
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials Bootcamp Style (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Kevin Mitnick, Hacking  

 

No one made Kevin Mitnick into a hacker; that was his own choice and responsibility.  
Raised in the San Fernando Valley near Los Angeles by his mother, Mitnick has been in 
and out of trouble with the law since 1981.  It was then, as a 17-year-old, that he was 
placed on probation for stealing computer manuals from a Pacific Bell telephone-
switching center in Los Angeles.  Those who know Mitnick paint a picture of a man 
obsessed with the power inherent in controlling the nation's computer and telephone 
networks.  Who is this anti-social computer thievery demon?  Who might exorcize this 
demon? How about a young, Japanese-born physicist, computer-security expert, a wizard 
like Tsutomu Shimomura?  

On Christmas Day, 1994, a hacker launched a sophisticated IP Spoofing attack against 
Tsutomu Shimomura's computers in San Diego. The attack was launched from toad.com 
in San Francisco, the Toad Hall computer owned by John Gilmore, a founding employee 
of Sun Microsystems. By an uncanny coincidence, Shimomura spent the day at Toad Hall 
with his friend, Julia Menapace. Shimomura's pursuit of the hacker led to computers in 
Marin County where Shimomura's stolen files were found on The Well, Denver, San Jose 
and finally to Kevin Mitnick, the fugitive hacker, in Raleigh, North Carolina. Two 
different attack mechanisms were used. IP source address spoofing and TCP sequence 
number prediction were used to gain initial access to a diskless workstation being used 
mostly as an X terminal. After root access had been obtained, an existing connection to 
another system was hijacked by means of a loadable kernel STREAMS module. 
These are some of the machines that figured in Mitnick's hacking.  For those who don't 
know, Telnet is a UNIX process that allows remote log-in to a networked computer, and 
is one of the main tools a hacker uses on the Net: http is the protocol for serving World 
Wide Web pages. 

The IP spoofing attack started at about 14:09:32 PST on 12/25/94. The first probes were 
from toad.com (this info derived from packet logs): 
 
14:09:32 toad.com# finger -l @target 
14:10:21 toad.com# finger -l @server 
14:10:50 toad.com# finger -l root@server 
14:11:07 toad.com# finger -l @x-terminal 
14:11:38 toad.com# showmount -e x-terminal 
14:11:49 toad.com# rpcinfo -p x-terminal 
14:12:05 toad.com# finger -l root@x-terminal 

The apparent purpose of these probes was to determine if there might be some kind of 
trust relationship amongst these systems that could be exploited with an IP spoofing 
attack. The source port numbers for the showmount and rpcinfo indicate that the attacker 
is root on toad.com. About six minutes later, we see a flurry of TCP SYNs (initial 
connection requests) from 130.92.6.97 to port 513 (login) on server. The purpose of these 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SYNs is to fill the connection queue for port 513 on server with "half-open" connections 
so it will not respond to any new connection requests. In particular, it will not generate 
TCP RSTs in response to unexpected SYN-ACKs. 
 
As port 513 is also a "privileged" port (< IPPORT_RESERVED), server.login 
can now be safely used as the putative source for an address spoofing attack on the UNIX 
"r-services" (rsh, rlogin). 130.92.6.97 appears to be a random (forged) unused address 
(one that will not generate any response to packets sent to it): 
 
14:18:22.516699 130.92.6.97.600 > server.login: S 1382726960:1382726960(0) win 
4096 
14:18:22.566069 130.92.6.97.601 > server.login: S 1382726961:1382726961(0) win 
4096 
14:18:22.744477 130.92.6.97.602 > server.login: S 1382726962:1382726962(0) win 
4096 
14:18:22.830111 130.92.6.97.603 > server.login: S 1382726963:1382726963(0) win 
4096 
14:18:22.886128 130.92.6.97.604 > server.login: S 1382726964:1382726964(0) win 
4096 
14:18:22.943514 130.92.6.97.605 > server.login: S 1382726965:1382726965(0) win 
4096 
14:18:23.002715 130.92.6.97.606 > server.login: S 1382726966:1382726966(0) win 
4096 
14:18:23.103275 130.92.6.97.607 > server.login: S 1382726967:1382726967(0) win 
4096 
Server generated SYN-ACKs for the first eight SYN requests before the connection 
queue filled up. server will periodically retransmit these SYN-ACKs as there is nothing 
to ACK them.  Below, we see 20 connection attempts, only the first nine are shown, from 
apollo.it.luc.edu to x-terminal.shell. The purpose of these attempts is to determine the 
behavior of x-terminal's TCP sequence number generator. Note that the initial sequence 
numbers increment by one for each connection, indicating that the SYN packets are *not* 
being generated by the system's TCP implementation. This results in RSTs conveniently 
being generated in response to each unexpected SYN-ACK, so the connection queue on 
x-terminal does not fill up: 
 
14:18:25.906002 apollo.it.luc.edu.1000 > x-terminal.shell: S 1382726990:1382726990(0) 
win 4096 
14:18:26.094731 x-terminal.shell > apollo.it.luc.edu.1000: S 2021824000:2021824000(0) 
ack 1382726991 win 4096 
14:18:26.172394 apollo.it.luc.edu.1000 > x-terminal.shell: R 382726991:1382726991(0) 
win 0 
14:18:26.507560 apollo.it.luc.edu.999 > x-terminal.shell: S 1382726991:1382726991(0) 
win 4096 
14:18:26.694691 x-terminal.shell > apollo.it.luc.edu.999: S 2021952000:2021952000(0) 
ack 1382726992 win 4096 
14:18:26.775037 apollo.it.luc.edu.999 > x-terminal.shell: R 1382726992:1382726992(0) 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

win 0 
14:18:26.775395 apollo.it.luc.edu.999 > x-terminal.shell: R 1382726992:1382726992(0) 
win 0 
14:18:27.014050 apollo.it.luc.edu.998 > x-terminal.shell: S 1382726992:1382726992(0) 
win 4096 
14:18:27.174846 x-terminal.shell > apollo.it.luc.edu.998: S 2022080000:2022080000(0) 
ack 1382726993 win 4096 
 
Note that each SYN-ACK packet sent by x-terminal has an initial sequence number 
which is 128,000 greater than the previous one. Below, we see a forged SYN (connection 
request), allegedly from server.login to x-terminal.shell. The assumption is that x-
terminal probably trusts server, so x-terminal will do whatever server (or anything 
masquerading as server) asks. X-terminal then replies to server with a SYN-ACK, which 
must be ACK'd in order for the connection to be opened. As server is ignoring packets 
sent to server.login, the ACK must be forged as well. Normally, the sequence number 
from the SYN-ACK is required in order to generate a valid ACK. However, the attacker 
is able to predict the sequence number contained in the SYN-ACK based on the known 
behavior of x-terminal's TCP sequence number generator, and is thus able to ACK the 
SYN-ACK without seeing it: 
14:18:36.245045 server.login > x-terminal.shell: S 1382727010:1382727010(0) win 4096 
14:18:36.755522 server.login > x-terminal.shell: . ack 2024384001 win 4096 

The spoofing machine now has a one-way connection to x-terminal.shell, which appears 
to be from server.login. It can maintain the connection and send data provided that it can 
properly ACK any data sent by x-terminal. It sends the following:  
14:18:37.265404 server.login > x-terminal.shell: P 0:2(2) ack 1 win 4096 
14:18:37.775872 server.login > x-terminal.shell: P 2:7(5) ack 1 win 4096 
14:18:38.287404 server.login > x-terminal.shell: P 7:32(25) ack 1 win 4096 
which corresponds to:14:18:37 server# rsh x-terminal "echo + + >>/.rhosts" 
We now see RSTs to reset the "half-open" connections and empty the connection 
queue for server.login: 
14:18:52.298431 130.92.6.97.600 > server.login: R 1382726960:1382726960(0) win 
4096 
14:18:52.363877 130.92.6.97.601 > server.login: R 1382726961:1382726961(0) win 
4096 
Total elapsed time since the first spoofed packet: < 16 seconds. 
The spoofed connection is shut down. Server.login can again accept connections. After 
root access had been gained via IP address spoofing, a kernel module named "tap-2.01" 
was compiled and installed on x-terminal:  
x-terminal% modstat 
Id Type Loadaddr Size B-major C-major Sysnum Mod Name 
1 Pdrv ff050000 1000 59. tap/tap-2.01 alpha  
x-terminal% ls -l /dev/tap 
crwxrwxrwx 1 root 37, 59 Dec 25 14:40 /dev/tap 
This appears to be a kernel STREAMS module which can be pushed onto an existing 
STREAMS stack and used to take control of a tty device. It was used to take control of an 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

already authenticated login session to the target. 
 
 So how easy was it for Kevin Mitnick to use this technique, let’s see. IP-spoofing  is a 
complex technical method of attack.  It is made up of several components which include 
trust-relationship exploitation. The Players required are: 
 A:      Target host 
 B:      Trusted host 
 X:      Unreachable host 
 Z:      Attacking host 
 (1)2:   Host 1 masquerading as host 2 
 
The Figures are: 
tick   host a      control     host b 
1       A       ---SYN--->      B 
 
tick:   A tick of time.  There is no distinction made as to *how* much time passes 
between ticks, just that time passes.  It's generally not a great deal. Host a: A machine 
participating in a TCP-based conversation.  
control: This field shows any relevant control bits set in the TCP header and the direction 
the data is flowing. Host b: A machine participating in a TCP-based conversation. In this 
case, at the first reference point in time host  is sending a TCP segment to host b with the 
SYN bit on.  Unless stated, we are generally not concerned with the data portion of the 
TCP segment. 
Trust Relationships:  In the Unix world, trust can be given all too easily.  Say you 
have an account on machine A, and on machine B.  To facilitate going between the two 
with a minimum amount of hassle, you want to setup a full-duplex trust relationship 
between them.  In your home directory at A you create a .rhosts file: `echo "B username" 
> ~/.rhosts` in your home directory at B you create a .rhosts file: `echo "A username" 
> ~/.rhosts` (Alternately, root can setup similar rules in /etc/hosts.equiv, the difference 
being that the rules are host wide, rather than just on an individual basis.)  Now, you can 
use any of the r* commands without that annoying hassle of password authentication. 
These commands will allow address-based authentication, which will grant or deny 
access based off of the IP address of the service requestor. 
 Rlogin:  Rlogin is a simple client-server based protocol that uses TCP as it's transport.  
Rlogin allows a user to login remotely from one host to another, and, if the target 
machine trusts the other, rlogin will allow the convenience of not prompting for a 
password.  It will instead have authenticated the client via the source IP address.  So, 
from our example above, we can use rlogin to remotely login to A from B (or vice-versa) 
and not be prompted for a password. 
Internet Protocol:  IP is the connectionless, unreliable network protocol in the 
TCP/IP suite.  It has two 32-bit header fields to hold address information.  IP is also the 
busiest of all the TCP/IP protocols as almost all TCP/IP traffic is encapsulated in IP 
datagrams.  IP's job is to route packets around the network.  It provides no mechanism for 
reliability or accountability, for that, it relies on the upper layers.  IP simply sends out 
datagrams and hopes they make it intact. If they don't, IP can try to send an ICMP error 
message back to the source, however this packet can get lost as well.  (ICMP is Internet 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Control Message Protocol and it is used to relay network conditions and different errors 
to IP and the other layers.)  IP has no means to guarantee delivery.  Since IP is 
connectionless, it does not maintain any connection state information.  Each IP datagram 
is sent out without regard to the last one or the next one.  This, along with the fact that 
it is trivial to modify the IP stack to allow an arbitrarily chosen IP address in the source 
(and destination) fields make IP easily subvert able.   
Transmission Control Protocol :  TCP is the connection-oriented, reliable transport 
protocol in the TCP/IP suite.  Connection-oriented simply means that the two hosts 
participating in a discussion must first establish a connection before data may change 
hands.  Reliability is provided in a number of ways but the only two we are concerned 
with are data sequencing and acknowledgement.  TCP assigns sequence numbers to every 
segment and acknowledges any and all data segments received from the other end. 
(ACK's consume a sequence number, but are not themselves ACK'd.)  This reliability 
makes TCP harder to fool than IP.   
 Sequence Numbers, Acknowledgements and other flags:  Since TCP is reliable, it 
must be able to recover from lost, duplicated, or out-of-order data.  By assigning a 
sequence number to every byte transferred, and requiring an acknowledgement from 
the other end upon receipt, TCP can guarantee reliable delivery.  The receiving end uses 
the sequence numbers to ensure proper ordering of the data and to eliminate duplicate 
data bytes.  TCP sequence numbers can simply be thought of as 32-bit counters.  They 
range from 0 to 4,294,967,295.  Every byte of data exchanged across a TCP connection 
(along with certain flags) is sequenced.  The sequence number field in the TCP header 
will contain the sequence number of the *first* byte of data in the TCP segment.  The 
acknowledgement number field in the TCP header holds the value of next *expected* 
sequence number, and also acknowledges *all* data up through this ACK number minus 
one.  TCP uses the concept of window advertisement for flow control.  It uses a sliding 
window to tell the other end how much data it can buffer.  Since the window size is 16-
bits a receiving TCP can advertise up to a maximum of 65535 bytes.  Window 
advertisement can be thought of an advertisement from one TCP to the other of how 
high acceptable sequence numbers can be. Other TCP header flags of note are RST 
(reset), PSH (push) and FIN (finish).  If a RST is received, the connection is immediately 
torn down.  RSTs are normally sent when one end receives a segment that just doesn't 
jive with current connection (we will encounter an example below).  The PSH flag tells 
the receiver to pass all the data is has queued to the application, as soon as possible.  The 
FIN flag is the way an application begins a graceful close of a connection (connection 
termination is a 4-way process). When one end receives a FIN, it ACKs it, and does not 
expect to receive any more data (sending is still possible, however). 
TCP Connection Establishment:  In order to exchange data using TCP, hosts must 
establish a connection.  TCP establishes a connection in a 3-step process called 
the 3-way handshake.  If machine A is running an rlogin client and wishes to connect to 
an rlogin daemon on machine B, the process is as follows: 
1       A       ---SYN--->      B 
2       A    <---SYN/ACK---     B 
3       A       ---ACK--->      B 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

At (1) the client is telling the server that it wants a connection. This is the SYN flag's 
only purpose.  The client is telling the server that the sequence number field is valid, and 
should be checked.  The client will set the sequence number field in the TCP header to 
it's ISN (initial sequence number).  The server, upon receiving this segment (2) will 
respond with it's own ISN (therefore the SYN flag is on) and an ACKnowledgement of 
the clients first segment (which is the client's ISN+1).  The client then ACK's the server's 
ISN (3).  Now, data transfer may take place. 
The ISN and Sequence Number:  It is important to understand how sequence numbers 
are initially chosen, and how they change with respect to time.  The initial sequence 
number when a host is bootstrapped is initialized to 1. (TCP actually calls this variable 
'tcp_iss' as it is the initial *send* sequence number.  The other sequence number variable, 
'tcp_irs' is the initial *receive* sequence number and is learned during the 3-way 
connection establishment.  We are not going to worry about the distinction.)  This 
practice is wrong, and is acknowledged as so in a comment the tcp_init() function where 
it appears.  The ISN is incremented by 128,000 every second, which causes the 32-bit 
ISN counter to wrap every 9.32 hours if no connections occur.  However, each time a 
connect() is issued, the counter is incremented by 64,000. One important reason behind 
this predictability is to minimize the chance that data from an older stale incarnation (that 
is, from the same 4-tuple of the local and remote IP-addresses TCP ports) of the current 
connection could arrive and foul things up.  The concept of the 2MSL wait time applies 
here, but is beyond the scope of this paper.  If sequence numbers were chosen at random 
when a connection arrived, no guarantees could be made that the sequence numbers 
would be different from a previous incarnation.  If some data that was stuck in a routing 
loop somewhere finally freed itself and wandered into the new incarnation of it's old 
connection, it could really foul things up. 
Ports:  To grant simultaneous access to the TCP module, TCP provides a user interface 
called a port.  Ports are used by the kernel to identify network processes, these are strictly 
transport layer entities (that is to say that IP could care less about them). 
Together with an IP address, a TCP port provides an endpoint for network 
communications.  In fact, at any given moment *all* Internet connections can be 
described by 4 numbers: the source IP address and source port and the destination IP 
address and destination port.  Servers are bound to 'well-known' ports so that they may be 
located on a standard port on different systems.  For example, the rlogin daemon sits on 
TCP port 513.  IP-spoofing consists of several steps, which I will briefly outline here, 
then explain in detail.  First, the target host is chosen.  Next, a pattern of trust is 
discovered, along with a trusted host.  The trusted host is then disabled, and the target's 
TCP sequence numbers are sampled.  The trusted host is impersonated, the sequence 
numbers guessed, and a connection attempt is made to a service that only requires 
address-based authentication.  If successful, the attacker executes a simple command to 
leave a backdoor. 
Required Items: There are a couple of items that are required to wage this attack: 
target host, trusted host, attacking host (with root access),  and IP-spoofing software. 
Generally the attack is made from the root account on the attacking host against the root 
account on the target. One often overlooked, but critical factor in IP-spoofing is the fact 
that the attack is blind.  The attacker is going to be taking over the identity of a trusted 
host in order to subvert the security of the target host.  The trusted host is disabled using 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the method described below.  As far as the target knows, it is carrying on a conversation 
with a trusted pal.  In reality, the attacker is sitting off in some dark corner of the Internet, 
forging packets from this trusted host while it is locked up in a denial of service battle.  
The IP datagrams sent with the forged IP-address reach the target fine (recall that IP is a 
connectionless-oriented protocol-- each datagram is sent without regard for the other end) 
but the datagrams the target sends back (destined for the trusted host) end up in the bit-
bucket.  The attacker never sees them.  The intervening routers know where the 
datagrams are supposed to go.  They are supposed to go the trusted host.  As far as the 
network layer is concerned, this is where they originally came from, and this is where 
responses should go.  Of course once the datagrams are routed there, and the information 
is demultiplexed up the protocol stack, and reaches TCP, it is discarded (the trusted host's 
TCP cannot respond.   So the attacker has to be smart and *know* what was sent, 
and *know* what response the server is looking for.  The attacker cannot see what the 
target host sends, but she can *predict* what it will send; that coupled with the 
knowledge of what it *will* send, allows the attacker to work around this blindness. 
After a target is chosen the attacker must determine the patterns of trust (for the sake of 
argument, we are going to assume the target host *does* in fact trust somebody.  If it 
didn't, the attack would end here).  Figuring out who a host trusts may or may not be 
easy.  A 'showmount -e' may show where file systems are exported, and rpcinfo can give 
out valuable information as well. If enough background information is known about the 
host, it should not be too difficult.  If all else fails, trying neighboring IP addresses in a 
brute force effort may be a viable option.  Once the trusted host is found, it must be 
disabled.  Since the attacker is going to impersonate it, she must make sure this host 
cannot receive any network traffic and foul things up.  There are many ways of doing 
this, the one I am going to discuss is TCP SYN flooding. A TCP connection is initiated 
with a client issuing a request to a server with the SYN flag on in the TCP header.  
Normally the server will issue a SYN/ACK back to the client identified by the 32-bit 
source address in the IP header.  The client will then send an ACK to the server (as we 
saw in figure 1 above) and data transfer can commence.  There is an upper limit of how 
many concurrent SYN requests TCP can process for a given socket, however.  This limit 
is called the backlog, and it is the length of the queue where incoming (as yet incomplete) 
connections are kept.  This queue limit applies to both the number of incomplete 
connections (the 3-way handshake is not complete) and the number of completed 
connections that have not been pulled from the queue by the application by way of 
the accept() system call.  If this backlog limit is reached, TCP will silently discard all 
incoming SYN requests until the pending connections can be dealt with.  Therein lies the 
attack. The attacking host sends several SYN requests to the TCP port it desires disabled.  
The attacking host also must make sure that the source IP-address is spoofed to be that of 
another, currently unreachable host (the target TCP will be sending it's response to this 
address.  (IP may inform TCP that the host is unreachable, but TCP considers these errors 
to be transient and leaves the resolution of them up to IP (reroute the packets, etc) 
effectively ignoring them.)  The IP-address must be unreachable because the attacker 
does not want any host to receive the SYN/ACKs that will be coming from the target 
TCP (this would result in a RST being sent to the target TCP, which would foil our 
attack).  The process is as follows: 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1       Z(x)    ---SYN--->      B 
        Z(x)    ---SYN--->      B 
        Z(x)    ---SYN--->      B 
        Z(x)    ---SYN--->      B 
        Z(x)    ---SYN--->      B 
2       X    <---SYN/ACK---     B 
        X    <---SYN/ACK---     B 
3       X      <---RST---       B 
 
At (1) the attacking host sends a multitude of SYN requests to the target (remember the 
target in this phase of the attack is the trusted host) to fill it's backlog queue with pending 
connections.  (2) The target responds with SYN/ACKs to what it believes is the 
source of the incoming SYNs.  During this time all further requests to this TCP port will 
be ignored. Different TCP implementations have different backlog sizes. BSD generally 
has a backlog of 5 (Linux has a backlog of 6).  There is also a 'grace' margin of 3/2.  That 
is, TCP will allow up to backlog*3/2+1 connections.  This will allow a socket one 
connection even if it calls listen with a backlog of 0. Now the attacker needs to get an 
idea of where in the 32-bit sequence number space the target's TCP is.  The attacker 
connects to a TCP port on the target (SMTP is a good choice) just prior to launching 
the attack and completes the three-way handshake.  The process is exactly the same as 
fig(1), except that the attacker will save the value of the ISN sent by the target host.  
Often times, this process is repeated several times and the final ISN sent is stored.  The 
attacker needs to get an idea of what the RTT (round-trip time) from the target to the 
host.  The process can be repeated several times, and an average of the RTT's is 
calculated.)  The RTT is necessary in being able to accurately predict the next ISN.  The 
attacker has the baseline (the last ISN sent) and knows how the sequence numbers are 
incremented (128,000/second and 64,000 per connect) and now has a good idea of how 
long it will take an IP datagram to travel across the Internet to reach the target 
(approximately half the RTT, as most times the routes are symmetrical).  After the 
attacker has this information, he immediately proceeds to the next phase of the attack (if 
another TCP connection were to arrive on any port of the target before the attacker was 
able to continue the attack, the ISN predicted by the attacker would be off by 64,000 of 
what was predicted). When the spoofed segment makes its way to the target, several 
different things may happen depending on the accuracy of the attacker's prediction: 
 If the sequence number is exactly where the receiving TCP expects it to be, the incoming 
data will be placed on the next available position in the receive buffer.  If the sequence 
number is LESS than the expected value the data byte is considered a retransmission, and 
is discarded.  If the sequence number is GREATER than the expected value but still 
within the bounds of the receive window, the data byte is considered to be a future byte, 
and is held by TCP, pending the arrival of the other missing bytes.  If a segment arrives 
with a sequence number GREATER than the expected value and NOT within the bounds 
of the receive window the segment is dropped, and TCP will send a segment back with 
the *expected* sequence number. 
 
1       Z(b)    ---SYN--->      A 
2       B     <---SYN/ACK---    A 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3       Z(b)    ---ACK--->      A 
4       Z(b)    ---PSH--->      A 
 
The attacking host spoofs her IP address to be that of the trusted host (which should still 
be in the death-throes of the D.O.S. attack) and sends it's connection request to port 513 
on the target (1).  At (2), the target responds to the spoofed connection request with a 
SYN/ACK, which will make it's way to the trusted host (which, if it *could* process the 
incoming TCP segment, it would consider it an error, and immediately send a RST to the 
target).  If everything goes according to plan, the SYN/ACK will be dropped by the 
gagged trusted host.  After (1), the attacker must back off for a bit to give the target 
ample time to send the SYN/ACK (the attacker cannot see this segment).  Then, at (3) the 
attacker sends an ACK to the target with the predicted sequence number (plus one, 
because we're ACKing it). If the attacker is correct in her prediction, the target will 
accept the ACK.  The target is compromised and data transfer can commence (4). 
Generally, after compromise, the attacker will insert a backdoor into the system that will 
allow a simpler way of intrusion. (Often a `cat + + >> ~/.rhosts` is done.  This is a good 
idea for several reasons: it is quick, allows for simple re-entry, and is not interactive.  
Remember the attacker cannot see any traffic coming from the target, so any responses 
are sent off into oblivion).  IP-Spoofing works because trusted services only rely on 
network address based authentication.  Since IP is easily duped, address forgery is not 
difficult.  The hardest part of the attack is in the sequence number prediction, because 
that is where the guesswork comes into play. Even a machine that wraps all its incoming 
TCP bound connections with TCP wrappers, is still vulnerable to the attack.  TCP 
wrappers rely on a hostname or an IP address for authentication.  Reduce unknowns and 
guesswork to a minimum, and the attack has a better chance of succeeding. 
   

CONCLUSION 

Although this attack method seems faultless, Kevin Mitnick, the well-known hacker, was 
arrested on February 15, 1995.  His crime spree included the theft of thousands of data 
files and at least 20,000 credit card numbers from computer systems around the nation. 
He was caught by his own obsession and proved that crime and punishment online is a lot 
harder to score than Dungeons-and-Dragons. 

 

 

 

 

 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 

 

 

 
REFERENCES 

 
Phrack Magazine, www.fc.net/phrack/files/p48/p48-14.html 
 

Mitnick’s Malice, Shimomura’s Chivalry, www.salon.com 
 
Evidence, www.takedown.com 

 
The Kevin Mitnick/Tsutomu Shimomura affair, www.gulker.com/ra/hack 
 
The January 1995 Systems Intrusion, www.well.com/intrusion 

 

 

 
 
 
 

 



Last Updated: February 15th, 2014

Upcoming Training

SANS Phoenix/Scottsdale 2014 Scottsdale, AZ Feb 17, 2014 - Feb 22, 2014 Live Event

SANS Brussels 2014 Brussels, Belgium Feb 17, 2014 - Feb 22, 2014 Live Event

Community SANS Palestine SEC401 , Palestine Feb 22, 2014 - Feb 27, 2014 Community SANS

Community SANS Charleston Charleston, SC Feb 24, 2014 - Mar 01, 2014 Community SANS

Community SANS Nashville Nashville, TN Mar 03, 2014 - Mar 08, 2014 Community SANS

SANS Cyber Guardian 2014 Baltimore, MD Mar 03, 2014 - Mar 08, 2014 Live Event

Mentor Session - TCP - SEC 401 Sacramento, CA Mar 12, 2014 - Mar 19, 2014 Mentor

Secure Canberra 2014 Canberra, Australia Mar 12, 2014 - Mar 22, 2014 Live Event

SANS Northern Virginia 2014 Reston, VA Mar 17, 2014 - Mar 22, 2014 Live Event

Mentor Session - SEC 401 Toronto, ON Mar 20, 2014 - May 22, 2014 Mentor

Mentor Session - SEC401 Richmond, VA Mar 25, 2014 - May 27, 2014 Mentor

Mentor Session - SEC 401 Tulsa, OK Mar 25, 2014 - May 27, 2014 Mentor

SANS 2014 Orlando, FL Apr 05, 2014 - Apr 14, 2014 Live Event

Community SANS Los Angeles Los Angeles, CA Apr 07, 2014 - Apr 12, 2014 Community SANS

SANS 2014 - SEC401: Security Essentials Bootcamp Style Orlando, FL Apr 07, 2014 - Apr 12, 2014 vLive

Mentor Session - SEC 401 Denver, CO Apr 08, 2014 - Jun 10, 2014 Mentor

Community SANS Paris @ HSC - SEC401 (in French) Paris, France Apr 14, 2014 - Apr 19, 2014 Community SANS

SANS vLive - SEC401: Security Essentials Bootcamp Style SEC401 - 201404, Apr 15, 2014 - May 22, 2014 vLive

Community SANS Newark Harrison, NJ Apr 21, 2014 - Apr 26, 2014 Community SANS

Community SANS Orange County Orange County, CA Apr 21, 2014 - Apr 26, 2014 Community SANS

Mentor Session - SEC 401 Springfield, IL Apr 23, 2014 - Jun 25, 2014 Mentor

Mentor Session - SEC 401 Alexandria, VA Apr 24, 2014 - Jun 26, 2014 Mentor

Community SANS Albuquerque Albuquerque, NM Apr 28, 2014 - May 03, 2014 Community SANS

Community SANS Toronto Toronto, ON Apr 28, 2014 - May 03, 2014 Community SANS

SANS Austin 2014 Austin, TX Apr 28, 2014 - May 03, 2014 Live Event

Security Leadership Summit 2014 Boston, MA Apr 29, 2014 - May 07, 2014 Live Event

Community SANS Atlanta Atlanta, GA May 05, 2014 - May 10, 2014 Community SANS

Mentor Session - SEC401 Jackson, MS May 07, 2014 - Jul 09, 2014 Mentor

SANS Security West 2014 San Diego, CA May 08, 2014 - May 17, 2014 Live Event

SANS Secure Europe 2014 Amsterdam, Netherlands May 10, 2014 - May 24, 2014 Live Event

SANS Security West 2014 - SEC401: Security Essentials
Bootcamp Style

San Diego, CA May 10, 2014 - May 15, 2014 vLive

http://www.giac.org/registration/gsec
http://www.sans.org/link.php?id=34292&mid=98
http://www.sans.org/sans-scottsdale-2014
http://www.sans.org/link.php?id=33747&mid=98
http://www.sans.org/belgium-2014
http://www.sans.org/link.php?id=36035&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=33022&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=35055&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=32750&mid=98
http://www.sans.org/cyber-guardian-2014
http://www.sans.org/link.php?id=35625&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=33272&mid=98
http://www.sans.org/secure-canberra-2014
http://www.sans.org/link.php?id=32795&mid=98
http://www.sans.org/northern-virginia-2014
http://www.sans.org/link.php?id=35282&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=35965&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=35620&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=27549&mid=98
http://www.sans.org/sans-2014
http://www.sans.org/link.php?id=35247&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=35070&mid=98
http://www.sans.org/vLive
http://www.sans.org/link.php?id=35272&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=34975&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=34397&mid=98
http://www.sans.org/vLive
http://www.sans.org/link.php?id=35655&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=35980&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=35357&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=35377&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=35465&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=35232&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=35217&mid=98
http://www.sans.org/sans-austin-2014
http://www.sans.org/link.php?id=35505&mid=98
http://www.sans.org/security-leadership-summit-2014
http://www.sans.org/link.php?id=35615&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=35222&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=35190&mid=98
http://www.sans.org/sans-security-west-2014
http://www.sans.org/link.php?id=34077&mid=98
http://www.sans.org/secure-europe-2014
http://www.sans.org/link.php?id=35475&mid=98
http://www.sans.org/vLive

