Generalized likelihood ratio tests

The likelihood ratio test is optimal for simple vs. simple hypotheses.
Generalized likelihood ratio tests are for use when hypotheses are not simple.

They are not generally optimal, but are typically non-optimal in situations where no
optimal test exists, and they usually perform reasonably well.

Wide utility, plays the same role in testing as MLE's do in estimation.

- Suppose that the observations X = (X}, . . ., X,) have a joint distribution f (x|60).

- H, may specify that € w,, where m, is a subset of the set of all possible 6 values

- H, may specify that 6€ w,, where w, is disjoint from w0.

- LetQ=w,Vw,.

- A plausible measure of the relative tenability of the hypotheses 1s the ratio of their
likelihoods.

glax[lik(Q)]
o, €ew
- Generalized likelihood ratio: discredit H,, if small AT = max[1ik(6)]
Iglax[lik(é))] fea
- In practical, use, instead, A = %:%’([hkw)] and note A = min(A*, 1)
=

- Rejection region: small values.
A < Ag. The threshhold A is chosen so that P(A < Ay|H)) = «,

desired significance level of the test.



Generalized likelihood ratio tests
So far so good, but...

In order for the likelihood ratio test to have the significance level a, 4, must be
chosen so that P(A < 4,)=a if H, is true.

- If the sampling distribution of A under H,, is known, we can determine A,

- Generally, the sampling distribution is not of a simple form, what to do?

A theorem as the basis for an approximation to the null distribution:

Under smoothness conditions on the probability density or frequency functions
involved, the null distribution of —2log A tends to a chi-square distribution
with degrees of freedom equal to dim 2 — dim w, as the sample size tends to
infinity. =

Dim Q and dim o, are # of free parameters under QQ and o, respectively.

The above Gaussian example:

- H, completely specifies p and 62, dim w,= 0

- Under Q, o 1s fixed, p is free, dim Q =1

- Null distribution of =2 log A is approximately (exactly!) Xlz-



Generalized likelihood Ratio Tests for the Multinomial Distribution

H, specifies that p = p(0), € w,, 0 is a parameter (may be unknown);
H, cell probabilities are free except that they are nonnegative and sum to 1.
# of cells 1s m, Q is the set consisting of m nonnegative numbers summing to 1.

Likelihood ratio’s numerator is maximized when the MLE @ is in place of 6

n!
max (—) pi@)" - pru (@)™

Xl X!

pewy A
pi(0)
Probabilities are unrestricted under €2, denominator is maximized by the
unrestricted MLE’s, By = Xt
;=
n

The likelihood ratio is, therefore,
|
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Also, since x; = np;,
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Generalized likelihood Ratio Tests for the Multinomial Distribution

. pi(0)
—2log A = —2n p; log —
> poe (227

where O; = np; and E; = np;(0) denote the observed and expected counts

- Under €, cell probabilities are free but summing to 1, so dim Q=m—1
- Under H,, probabilities p;(6)depend on a k~-dimension parameter 6, dim w,=k
- The large sample distribution of —2 log A 1s chi-square with dof=m—k—1.

Pearson’s chi-square statistic 1s commonly used to test for goodness of fit

k m ANT12
2 Z (Oz' - Ez’)z 2 j: [&5 — np; 0)]
X = X — A
i=1 Ei - npi (9)




Pearson’s chi-square test

k m N\12
.3 (O — E,)? e [xi — npi(0)]
= X —_— ~
X =1 E?’ i=1 n’pl(g)

Likelihood ratio | —21log A = 2n Z pi log ( PiA )
— pi(®)

If H, is true, n is large, p; ~ p;(#). Taylor series expansion of the function about x, is

o~ 1 1
f(x):xlog(—> fx) = —x)+ z(x —x0)°— + -
X0 2 X0
So, " ) ™ P — pi(@)]
’ —2log A~ 23 (i — pi@)]+n S 22O
i=1 i~ pi(0)
0, because np=1 i [x; — ”Pi )71
- nwi(®)

Pearson’s statistic & likelihood ratio are asymptotically equivalent under H,.
But Pearson’s chi-square test is easier in calculation and more widely used.



Frequency

Pearson’s chi-square test
Okay, but why do we choose multinomial distribution as H,?

Because in general, you cannot make it even more general/fuzzy/vague...
H,: Any “real” distribution = all the parameters p; describing data in each bin are
strongly correlated.

H,: Multinomial distribution = almost no correlation between the parameters p;
describing data in each bin, # of parameters = # of outcomes — 1. Way too many!

16

E.g. Poisson: all p;’s are determined by
a single parameter.

Count

Count

I 1 I
800 $a00 $1000 $1100 $1200 $1300 $1400 $1500
Gross monthly salary




Poisson Dispersion test

Likelihood ratio test, Pearson’s chi-square test are w.r.t. the general form of H,: cell
probabilities are completely free (that’s why they are so useful).

But if one has a specific H, in mind, better power may be obtained by testing against
that H, rather than against a more general alternative.

Poisson dispersion test is w.r.t. Hy: a distribution is Poisson.

Background and the need for it:
Key assumptions (the rate is constant, the counts in one interval of time or space
are independent of the counts in disjoint intervals) are often not met.

- Count insects on leaves of plants. Different sizes, various locations on different
plants; rate of infestation may well not be constant over the different locations.

- If insects hatched from eggs that were deposited in groups, then clustering of
insects and the independence assumption might fail.

- Motor vehicle counts for traffic studies typically vary cyclically over time.



Poisson Dispersion test

Given counts xy, ...,X,,.

H,: Counts are Poisson with the common parameter . ()
H,: Counts are Poisson but with different rates, A,,..., A,. (Q)
MLE for wy: 4 = X. MLE forQ: X,=x;

n

Ay -3 N
]:—:[A e /1131,. n — N\ xi
-1I(5) e
z--l

_ =1
A= n

I_I ;.f"e_:\"/:ci!
—2log A = —2zn: [:vzlog (;; ) + (z; — :z:)] =2 szlog ( )

i
=1

s

i=1

Z (z: —2)*=n6%/X Do f=dim Q-dim o=n-1

E-?ria—i

(Taylor expansion)

Sensitive to (=has high power against) alternatives that are overdispersed relative to
Poisson (e.g. negative binomial distribution.)
The ratio 62 /% is sometimes used as a measure of clustering of data.



Poisson Dispersion test

Example.

e — M RARRBITF, BAIZEBREBRKPFESHARG I —IF (Steel FF 1980). B
WY L EMFEA RN, LUK A MR BRI BARAE. KamEmEKs, RasmER
ek b, FRZEREEN ERER 3 RN, BERRRBEEEN BT REE THR. RIER
VT 23 MR PRI 44, BEIREREW T

31 29 19 18 31 28 34 27
34 30 16 18 26 27 27 18
24 22 28 24 21 17 24

Poisson dispersion test: Likelihood ratio test:
lz(x. _ %)% =26.56 23 x; log (x—) —27.11
3 i A i =

D.o.f.=23—-1=22, p-value=0.21

The evidence against the null hypothesis is not persuasive.



Pearson’s chi-square test: examples

Bacterial clumps. Let’s test whether Poisson fits the data.

Bl 9.5.2 (% H k) ERBRFFINBRETTRN, K 0.01 FJFKFYIBOIE 1 FHEKK
B A L, BEBUETUE, C©RXEBMTHRANAESRY. F—F, WA R4
HERRBIRER A0 - PEHER, BREA TP REY, RIVEFEBFERRRE—R. A, i
FARE, RITERIFEANTRNEE. B, ZREAKHRW, FH8 T RE L4057 LU
FESHABMABRRBT N L, IBEANR AT EKBEARREEM. XX, BRAREREARSS, #
OB, A%, SIEHARPIREANS. TR¥EE Bliss M Fisher(1953), LA T 400 N7
E RS

LT 0 1 2 3 4 5 6 7 8 9 10 19
W 56 104 80 62 42 27 9 9 5 3 2 1
MLE gives us Poisson model with § — 956+ 1 x 104 J:;(;‘ Shembla%1 o
bR 56 104 80 62 42 27 9 20

HHEH 34.9 85.1 103.8 84.4 51.5 25.1 10.2 5.0
X2 g 12.8 4.2 5.5 5.9 1.8 0.14 0.14 45.0

H,: Poisson, H,: multinomial
Chi-square statistic 1s X>=75.4, dof=dim Q (8—1)—dim w,(1) = 6.
Null hypothesis i1s conclusively rejected (p-value<0.005).

Reason: too many small counts and large counts to be Poisson.



Poisson Dispersion test
Example. (41 &)
0> x56+12x104+---4+19% x 1 5

x =244, G2 = by
400
= 4.59
the test statistic 1s r_ né?
X
400 x 4.59
2.40

Under H,, T ~ chi-square distribution with d.o0.f.=399.
Chi-square with d.o.f. m = sum of m independent N(0, 1) squared,
CLT says for large m it is ~normal.

Chi-square: mean = d.o.f., variance = 2 d.o.f., p-value can be found by
standardizing the statistic:

T—399 _ 752.7—399
V2 x399 7 /2 x 399

P2 752.‘7) = P ( ) ~1—®(12.5)~0

Poission doesn’t fit!



Informal (graphical)
techniques for assessing
goodness of fit



Hanging Rootograms

(Hanging rootograms) A E M F REFMMIANE AENZE. 5T REBERER
Higik, BAIFIEIEKAEFPREIEE (Martin, Gudzinowicz Fl Fanger 1975). FREM T 152
A ML ARSI SEUE . RS, BB IFNAEEREGS “EE” EXREAHA
PR R, UERERERFERE. ERTNIGEEASEI MG, PIIERED .

Serum Potassium Levels
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Probability plots

Extremely useful graphical tool for qualitatively assessing the fit of data to a theoretical
distribution.

Consider a sample of size n from a uniform distribution on [0, 1]. Denote the ordered
sample values by X;)<X)" - - <X, (called order statistics).

Question: What is the expectation of X;?

Make a guess!



Probability plots

Extremely useful graphical tool for qualitatively assessing the fit of data to a theoretical
distribution.

Consider a sample of size n from a uniform distribution on [0, 1]. Denote the ordered
sample values by X;)<X)" - - <X, (called order statistics).

The expectation of X is

J
E(Xpy) = ——
(/) n+1
Plot the ordered observations X(y,..., X, Lof
against their expected values 1/(n+1), . . ., 5
n/(n+1), in the case of a uniform distribution, 8F
it must be roughly linear. £ o
S 61 e
2 e
é 4+ >
S ; vl
ot L L l L
0 2 4 .6 8 1.0

Uniform quantiles



Probability plots
Now suppose Y=U,/2+U,/2, then Y’s distribution is (by convolution) triangular:

_ 4y, 0<y<j3;
f(y)‘{4—4y, l<y<1

Generate Y, to Y, plot Y, to ¥, against the points 1/(n+1), . . ., n/(n+l).

10 .
o Data = triangular, theory = uniform,
8t - plot deviates from linearity:
z rd
g 6 ,...*"/' - Left tail: order statistics > expected
E: = for a uniform distribution
S . P - Right tail: opposite
2
- Tails are lighter than uniform
%o 2 4 6 s 10

Uniform quantiles



Probability plots

The technique can be extended to other continuous probability laws this way:
If X i1s a continuous random variable with a strictly increasing cdf, Fy, and if Y = Fy
(X), then Y has a uniform distribution on [0, 1].

The transformation Y = Fy(X) 1s known as the probability integral transform.

Procedure: Suppose X is hypothesized to follow a certain distribution with cdf F.

Given a sample X, ..., X,, we plot k
pleh P F(Xg@) Vs
n+1
or equivalently k
X(k) VS. F_l
n+1
In some cases, F is of the form
X(k) — k
X —H — VS. G!
-6 (54) :
(e.g. normal) Or the result would be approximately a straight line if
M:location parameter the mOdel were correct:

oc=scale parameter

k
X~ oG
k) ¥ O (n+1>+u



Probability plots

Slight modifications of the procedure are sometimes used:
G'lk/n+1)] —— E(X®))

This 1s because it can be shown that

k
E(Xy) ~ (n )
(n - 1)

So we can plot X vs. E(X))  -- back to our first uniform example.

Viewed from another perspective:

F1k/(n + 1)] is the k/(n + 1) quantile of the distribution F,, the point such that the
probability that a random variable with cdf F is less than it is &/(n + 1).

We are thus plotting the ordered observations (can be viewed as the observed or
empirical quantiles) versus the quantiles of the theoretical distribution.



Probability plots: examples

A set of 100 observations, which are Michelson’s determinations of the velocity of light made
from June 5, 1879 to July 2, 1879; 299,000 has been subtracted from the determinations to give
the values listed [Stigler (1977)]:

1100 -
850 960 880 890 890 740 )
940 880 810 840 900 960
880 810 780 1070 940 860 1000 - )
820 810 930 880 720 800 .
760 850 800 720 770 810 z -
950 850 620 760 790 980 3 g00l &
880 860 740 810 980 900 5 o
970 750 820 880 840 950 £ s’
760 850 1000 830 880 910 3 -
870 980 790 910 920 870 4 800r o
930 810 850 890 810 650 S N
880 870 860 740 760 880 oo
840 880 810 810 830 840 700 -
720 940 1000 800 850 840 ]
950 1000 790 840 850 800 g
960 760 840 850 810 960 W= 5 \ 5 3
800 840 780 870

Normal quantiles

Theoretical model=Gaussian, plot is close to straight line, a qualitatively good fit.

Use cautions:

- Probability plots are by nature monotonically increasing and they all tend to look fairly
straight. Some experience is necessary in gauging ‘“straightness.”

- Simulations are very helpful in sharpening one’s judgment




Probability plots: examples

Nonnormal distributions. Below is a normal probability plot of 500 pseudorandom
variables from a double exponential distribution:

fx) = 1eM, —00 < X < OO
6L Its tails die off at the rate exp(-|x|), slower
than Gaussian, exp(-x2).
4+t
7 Plot bends down at the left and up at the
B right: observations in the left tail more
é negative than expected for Gaussian,
g of observations in the right tail more positive.
"%) f..—-"f.
B —2r F The extreme observations were larger in
g’ Fi ’ magnitude than extreme observations
=an from a Gaussian.
—or The tails of the double exponential are
. | . | | | | | “heavier” than those of a Gaussian.

1
—4 -3 =2 =l 0 | 2 3 4
Normal quantiles



Probability plots: examples

Nonnormal distributions: Gamma. 500 pseudorandom numbers from a gamma
distribution with scale parameter A=1, shape parameter o=>5.

it Bowlike — skewed/nonsymmetric.

12

0.20
10

T

St 0.15

Ordered observations

I 1 I 1 I 1
—~4 —=3 =2 =l 0 1 2 3 4 0

Normal quantiles




Probability plots: examples

Gamma probability plot of the precipitation amounts.
A computer was used to find the quantiles of a gamma distribution with parameter o =.471 and
A= 1. The plot is observed sorted values of precipitation versus the quantiles.

25

20

£ s} : Qualitatively, the fit is

g L reasonable, there is no gross
s o systematic deviation from a
z s straight line.

S /

0 1 1 L 1 1

0 1 2 3 4 5
Ordered quantiles of gamma distribution (e = 471)

Probability plots for grouped data (73ZH%(#5) . Suppose that the grouping gives the
points x,,..., x,,.; for the histogram’s bin boundaries and that in the interval [x;, x,.,) there
are n; counts, where i = 1, . . ., m. We denote the cumulative frequencies by N; = 3>/ n,.2n
N,<N,<---<N, and N, = total size n. One can plot

N
Xji1 Vs. G—l( f), j=1,...,m

n+1



Summarizing data



Empirical cdf

Methods of describing and summarizing data that are in the form of one or more
samples, or batches. These procedures often generate graphical displays, are useful
in revealing the structure of data.

In the absence of a stochastic model, the methods are useful for purely descriptive
purposes. If it is appropriate to entertain a stochastic model, the implications of
that model for the method are of interest.

“Sample”: x; are i.i.d. with some distribution function
“Batch”: imply no such commitment to a stochastic model

Suppose x,..., x, 1s a batch of numbers. The empirical cdf (ecdf) is defined as
1
Fn(x) — _(#xi = JC)
n
Denote the ordered batch of numbers by x;)<x)<... <x(,).
Then ifXSX(l), Fn(X):O, ifX(l)Sx<X(2), Fn(X)zl/n, ifX(k)SXSX(k+1), Fn(X):k/l’l

Single observation with value x, F, has a jump of height 1/n at x;
r observations with same value x, F, has a jump of height »/n at x

F(x) gives the probability that X <x
F,(x) gives the proportion of the collection of numbers less than or equal to x



Empirical cdf: example.

Example: White, Riethof & Kushnir (1960) ¥l 4 S 4 it 1B 75 808%, W5 H
i — Ll s, RN NG A e D o 1EES S
SONARMEIE HIREA, JA A (BREREE) Wik

63.78 6345 6358 63.08 6340 6442 6327 63.10
63.34 6350  63.83 63.63 6327 6330 63.83  63.50
63.36 6386 6334 6392 63.88 6336 6336 63.51
63.51 63.84 6427 6350 6356 6339  63.78  63.92
63.92  63.56  63.43 64.21 64.24  64.12 6392  63.53
63.50 6330 6386 6393 6343 6440 63.61 63.03
63.68  63.13 6341 63.60 63.13 63.69 63.05  62.85
63.31 63.66  63.60

1.0
Conveniently summarizes the natural
variability in melting points. ol
We see about 90% of the samples had T
melting points < 64.2 ° C, about 12% £
. : . 5 4
had melting points < 63.2 °C. s
2F
0 L L L L L 1 ! L 1
62.8 63.2 63.6 64.0 64.4

Melting point (°C)



Empirical cdf: example.

Elementary statistical properties of the ecdf in the case in which X, ..., X, is a
random sample from a continuous cdf, F
It 1s convenient to express F), as:
1 1, ifX;<x
Fa) = 5 3l (X0 A
1=

In fact, the random variables /_,, 4(X) are independent Bernoulli random variables:

, (X)) = 1, with probability F(x)
(—oox{ i) =19 with probability 1 — F(x)

Thus, nF,(x) is a binomial random variable (n trials, probability F(x) of success)
E[F,(x)] = F(x)
1
VarF, (x)] = = F(x)[1 — F(x)]
n

As an estimate of F(x), F,(x) is unbiased and has a maximum variance at that value
of x such that F(x) = 0.5, that is, at the median. As x becomes large or small, the

variance tends to zero.



We considered F), for fixed x, but much deeper analysis focuses on the stochastic
behavior of F, as a random function (consider all x values simultaneously).

Surprisingly, it turns out that the following does not depend on F'if F'1s
continuous!
max |F,(x) — F(x)|

—o0<X <00

This result forms the foundation of the famous and extremely widely used
Kolmogorov-Smirnov test:

D,, = sup |F,(z) — F(z)|
This maximum difference corresponds to a unique p-value (ready from mathematician)
for rejecting the hypothesis that the two (e)cdfs are from the same distribution.

1-sample K-S test: data vs. model 2-sample K-S test: data vs. data

o
™

Cumulative Probability
Cumulative Probability




Quantile-quantile (Q-Q) plots are useful for comparing distribution functions.
The pth quantile of the distribution was defined before as

F(x)=p Xy = F- ()

In a Q-Q plot, the quantiles of one distribution vs. those of another.
F(x): model for data of a control group; G(y): model for data of a treatment group.

Simplest effect #1: increase expected response of every member of the treatment group
by the same 4. Then y,= x,+ &, Q-Q plot is a straight line with slope 1, intercept 4.
Cdf’s relation: G(y) = F(y — h)

Simplest effect #2: The response is multiplied by a constant c. Then the quantiles are
related as y,= ¢ x,, , Q-Q plot is a straight line with slope ¢, intercept 0. Cdf’s relation

G(y)=F(y/c)

1.0 1.0f

0.8+ 0.8}

061 0.6}

cdf

B

0.4} 0.4}

0.2% .2t

2 i K i . : bt A PO S T
‘13 -2 -1 0 1 2 3 4 S0 5 10 15 20
y Y

B 104 ERRBMA. TRE F(y). BER B 105 FHEERINN. TRE F(y), BERE
Gly)=Fy—h) h G(y) = F(y/e)




Quantile-quantile plots
The effect of a treatment can be much more complicated

- an educational program that places very heavy emphasis on elementary
skills may be a treatment that benefits weaker individuals but harm stronger

individuals.

Given a batch of numbers, or a sample from a pdf, quantiles are constructed
from the order statistics. Given n observations and the order statistics Xy, . . .,
X, the k/(n+1) quantile of data is assigned to X;). — we did this for
probability plots to informally assess goodness of fit.

To compare two batches of » numbers with order statistics Xy, . . ., X, and
Yay - - ., Y, a Q-Q plot is simply constructed by plotting the points (X, Y;).

If the batches are of unequal size, an interpolation process can be used.



|

m
B

Quantile-quantile plots

$l 10.2.3.1

Cleveland % (1974) FIAH Q-Q EBIRZSy5He. fufilzz® T A B A H &F

RERES RS- HE (B 10.6). REBKEN Q-Q BERHER KB HIETH,
B HARBI TR I BRA R B8R, AT —8Uesk . BEULDA[IER, HUBPERIEERE
HE BT 8 oK. KPHEEST SRR R IR FK R 262 807 A H AP HIEUAE R (KBEFE R TR ER BA
MEZFEMFER), HEXFPRKSAE. BB,
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Histograms, density curves,
stem-and-leaf plots



Histograms

..displays the shape of the distribution of data values in the same sense that a
density function displays probabilities.

- The range of data is divided into intervals/bins, plot counts OR proportion

of the observations falling in each bin.
- Often recommended: plot the proportion of observations falling in the bin

divided by the bin width, then the area under the histogram is 1.

Bin width: z 8
. =
- Too small: histogram too S ‘2‘
|—|_| []
ragged 625 63 0 64.5 65.0
- Too wide: oversmoothed e
and obscured 2 8
4
. . 0 — _|_|_I 1
- Usually made subJectlvely 62.5 63.0 63.5 64.0 64.5 65.0
in an attempt to strike a 40
balance... g ¥
g 20
10 |
0 I 1
62.5 63.0 63.5 64.0 64.5 65.0

Melting point (°C)



Histograms

- frequently used to display data for which there is no assumption of any
stochastic model

- or, may be viewed as an estimate of the probability density: regarded in this
sense, the histogram suffers from not being smooth...

How to construct a smooth probability density estimate?

Let w(x) be a nonnegative, symmetric weight function, centered at zero,
integrating to 1 (e.g. standard normal density). A rescaled version of w is

wy, (x) = %w (%)

h—0, concentrated and peaked about zero. 7—o0, spread out and flatter.
If w is standard normal, w;(x) 1s normal density with standard deviation 4.
If X, ..., X,1is a sample from pdf /, an estimate of fis

1 n
falx) = — ;wh(x — X;)

Called a kernel probability density estimate.



Histograms

1 n
falx) = — ; wy (x — X;)

“Smoothing kernel”

A kernel probability density estimate consists of “hills” centered on the
observations. If w 1s standard normal, w,(x—X,) is normal with parameters X,, /

h controls the bandwidth of the estimating function, controls its smoothness

and corresponds to the bin width of the histogram.

1.6
h too small = o3
=
0_0 T T 1 T T ]
58 60 62 64 66 68 70
1.2
Good -
2 06
=
0.0 T I T T )
58 60 62 64 66 68 70
_ 0.30
h too wide _
2015
=
00 L | | 1 I |
58 60 62 64 66 68 70

Melting point (°C)

Density
0.0 0.1 0.2 0.3 0.4 0.5

reference |
— 0.3 [




Stem-and-leaf plots

- One disadvantage of a histogram or a probability density estimate is that
information is lost; neither allows the reconstruction of the original data.

- A histogram does not allow for calculating a statistic such as a median; one can
tell which bin but not the actual value.

Tukey (1977): stem-and-leaf plots convey info about shape while retaining the
numerical info. Easy for human AND computers.

STEM LEAF
e g 1 1 628 :5
1. Bt (2P, XA 1 0 629 -
4 3 630 :358 w
G2 AR R g
9 2 632 77 ’g
. s 18 9 633 :001446669\ -
F3: HIEX100 25 23 5 634 01335 =8
10 635 :0000113668 5
51]4: ;E&EFEXIOE El/‘J /J\ i& 26 7 636 :0013689 )
19 2 637 :88 o
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Measures of location



Measures of Location

Let us discuss simple numerical summaries of data that are useful when there is not
enough data to justify constructing a histogram or an ecdf, or when a more concise
summary is desired.

A measure of location is a measure of the center of a batch of numbers.

If data result from different measurements of the same quantity, it is used in the
hope that it is more accurate than any single measurement

Otherwise, used as a simple summary of data
The arithmetic mean

The median

The trimmed mean

M estimates



The arithmetic mean

The most commonly used measure of location

S| =

X =

n
D%
=1

Example: A set of 26 measurements of the heat of sublimation of platinum (1)
from an experiment (Hampson & Walker, 1961).

Heats of Sublimation of Platinum (kcal/mol)

136.3 136.6 135.8 135.4 134.7 135.0 134.1 143.3
147.8 148.8 134.8 135.2 134.9 146.5 141.2 1354
134.8 155.8 135.0 1531 1344 134.9 134.8 134.5
134.3 1.2

A common statistical model for the variability of a measurement process is
Xi=pu+p+e

The ¢; are usually assumed to be independent and identically distributed
random variables with mean 0 and variance o2



The arithmetic mean

When observations are acquired sequentially, it is often informative to plot them in
order: most striking aspect is the presence of five extreme observations that
occurred in groups of three and two (outliers).

- 1mproperly calibrated equipment

- Recording and transcription errors by equipment malfunctions
- Careful reexamination of data and circumstances

- But are often unexplainable aberrations

150

Is our model for measurement error 148

appropriate for this data set? 146 -
144

The outliers occur in groups of 2
and 3, rather than being randomly
scattered, making the independence
model somewhat implausible.

142

140

138

Heat of sublimation (kcal/mole)

1365,

134

132

0 5 10 15 20 25
Order of experiment



The arithmetic mean

1 1 133:7
Arithmetic mean is 137.05... look at 1? ; Sj 538899
the stem-and-leaf plot! 6 135:002244
Clearly not a good descriptive measure 0 2 135:88
of the “center” of this batch of 7 1 136:3
numbers. 6 1 136:6

High: 141.2 1433 146.5 147.8 148.8

If the data are modeled as a sample from a probability law, an approximate
100(1—a)% confidence interval for the population mean can be obtained from CLT:

X+ z(a/2)s;
Blindly applying it to data, with a=0.05, we find (135.3, 138.8). Look at the plot!
By changing a single number, arithmetic mean can become arbitrarily large or
small. Need careful attention!!
When data are automatically acquired, stored as files on disks, and not visually

examined, this danger increases.

Need measures of location that are robust, insensitive to outliers.



The median

Sample size is odd, median = middle value of the ordered observations
Sample size is even, median = average of the two middle values

Moving extreme observations does not affect the median at all! Very robust.
(above example: median=135.1)

When the data are a sample from a continuous probability law, the sample median
can be viewed as an estimate of the population median, #, for which a simple
confidence interval is of the form
(X, Xn—k+1))
The coverage probability is
P(Xpy=n=Xuastn)=1—Pn<Xporn>Xy_itn)
=1—-P(n < X(k)) — P(n > X(n—k-l—l))

k—1
P> Xu-iy) = Z P ( j observations are greater than n)
j=0
k—1
P(n < X)) = Z P ( j observations are less than )
j=0



The median

By definition, the median satisfies
P(X; >n) =P(X; <=1

We assume the n observations to be 1.1.d., distribution of # of observations >
median i1s binomial, 7 trials, Y2 chance of success.

l /n
P (exactly j observations are greater than n) = —( )

2"\ j
k—1 1 k-1 n
P> Xpisn) = Z P ( j observations are greater than n) = on Z (])
j=0 =

symmetry
PXp <n=<Xpuxt+1)=1—P < Xp) — P> Xpn-k+1))

1 S /n
= =51 (5)

j=0




The median

These probabilities can be found from cdf of binomial distribution

k—1

%; (’;) —P(Y <k-—1) Y~Bin (1, 1/2)

k P(Y <k)

For example, with n=26:

3 0012
6 0047
7 0145
8 0378
g .0843

If we choose k=8, P(Y < k)= P(Y > n—k+1)= P(Y > 19)=.0145, therefore
(X ), X(19)) is a 1-.0145-.0145=97% confidence interval.

- This 1s an exact confidence interval, and does not depend on the form of the
underlying cdf, only need continuous cdf and independent observations

- Platinum example: confidence interval is (134.8, 135.8) — based on mean:
(135.3, 138.8). Much better.



The trimmed mean (2 1H)

1000.% Trimmed mean
= arithmetic mean with lowest 1000% and highest 1000% discarded

a is generally recommended to be from 0.1 to 0.2.

Formally, 5 X(nal+1) + °** + X@a—[na))
Yy =
n —2[na]
11 1337
, 4 3 134:134
- [na] = the greatest integer < na 11 7 134:5788899
6 135:002244
. _ 9 2 135:88
- Median = 50% trimmed mean 7 1 1363
6 1 1366

_ High: 1412 1433 1465 147.8 14838
Platinum example:

- 20% trimmed mean = 135.9, rejecting 5 and 5 (0.2x26=5.2)
- Median = 135.1
- Arithmetic mean = 137.05



1000

800

600

400

200

Least squares estimate

If underlying distribution is normal, sample mean = MLE of location parameter p
Equivalently, it maximizes likelihood

n

554

1

— minimize negative log likelihood (least squares estimate)

> (Aory

i=1

Each term ~ %2, sum of n terms ~ %2, _,, our bread-and-butter technique for curve
fitting: Minimizing y2. A good fit should have reduced y2,/n ~ 1. Why?




1000

800

600

400

200

Least squares estimate

If underlying distribution is normal, sample mean = MLE of location parameter p
Equivalently, it maximizes likelihood

n

554

1

— minimize negative log likelihood (least squares estimate)

> (Aory

i=1

Each term ~ %2, sum of n terms ~ %2, _,, our bread-and-butter technique for curve
fitting: Minimizing y2. A good fit should have reduced y2,/n ~ 1. Why?

| i Deviation of data from model should be
. comparable to the length of the error bar (~10),
} /% ) so x>~n (actually n—1), reduced y>~1.
i |
/‘}' - If reduced %2 is <<I, often an indication that

/{. ’ the measurement uncertainties are
| overestimated!




Least squares estimate ..
n 2 4
3 (X" K ) least squares
i=1 o
Outliers have a great effect on this -
estimate, deviation is squared. =0

4 - 8 10 12 14 16 13

-
-

8 0 12 14 16 18

Amscombe S quartet (1973)

@ /
/.--
= 'Q,Q/
L o ¥

4 [ 8 i0 12 14 16 18
X3

8 10 12 14 16 18
X4




Least squares vs. absolute deviations .| ... l . L0000,
n 2 Je ¥ e j-__./'-é}
Z (Xi — M) leaSt Squares I 4 B 8 10 12 14 16 18 ;i 8 10 12 14 16 18 I
i g Anscombe S quartet (1973)
i o = ‘2 e
Outliers have a great effect on this " g o )
. . . . i s o < % a . s
estimate, deviation is squared. & L & &
] .. Q---'}? 2 & Q
o - ~ | Xi—n .
Median is the minimizer of Z o least absolute deviations
=1
l n
(d|x|/dx=s1gn(x), differentiating the sum yields Zsign (X;—w) = 0 if n 1s median)

i=1

Least squares regression | Least absolute deviations regression

Not very robust Robust

Stable solution Unstable solution

Always one solution Possibly multiple solutions




Least squares vs. absolute deviations _° - Sy RIS
> ) p?/’a_ [ ] > i %E\/
n 2 Je © N
Z (Xl M) leaSt Squares 4 6 a 10 12 14 16 18 ;i 8 10 12 14 16 18
j=1 o Anscombe S quartet (1973)
12 - - 2 12 --"'a;
Outliers have a great effect on this " P o
. . . . & - @ - a S
estimate, deviation is squared. 8 P L % 8 2
[} _Q---':"E ’ [ g
4 6 8 10x3|2 14 16 18 4 1 8 \0x412 14 16 18
n

Median i1s the minimizer of Z

i=1

&g — b
o

least absolute deviations

(d|x|/dx=s1gn(x), differentiating the sum yields Zsign (X;—w) = 0 if n 1s median)

i=1

CUNSE N N2

Least squares regression

Least absolute deviations regression

Not very robust

Robust

B/NERA R B R
i, WREA— ﬁ[ﬁﬁﬂi/l\: FREX

Stable solution

Unstable solution

(mode, B /7 B HIE)

Always one solution

Possibly multiple solutions




M estimates

Huber (1981) proposed a class of M estimates, which are the minimizers of

> (M)

Y is a compromise between the weight functions for the mean and median.

A wide variety of weight functions exist. E.g. by Huber himself:
weight functions that are quadratic near 0 and are linear beyond a cutoff point, £.

Platinum example:

k—o0: always quadratic = mean method

k—0: always linear = median method

A common choice 1s £=1.5, influence of observations >1.56 away is reduced.
If M is a convex function, minimizer is unique

Definition in your textbook is likely opposite to the international standard!!

fﬁ. fﬂ.

Convex Concave

20% trimmed mean = 135.9 (R MR
Median = 135.1

Arithmetic mean = 137.05
M estimate (k=1.5)=135.38 P MIR%




Comparison of location estimates

Which one is best? No simple answer... Bear in mind what’s being estimated by the
location estimates and to what purpose the estimate is being put.

Underlying distribution 1s symmetric:
- trimmed mean, sample mean, sample median, M all estimate center of symmetry.

When NOT symmetric, estimate 4 different population parameters:
- population mean/median/trimmed mean, a functional of the cdf determined by
weight function V.



Comparison of location estimates

Which one is best? No simple answer... Bear in mind what’s being estimated by the
location estimates and to what purpose the estimate is being put.

Underlying distribution 1s symmetric:
- trimmed mean, sample mean, sample median, M all estimate center of symmetry.

When NOT symmetric, estimate 4 different population parameters:
- population mean/median/trimmed mean, a functional of the cdf determined by
weight function V.

Andrews et al. (1972): a large # of simulations from symmetric distributions

* 10% or 20% trimmed mean overall quite effective:

- Its variance never much larger than mean’s (even for Gaussian, mean is optimal)

- can be a lot smaller when the underlying distribution is heavy-tailed relative to
the Gaussian.

* Median is quite robust, but has a substantially larger variance in Gaussian case
than the trimmed mean

* Trimmed mean and median have appealing simplicity, easy for statistics dummies

* M estimates perform quite well, generalize naturally to curve fitting etc. But hard
to compute, have less immediate intuitive appeal.

* Often useful to compute more than one measure of location, compare them...




Estimating variability of location estimates by bootstrap

Say x,,...x, 1s the realizations of 1.1.d. random variables (cdf F), we need to investigate
the variability and sampling distribution of a location estimate from a sample (size 7).

Location estimate 6, we want to know its sampling distribution (determined by n, F).
(1) If we know F, © may be a complicated function of x,,...x,, hard to calculate.
(2) And we actually don’t know F.

Way out for (1):

- Suppose we knew F. We generate many (B in #) samples of size n from F; From
each sample we calculate the value of 0.

- The empirical distribution of the resulting values 6,",...6;" is an approximation
to the distribution function of 0.

- Calculate the standard deviation of 6,*,...0," approximating that of 6.



Estimating variability of location estimates by bootstrap
Location estimate 6, we want to know its sampling distribution (determined by n, F).
(1) If we know F, © may be a complicated function of x,,...x,, hard to calculate.

(2) And we actually don’t know F.
Way out for (2):

- View the empirical cdf F,, as an approximation to F, sample from F,. But how to
sample from F,?

- F, 1s a discrete probability distribution that gives probability 1/n to each

observed value x,,...x,. We draw B samples of size n with replacement from the
observed data, producing 8,%,...0,". (“Draw n values from n values!!”)

- Standard deviation of 0 is then estimated by

* is the mean of 07, 65, ..., 0%,



Estimating variability of location estimates by bootstrap

Example. Platinum data again, using bootstrap to approximate sampling distribution of
20% trimmed mean and its standard error. 1000 samples of size n=26 drawn randomly
from the collection of 26 values, with replacement.

The computer calculation tells us: 20% trimmed mean is not that robust, due to an
extremely heavy-tailed distribution, a sample of 26 may contain many outliers.

1000 bootstrap 20% trimmed means

. w00l 1_000 bootstrap medians
wol Estimated standard error of « | /1 Estimated standard
20% trimmed mean = 0.64 error of median = 0.24
>l 200 |
200 -
100} Replicates of o
|7 the 5 outliers = _l_\
g 135 136 137 138 139 0 | —

135.0 1355 136.0 136.5

Accuracy of bootstrap estimates?
- The accuracy of F, as an estimate of ¥’
- dependence of the distribution of the statistic 8 on F' (sensitive—sample size large)



Measures of dispersion



Measure of dispersion

... gives a numerical indication of “scatteredness” of a batch of numbers.
Simple summaries of data often = measure of location + measure of dispersion

Most commonly used is sample standard deviation s,
n

1
2 E 2
S = XI_X

n_lizl( )

(Q: 1s 5 an unbiased estimate of 6?)

If the observations are a sample from Gaussian with variance o2 (we proved it!),
(n — 1)s? 5

0_2 ~ Xn—1

— confidence intervals for 62, but not robust against deviations from normality.

Sample standard deviation is sensitive to outliers. Simple robust measures:

(1) Interquartile range (IQR, VU437 %)
- difference between two sample quantiles (25t and 75% percentiles)

(2) Median absolute deviation from the median (MAD, A7 £ 4% s )
- median of the numbers |x; — X|.

Sample median



Measure of dispersion

(1) Interquartile range (IQR, V4537 %)
difference between two sample quantiles (25t and 75% percentiles)

(2) Median absolute deviation from the median (MAD, 77 £ 45 i %)
- median of the numbers |x; — X|.

Sample median

For Gaussian, IQR, MAD are converted into ¢ estimates by dividing by 1.35, 0.675.

(Q: how to do this conversion?)

Now compare all three measures of dispersion for the platinum data:

s =4.45 - heavily influenced by outliers

el 1.26
1.35 give measures of spread of 31 ; 133334
MAD central portion of data 11 7 134:5788899
=934 6 135:002244
a7 9 2 135:88
7 1 1363
6 1 1366

High: 141.2 1433 1465 147.8

148.8



Boxplots



Boxplots

Invented by Tukey, showing
- A measure of location (the median)

- A measure of dispersion (the interquartile range, IQR)

- Presence of possible outliers
- Indication of symmetry or skewness

Construction procedure:

- Horizontal lines at median, upper
& lower quartiles

- Make it a box

- Avvertical line from upper quartile
to the most extreme data point that
1s within a distance of 1.5 (IQR) of
the upper quartile.

- Same for lower quartile, add hats

- Data points beyond the ends are
marked with ¢ or *

Heat of sublimation (kcal/mole)

150

148

146 |-

144

142

140

138

Upper quartile

——

136

Median
| ™ Lower quartile

134

132

Indicating that central part of distribution
is skewed toward high values.



Boxplots

Chambers et al. (1983): The data plotted are daily maximum concentrations in parts
per billion of sulfur dioxide in Bayonne, N.J., from Nov 1969 to Oct 1972 grouped
by month. There are thus 36 batches, each of size about 30.

A general reduction in SO,
through time due to gradual
conversion to low Sulphur fuels

Higher concentrations during
winter months due to using
heating oil

Skewed toward high values

Spread is larger when general
level of concentration is higher

Sulfur dioxide concentration (ppb)

250

200

150 -

h
[

0_

100} i !

HHHHHHHHEQH

.......
H I

Mot

NDIFMAMJJASONDIJFMAMIJJASONDIJFMAMIJASO
Month

Very effective method of presenting and summarizing data,
generally useful for comparing batches of numbers.



Exploring relationships
with scatterplots



Linear vs. logarithmic plots

Allison and Cicchetti (1976) examined the relationships of possible correlates of

sleep behavior in mammals.

Two mammals with very large brains sleep

very little, otherwise no relationships are
apparent.

There is in fact a relationship, obscured
because brain weights vary over orders of
magnitude:

- 0.14g (lesser short-tailed shrew)
- 5,712g (African elephants)

Much more informative to plot sleep vs.
the logarithm of brain weight

20F

[a—
|91
T

o
o
T

Total sleep

?o.....- .o.ncs LIC XTI

/N REREE (qu jing)

2000 3000 4000 5000

Brain weight

1000



Linear vs. logarithmic plots

20

15

Total sleep

=
o

Big brown bat

® Little brown bat

® o N. American opossum
Water opossum

Giant armadillo
o
Ninebanded armadillo
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® Owl monkey
® Arctic ground squirrel
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Cat
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It is now clear that
mammals with
heavier brains tend
to sleep less!
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@
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Scatterplots

Correlation coefficients: simple numerical summary of the strength of a relationship.
Pearson correlation coefficient:

Y@ 06— )
? il —
Vi — > (3 — §)?

r measures the strength of a linear relationship.

- brain weight vs. sleep: —0.36; log brain weight vs. sleep: —0.56.

- different because a nonlinear transformation is applied and » measures the
strength of a linear relationship.

Rank correlation coefficient (F4H < 2 %0):
- brain weights are replaced by their ordered ranks (1, 2, . . .)
- sleeping times are replaced by their ranks

- Pearson correlation coefficient of the pairs of ranks is computed (— 0.39)

Advantages:
- 1nsensitive to outliers

- invariant under any monotone transformation (same for log or not).




