Measures of dispersion



Measure of dispersion

... gives a numerical indication of “scatteredness” of a batch of numbers.
Simple summaries of data often = measure of location + measure of dispersion

Most commonly used is sample standard deviation s,
n

1
2 E 2
S = XI_X

n_lizl( )

(Q: 1s 5 an unbiased estimate of 6?)

If the observations are a sample from Gaussian with variance o2 (we proved it!),
(n — 1)s? 5

0_2 ~ Xn—1

— confidence intervals for 62, but not robust against deviations from normality.

Sample standard deviation is sensitive to outliers. Simple robust measures:

(1) Interquartile range (IQR, VU437 %)
- difference between two sample quantiles (25t and 75% percentiles)

(2) Median absolute deviation from the median (MAD, A7 £ 4% s )
- median of the numbers |x; — X|.

Sample median



Measure of dispersion

(1) Interquartile range (IQR, V4537 %)
difference between two sample quantiles (25t and 75% percentiles)

(2) Median absolute deviation from the median (MAD, 77 £ 45 i %)
- median of the numbers |x; — X|.

Sample median

For Gaussian, IQR, MAD are converted into ¢ estimates by dividing by 1.35, 0.675.

(Q: how to do this conversion?)

Now compare all three measures of dispersion for the platinum data:

s =4.45 - heavily influenced by outliers

el 1.26
1.35 give measures of spread of 31 ; 133334
MAD central portion of data 11 7 134:5788899
=934 6 135:002244
a7 9 2 135:88
7 1 1363
6 1 1366

High: 141.2 1433 1465 147.8

148.8



Boxplots



Boxplots

Invented by Tukey, showing

A measure of location (the median)

A measure of dispersion (the interquartile range, IQR, |25% - 75t percentiles|)
Presence of possible outliers

Indication of symmetry or skewness
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Indicating that central part of distribution
is skewed toward high values.



Boxplots

Invented by Tukey, showing
- A measure of location (the median)

- A measure of dispersion (the interquartile range, IQR, |25t - 75t percentiles|)

- Presence of possible outliers
- Indication of symmetry or skewness

Construction procedure:

- Horizontal lines at median, upper
& lower quartiles

- Make it a box

- Avvertical line from upper quartile
to the most extreme data point that
1s within a distance of 1.5 (IQR) of
the upper quartile.

- Same for lower quartile, add hats

- Data points beyond the ends are
marked with ¢ or *

Heat of sublimation (kcal/mole)
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Indicating that central part of distribution
is skewed toward high values.



Boxplots

Chambers et al. (1983): The data plotted are daily maximum concentrations in parts
per billion of sulfur dioxide in Bayonne, N.J., from Nov 1969 to Oct 1972 grouped
by month. There are thus 36 batches, each of size about 30.

A general reduction in SO2
through time due to gradual
conversion to low Sulphur fuels

Higher concentrations during
winter months due to using
heating oil

Skewed toward high values

Spread is larger when general
level of concentration is higher

Sulfur dioxide concentration (ppb)
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Very effective method of presenting and summarizing data,
generally useful for comparing batches of numbers.



Exploring relationships with
scatterplots - continued



Linear vs. logarithmic plots

Allison and Cicchetti (1976) examined the relationships of possible correlates of

sleep behavior in mammals.

Two mammals with very large brains sleep

very little, otherwise no relationships are
apparent.

There is in fact a relationship, obscured
because brain weights vary over orders of
magnitude:

- 0.14g (lesser short-tailed shrew)
- 5,712g (African elephants)

Much more informative to plot sleep vs.
the logarithm of brain weight

20F

[a—
|91
T

o
o
T

Total sleep

?o.....- .o.ncs LIC XTI

/N REREE (qu jing)

2000 3000 4000 5000

Brain weight

1000



Linear vs. logarithmic plots
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Correlation - why do we try it?

When we make a set of measurements, it is instinct to try to correlate
the observations with other results. We might wish

(1) to check that other observers' measurements are reasonable,
(2) to check that our measurements are reasonable,

(3) to test a hypothesis, perhaps one for which the observations
were explicitly made,

(4) in the absence of any hypothesis, any knowledge, or anything
better to do with the data, to find if they are correlated with other
results in the hope of discovering some New and Universal Truth.

We are gonna do it — and we are going to fall into some deadly
traps. We already have.



The fishing trip

Suppose that we have plotted something against something, on a Fishing
Expedition.

1. Does the eye see much correlation? If not, formal testing for correlation is
probably a waste of time. The eyeball is an excellent statistical device.

2. Could the apparent correlation be due to selection effects? Consider for
instance the beautiful correlation obtained by Sandage (1972): 3CR radio
luminosities vs distance. —m@m™@M™™Mm—————————————

28

109,10 P15t mHz W Hz ™! sr_1)
26
I

24

24.5 25 25.5 26
Co—moving distance (m)

Radio luminosities of 3CR radio sources versus distance modulus



Still fishing ...

3. If we are happy about (2), we can try formal calculation of the
significance of the correlation. But, if there is a correlation, does the
regression line (the fit) make sense?

4. If we are still happy - is the formal result realistic?

Rule of Thumb — if 10% of the points are grouped by themselves so that
covering them with the thumb destroys the correlation to the eye, then
we should doubt it. Selection effects, data errors, or some other form of
statistical conspiracy?

Suspect

- ' 1 ~F - correlations: in
cach case formal
calculation will

I ] L o ® . | indicate that a
' correlation exists
to a high degree
of significance!
0 2 4 0 2 7




Fishing, fishing ...

5. If still confident, remember that
a correlation does not prove a causal connection. Examples:

- The price of fish in Billingsgate Market and the size of feet in China.

- Number of violent crimes in cities versus number of churches.

- The quality of student handwriting versus their height.

- Stock market prices and the sunspot cycle.

- In World War |l, bombing accuracy was far greater when enemy
fighter planes were present.

- Cigarette smoking versus lung cancer.

- Health versus alcohol intake...

[

. Lurking third variables
2. Similar time scales
3. Causal connection...

There are ways of searching for intrinsic correlation between variables
when they are known to depend mutually upon a third variable.

But... “known”??7?



Wilkinson & Pickett: The Spirit Level

“Correlations’ show that higher income inequality correlates with higher crime rate,
higher infant mortality, lower life expectancy, worse gender inequality, lower
education standards, higher obesity rates......

Figure 5a: Wilkinson and Pickett’s plot of inequality against  fjgy,re 5h: Wilkinson and Pickett’s plot of inequality against

homicide rates* homicide rates, excluding the USA
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Critique by Peter Saunders: Beware of False Prophets shows that it 1s (statistical) garbage. The
“correlations” are false or of no significance. The data are selective.

“Conclusion: There is no evidence of a significant association between the level of
income inequality in a country and its homicide rate.”



The end of the fishing trip — big fish are out there

Don’t get too discouraged by all the foregoing. Consider the example
figure, a ragged correlation if ever there was one, although there are no
nasty groupings of the type rejected by the Rule of Thumb.
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distance measure.
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Scatterplots

Correlation coefficients: simple numerical summary of the strength of a relationship.
Pearson correlation coefficient:

_ D —xX)yi — )
;o=
VO — X)) (vi — )2

r measures the strength of a linear relationship.

- brain weight vs. sleep: —0.36; log brain weight vs. sleep: —0.56.

- different because a nonlinear transformation is applied and » measures the
strength of a linear relationship.



Scatterplots

Correlation coefficients: simple numerical summary of the strength of a relationship.
Pearson correlation coefficient:

Y@ 06— )
? il —
Vi — > (3 — §)?

r measures the strength of a linear relationship.

- brain weight vs. sleep: —0.36; log brain weight vs. sleep: —0.56.

- different because a nonlinear transformation is applied and » measures the
strength of a linear relationship.

Rank correlation coefficient (F4H < 2 %0):
- brain weights are replaced by their ordered ranks (1, 2, . . .)
- sleeping times are replaced by their ranks

- Pearson correlation coefficient of the pairs of ranks is computed (— 0.39)

Advantages:
- 1nsensitive to outliers

- invariant under any monotone transformation (same for log or not).




Comparing two samples

- continuing on hypothesis testing



Comparing two samples
Samples from distributions: Are they different? If so, how do they differ?

Samples are often drawn under different conditions, need inferences about their
possible effects.

Primarily interest: those increase or decrease the average level of response.

Example. Cloud seeding:
Does it really increase precipitation?

- Some storms are seeded, others are not
- But precipitation varies widely from storm to storm
- A skeptic may not be convinced that the difference is due to anything but chance

- Develop statistical methods based on a stochastic model that treats the amounts
of precipitation as random variables

- A process of randomization allows us to make inferences about treatment effects
even if the observations are not modeled as samples from probability laws



Comparing two independent samples

Medical studies: a sample of subjects are assigned to a particular treatment, another
independent sample assigned to a control (placeboZZ & 7]) treatment.

- randomly assigning individuals to the placebo and treatment groups

Control group: modeled as independent random variable with distribution F
Treatment group: independent of each other and of the controls with distribution G.

Let’s focus on difference of location parameters (e.g. mean)

Methods based on Gaussian: f test

Treatment: X, uy, o2, Control: Y, uy, o2, independent
MLE of uy—uy1s
o (11
X—Y~N|ux —py,0° | —+ —
n m

If o2 were known, a confidence interval for uxy — py could be based on

7 — (Y_?)_(MX_MY)

N




Methods based on Gaussian: f test
Treatment: X, uy, 02, Control: Y, uy, o2,

Confidence interval has the form

(X -Y)+ z(oz/2)a\/l-|—7i
noom

But ¢2 needs to be estimated as pooled sample variance

,  (n—1)s% + (m — 1)s3 ) " .2
— sy = —1 (X=X
A p 7 7 — 2 X ( ) lel( )
Suppose that X, ..., X, are independent and normally distributed random vari-
ables with mean px and variance o2, and that Y1, ..., Y, are independent and

normally distributed random variables with mean py and variance o2, and that
the Y; are independent of the X;. The statistic

11 X =Dk T (1 . f) —(+1)/2
SY'Y:S”\/E L VRTEI\ " v

S —r —
P\'m  m v=n-+m—2

follows a ¢ distribution with m 4+ n — 2 degrees of freedom.



Methods based on Gaussian: f test

Example.

Two methods, A and B, were used in a determination of the latent heat of fusion of
ice (Natrella 1963). The investigators wanted to find out by how much the methods
differed. The following table gives the change in total heat from ice at —.72°C to

water 0°C in calories per gram of mass:

Method A Method B
79.98 80.02
80.04 79.94
80.02 79.98
80.04 79.97
80.03 79.97
80.03 80.03
80.04 79.95
79.97 79.97
80.05
80.03
80.02
80.00
80.02

80.06 -

X, = 80.02 S, = .024 .
X5 =79.98 S, = .031

5 ) 80.02 -

12x8°+7xS8
2 __ a b __
52 = 5 =.0007178 |
§; = 027
79.98 F

Xi—Xp=.04

79.96 -

| 1
XXy =S\ 3T 5= 012 TE

t19(.025) = 2.093

95% confidence interval

(X4 —Xp) * 19(.025)5%, ., or (015, .065).

Method A

Method B




Methods based on Gaussian: f test

Hypothesis testing for two-sample problems. Null hypothesis: no treatment effect.

Hy: ux = py
Hi: ux # ny Two-sided alternative

Three common alternative hypotheses: : :
(more common in practice)

Hy: px > py

One-sided alternative
Hi: ux < py

X-Y

Test statistic f = ~t,.,_» (theorem)

SX-¥
Same role in 2-sample comparison as is played by %2 in testing goodness of fit.
- Reject extreme ¢ values, as rejecting large 2 values

-  Knowing null distribution is # allows for a rejection region for a test at level a, as
is x2 allowed for obtaining a rejection region for testing goodness of fit

Rejection regions: For Hy, |t] > tyym—2(ct/2)
For Hy, t > t,4m—2(ct)

For H3a I < _tn-I—m—Z(a)



Methods based on Gaussian: f test

Example. Latent heat of fusion of ice again.
To test Hy: u4 = g versus a two-sided alternative,

Xi—X
f=—2 "5 333
L1
S R s
F n mn

t19(.005) = 2.861. The two-side test rejects at the level a=0.01.

2 2
: : : : — = 5 s

(1) If two populations have different variance, estimate Var(X —v): X 4 =%

n m

Using this as denominator, no longer ¢ distribution.
But can be approximated by ¢ distribution with d.o.f. as (round to nearest integer)

_ [(sg/n) + (s3/m))?
@R/ N (sy/m)?

n—1 m—1

df

(2) If underlying distributions are not normal and sample sizes are large, the use of
the ¢ distribution or the normal distribution is justified by CLT, probability levels of
confidence intervals and hypothesis tests are approximately valid.



Methods based on Gaussian: F test

By analogous calculations, we can arrive at the F' test for variances.
Again, Gaussian distributions are assumed.

The null hypothesis is H: o, = o,

Thedataare X;(i=1,...,n)and Y;(i=1, ..., m)

The test statistic 1s

>i(Xi - D)/ (n—1)
>(Yi = V)/(m — 1)

following an F' distribution with n—1 and m—1 degrees of freedom.
The testing procedure is the same as for 7 test.

Particular sensitive to the Gaussian assumption.



Nonparametric methods: the Mann-Whitney test

Nonparametric methods do not assume that the data follow any particular
distributional form, often replacing the data by ranks. Why?

- Results are invariant under any monotonic transformation (in comparison, p-
value of a ¢ test may change on log scales).

- Using ranks has the effect of moderating the influence of outliers.

Mann-Whitney test (a.k.a. Wilcoxon rank sum test)

- We have m + n experimental units to assign to a treatment and a control
group.

- The assignment 1s made at random: Say, » units are randomly chosen and
assigned to the control, and the remaining m units are assigned to the
treatment.

- Null hypothesis: the treatment has no effect.

- If 1t 1s true, then any difference in the two outcomes is due to randomization



Nonparametric methods: the Mann-Whitney test

Test statistic: (the areument holds in the presence of ties)

- First, we group all m + n observations together and rank them in order of
Increasing size.

- Calculate the sum of the ranks of those observations from the control group.

- If this sum is too small or too large, we will reject the null hypothesis.

A heuristic example. 4 subjects, 2 are randomly assigned to a treatment, other 2
to the control. Observed responses:

Treatment Control
1(1) 6 (4)
3(2) 4 (3)

- Sum of ranks: control R=7, treatment =3, differ by chance?

- Calculate probability of such a discrepancy if treatment has no effect at all,
difference entirely due to particular randomization — the null hypothesis



Nonparametric methods: the Mann-Whitney test

Key idea:

we can explicitly calculate the distribution of R under the null hypothesis:
every assignment of ranks to observations is equally likely, enumerate all 4! = 24

such assignments.

- In particular, each of the (é) = 6 assignments of ranks to the control group is

equally likely:

Under null hypothesis, R’s (null) distribution is

T

3

Ranks

R

{1,2}
1,3}
1,4}
{2,3}
{2, 4}
{3, 4}

4

kg

NN B W

6

7

P{R =¥r) ‘

N =

1
6

1
3

1
6

PR=T = ¢

This discrepancy would occur
one time out of six purely on
the basis of chance.



Nonparametric methods: the Mann-Whitney test
More practically: Say, there are n observations in treatment group, m in control.

- If null hypothesis holds, every assignment of ranks to the m + n observations is
equally likely, each of the (m+”) possible assignments of ranks to the control
group is equally likely.



Nonparametric methods: the Mann-Whitney test

More practically: Say, there are n observations in treatment group, m in control.

If null hypothesis holds, every assignment of ranks to the m + n observations is
equally likely, each of the (””+”) possible assignments of ranks to the control
group is equally likely.

For each assignment, we calculate the sum of the ranks and thus determine the
null distribution of the test statistic -- the sum of the ranks of the control group

- No assumption that data from control/treatment are samples from a
probability distribution. Probability kicks in due to random assignment



Nonparametric methods: the Mann-Whitney test

More practically: Say, there are n observations in treatment group, m in control.

If null hypothesis holds, every assignment of ranks to the m + n observations is
equally likely, each of the (””+”) possible assignments of ranks to the control
group is equally likely.

For each assignment, we calculate the sum of the ranks and thus determine the

null distribution of the test statistic -- the sum of the ranks of the control group

- No assumption that data from control/treatment are samples from a
probability distribution. Probability kicks in due to random assignment

- Rank sum is easy to compute and sensitive to a treatment. But any other test
statistic can be used and its null distribution computed in the same fashion.
Also, its null distribution has to be computed only once and tabled.

- The sum of the two rank sums is 1+2+...+(m+n)=[(m+n)(m+n+1)/2],
knowing one rank sum tells us the other.



Nonparametric methods: the Mann-Whitney test
More practically: Say, there are n observations in treatment group, m in control.

- If null hypothesis holds, every assignment of ranks to the m + n observations is
equally likely, each of the (””+”) possible assignments of ranks to the control
group is equally likely.

- For each assignment, we calculate the sum of the ranks and thus determine the
null distribution of the test statistic -- the sum of the ranks of the control group

- No assumption that data from control/treatment are samples from a
probability distribution. Probability kicks in due to random assignment

- Rank sum is easy to compute and sensitive to a treatment. But any other test
statistic can be used and its null distribution computed in the same fashion.
Also, its null distribution has to be computed only once and tabled.

- The sum of the two rank sums is 1+2+...+(m+n)=[(m+n)(m+n+1)/2],
knowing one rank sum tells us the other.

- Tables in terms of rank sum of the smaller group, or smaller of two rank sums

- Let n,=smaller sample size, R=its rank sum, R =n,(m+n+1)—R, then critical value
R* =min(R,R") is given in tables.



Nonparametric methods: the Mann-Whitney test

If there are only a small # of ties, tied observations are assigned average rank; then
significance levels are not greatly affected.

Example. Latent heats of fusion of ice. Sample sizes=13 and 8, small, no prior
knowledge validating Gaussian assumption, safer to use nonparametric methods.

Method A Method B
79.98 80.02
80.04 79.94
80.02 79.98
80.04 79.97 <—
80.03 79.97 *
80.03 80.03
80.04 79.95
79.97 *= 79.97 =
80.05
80.03
80.02
80.00
80.02

Method A Method B

1.5 11.5
19.0 1.0
11.5 7.5
19.0 454
155 4,54
133 15.5
19.0 2.0

454 454
21.0
15.5
11.5

9.0
11.5

AT ESR B,
Xt B A E AU,

R RS Bk
S, HFWPRIL A
B, AT AE A
RHMFERFLT

The sum of the ranks of the smaller sample is R =51. R'=8(8+13+1)—R=125, R* =51.

Table: 53 is the critical value for a two-tailed test with a = .01.

Reject null hypothesis at this significance level.



%8 BANEHRMER - EFERRPEEMATE

ny | SARBH o | RLRRE o | M (BUNIRE)
1 2 3 4 b 6 7 8 g 10 11 12 13 14 15 16 17 18 19 20
3 0.20 0.10 3 7 :
0.10 0.05 6
0.05 0.025
0.01 ° 0.005
4 0.20 0.10 3 7 13
0.10 0.05 6 11
0.05 0.025 10
0.01 0.005
5 0.20 0.10 4 8 14 20
0.10 0.05 3 7 12 19
0.05 0.25 6 11 17
0.01 0.005 15
6 0.20 0.10 4 9 15 22 30
0.10 0.05 3 8 13 20 28
0.05 0.025 7 12 18 26
0.01 0.005 10 16 23
7 -0.20 0.10 4 10 16 23 32 41
0.10 0.05 3 8 14 21 29 39
0.05 0.025 7 13 20 27 36
0.01 0.005 10 16 24 32
3 0.20 0.10 5 11 17 25 34 44 55
0.10 0.05 4 9 15 23 31 41 31
0.05 0.025 3 8 14 21 29 38 49
0.01 0.005 11 17 25 34 43
9 0.20 0.10 1 5 11 19 27 36 46 58 70
0.10 0.05 4 *10 16 24 33 43 54 66
0.05 0.025 3 8 14 22 31 40 51 62
0.01 0.006 6 11 18 26 35 45 56




(%)

ny | WERRE o | RURRE o | MRMHFE)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10 0.20 0.10 1 6 12 20 28 38 49 60 73 87
0.10 0.05 4 10 17 26 35 45 56 69 B2
0.05 0.025 3 9 15 23 32 42 53 65 78
0.01 0.005 B 12 19 27 37 47 58 T1
11 0.20 0.10 1 6 13 21 30 40 51 63 76 91 106
0.10 0,05 4 11 18 27 37 47 59 T2 86 100
0.05 0.025 3 9 16 24 34 44 55 68 81 96
0.01 0.005 6 12 20 28 38 49 61 73 BT
12 0.20 0.10 1 v 14 22 32 42 54 66 80 94 110 127
0.10 0.05 5 11 19 28 38 49
0.05 0.25 4 10 17 26 35 46
0.01 0.005 7 13 21 30 40
13 0.20 0.10 1 7 15 23 33 44 56 69
0.10 0.056 5 12 20 30 40 52 64
0.0 0.025 4 10 18 27 37 48 60
0.01 Q.005 7 *¥13 22 31 41 53
14 0.20 0.10 1 *8 16 25 35 46 59 72 86 102 118 136 154 174
0.10 0.05 *6 13 21 31 42 B4 67 81 96 112 129 147 166
0.06 0.025 4 11 19 28 38 50 62 76 91 106 123 141 160
0.01 0.005 7 14 22 32 43 5H4 67 81 96 112 129 147
15 0.20 0.10 1 8 16 26 387 48 61 75 90 106 123 141 159 179 200
0.10 0.05 6 13 22 33 44 56 69 84 99 116 133 152 170 192
0.05 0.025 4 11 20 29 40 52 65 T9 94 110 127 1456 164 184
0.01 0.005 8 15 23 33 44 56 69 84 99 115 133 151 171
16 0.20 0.10 1 8 17 27 38 50 64 78 93 109 127 145 166 185 206 229
0.10 0.05 6 14 24 34 46 58 72 87 103 120 138 156 176 197 219
0.05 0.025 4 12 21 30 42 54 67 82 97 113 131 150 169 190 211
0.01 0.006 8 15 24 34 46 bH8 T2 B6 102 119 136 155 175 196




Linear least squares



Linear least squares

The most common (but by no means only) method for determining the parameters
in curve-fitting problems.

A straight line is fit to (y;, x;), wherei = 1,..., n;

- yis called dependent/response variable, x is independent/predictor variable,
predict y from x. We minimize

S(Bo, B1) =D (¥ — Bo — pix)’

i=1

- Procedure is not symmetric in y and x!

To find By and B;, we calculate

aS =
35 = 2 ;(yf — Bo — Bix;)
as

3—131 = —2;%‘(}’5 — Po — P1xi)



Linear least squares vs. correlation

Setting the partial derivatives to 0, the minimizers satisfy
n n n n n
Y vi=npo+phi) x d xivi=Bod xi+piy x
=l i=1 i=1 =1 =l

> e (i = X) (i — §) e
i]'l—l(xi ~3) Po =y — piX

B =

Let’s introduce:

ln - 1” — 2
=E;(xi_x) Sy.y:;;(y,._y) Sy Zx,—x)(yz—y)

?Slr—L

Correlation between x’s and y’s is P Sxy
A/ SxxSyy
B Sxy W
r=piy—
SXX S\y

Correlation is zero if and only if the slope is zero.



The concept of regression

After some manipulation and standardizing the variables,

5 -y _ x—X
=r
S -\.‘ )r‘ S.\' -X‘

Interpretation:
- Suppose r > 0 and predictor variable x is one standard deviation > x’s average
- Then predicted value of y is r standard deviations > y’s average

- r<1, in units of standard deviations, y is closer to its average than x - Regression

Regression Analysisse:18865F It [F 15 4% 52 X f 48 11 5% 2 Sir Francis Galton#2 !
SR LEXTI A e YN NE AV D AN NI S 8 W IR < D = g =il T OB =E 3
- AE (G EEAF R ERIEY e E e HARTE “RIE”

- TEEREXEAR, MAREEF LR E K, *ZIMR, HitE
AN 2 1) P A i e PR K S

- GaltonXf 10743 QB e H— D) LT B B m ot a &KL, WERAFE S M
K, EAAEEHAEE R N2, EERR/N, LA E /R — L
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Son’s height (in.)

The concept of regression

(Freedman, Pisani, Purves, 1998) The heights of 1078 pairs of fathers and sons.
The fathers’ average height is 67.7 in. with a standard deviation of 2.74 in.;
the sons’ average and standard deviation are 68.7 in. and 2.81 in., respectively;

the correlation coefficient 1s 0.501.

Notice how the prediction son’s height = father’s height + 1 under-predicts on the left

and over-predicts on the right.
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The concept of regression

Example (Toooooooold!!!).
Two exams are given in a course. The scores of a student on the mid-term and
final exams, X and Y, are jointly distributed.

Suppose that the exams are scaled to have the same means u = 1y = uy and
standard deviations ¢ = gy = gy . Then, the correlation p = o,y /6% and the best
linear predictor Y = p + p(X — p).

By the equation Y —pn=pX-p
we predict that student’s score on the final exam to differ from the overall mean u
by less than did the score on the mid-term.

In case of positive correlation:

-- Encouraging for students below average, bad news for those above average

This phenomenon is often referred to as regression to the mean.

From Lec 5, Predictions



Statistical properties of estimated slope and intercept

Reliability of the slope and intercept in the presence of “noise”?

Need a statistical model. The simplest one (standard statistical model)

yi = Bo + Bi1xi + e, =1, ...,n

Here the e; are independent random variables with E (e;) = 0 and Var(e;) = o2.

Important conclusion A:

Under the assumptions of the standard statistical model, the least squares esti-
mates are unbiased: E(8;) = 8;, for j =0, 1.

Important conclusion B:
We define the residual sum of squares (RSS, 5% Z ¥ 75 )

RSS = Z()’i — éo — lei)z
i=1

then an unbiased estimate of 62 1s
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Suggestions for your
further study
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Practical statistics for astronomers, Wall & Jenkins

e WA MEURYT, 26 5RCENLE S M5 RGit A g
A mREENANR (LSS, EHTE, RICHFBWA) + FRX
ARG RSB R Z A3 PR

R LSRR (U, SRS S CadRE Tt F
BATEME B EARR, ARMENE A4 2. iBRBEEL THIENK, A
RA B2 H S, ARGETESE E 508 S AU E 8 B U E AR

FATHIURFE N A AlJohn A. RiceffI 5820 7 REF AYFEAL; AT DLFE LA B4
HZAIEER B CIT R 1 RN BAR K 5k} -- Appendix AR A A !

Data reduction and error analysis for the physical sciences, Bevington & Robinson
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