relationship.

Rank correlation coefficient (秩相关系数): 
- brain weights are replaced by their ordered ranks (1, 2, . . .)
- sleeping times are replaced by their ranks
- Pearson correlation coefficient of the pairs of ranks is computed (− 0.39)
 

Advantages: 
- insensitive to outliers 
- invariant under any monotone transformation (same for log or not). 


