6.4 在恒定磁场中电子的运动:

- 一. 恒定磁场中的准经典运动
- 二. 自由电子的量子理论
- 三. 晶体中电子的有效质量近似
- 四. 回旋共振
- 五. 霍尔效应

六. De Haas-Van Alphen效应

见黄昆书 5.4; 5.5; 5.6节

讨论晶体电子在恒定磁场中的运动,是分析晶体许多重要物理效应的理论基础,有两种方法:准经典近似和求解含 磁场的Schrödinger方程,前一方法所得结果物理图像清晰,但有一定的局限性。正确地解释这些现象是能带论的成功之 作,反之这些现象也成为能带论最有力的实验证据。

一. 恒定磁场中的准经典运动

依然沿用准经典运动的两个基本方程:

只考虑磁场中的行为,公式中没有电场力,只有 Lorentz力,磁场对电子的作用和电场不同,它不作功 不改变电子的能量。该公式表明,在只涉及外力时, 晶体动量起着普通动量的作用,我们假定只在z方向有 磁场,先在波矢空间下讨论Bloch电子的行为。

$\frac{\mathbf{d}\mathbf{k}}{\mathbf{d}t} \perp \mathbf{B}$ 表明沿磁场方向 k 的分量不随时间而变,

即在k空间中,电子在垂直于磁场B的平面内运动; 又由于Lorentz力不做功, $F \perp v$,所以电子的能量E(k)不随时间而变,即电子在等能面上运动。

综合以上两点,可以 看出:

电子在 k 空间中 的运动轨迹是垂直于 磁场的平面与等能面 的交线,即电子在垂 直于磁场的等能线上 运动。一般情形等能 线形状是很复杂的。

也可从公式 $\mathbf{d}\mathbf{k} = -\frac{e}{\mathbf{h}} [\mathbf{v}(\mathbf{k}) \times \mathbf{B}] \mathbf{d}t$ 出发直接说明此点:

上式表明:磁场作用下,电子在 k 空间运动,其位移dk 垂 直于 v 和 B 所决定的平面, dk 垂直于 B,这意味着电子的 轨道处于与磁场垂直的平面内, dk 还垂直于 v,因为 v 垂 直于 k 空间的等能面,这意味着 dk 处在这个等能面内,综 合上述两点可以确定:电子沿着垂直于磁场的等能线做旋转 运动,且对磁场而言是反时针旋转。

电子沿等能线运动, 既不从磁场吸收能量,也不把能量传递给 磁场,这与电磁学中 电荷和磁场相互作用 的规律是一致的。

如图所示电子在 k 空间中的运动是循环的,经过一段时间 后又回到出发的那一点。按照上式:

电子回旋运动周期:

$$T = \sum_{E=\text{const}}^{\infty} dt = \sum_{E=\text{const}}^{\infty} \frac{dk}{|k|} = \frac{h}{eB} \sum_{E=\text{const}}^{\infty} \frac{dk}{|v_{\perp}|}$$
v 取垂直于磁场的分量。

回旋运动圆频率 (Cyclotron frequency):

$$W_{c} = \frac{2p}{T} = \frac{2peB}{h} \int_{E=\text{const}}^{\mathbf{v}} \frac{\mathbf{v}}{|v_{\perp}|}$$

这里, 微分dk 是沿回路周边取的, 一般情况形状复杂,

电子的运动轨道为圆,如下图 在等能线上, k_{\perp} = const.

$$W_{c} = \frac{2p}{T} = \frac{2peB}{h} \int_{E=\text{const}}^{\mathbf{v}} \frac{\mathbf{v}}{|v_{\perp}|} = \frac{2peB}{h} \frac{2peB}{hk_{\perp}} = \frac{eB}{m}$$

磁场作用下自由电子 在 k 空间中的运动轨道 是圆。其回旋频率:

$$W_c = \frac{eB}{m}$$

从前面讨论中可以看出:

Bloch 电子在磁场中虽然也在做回旋运动,但由于其等能面的复杂变化(见 6.8 节),其运动轨迹要复杂的多,因而其回旋频率的表达式需要具体积分求出。在能带底和能带顶,情况变得简单,可以给出类似自由电子的表达式:

$$W_c = \frac{eB}{m^*}$$

m* 是 Bloch 电子的有效质量.

由上面自由电子的公式可以给出: 磁场沿 z 轴方向,有

$$\frac{\mathbf{d}v_x}{\mathbf{d}t} = -\frac{eB}{m}v_y$$
$$\frac{\mathbf{d}v_y}{\mathbf{d}t} = \frac{eB}{m}v_x$$
$$\frac{\mathbf{d}v_z}{\mathbf{d}t} = 0$$

在实空间中,沿磁场方向, V_z是常数,即做匀速运动, 电子的运动轨迹为一螺旋线。

解为
$$\begin{cases} v_x = v_0 \cos w_0 t & v_0^2 = v_x^2 + v_y^2 \\ v_y = v_0 \sin w_0 t & w_0 = \frac{eB}{m} \\ v_z = \text{const.} & w_0 = \frac{m}{m} \end{cases}$$

实空间中电子的运动图象:沿磁场方向(z方向),电子作匀 速运动,在垂直于磁场的平面内,电子作匀速圆周运动。

回转频率:
$$W_0 = \frac{eB}{m}$$

对于晶体中的电子 $\begin{cases} \frac{dv}{dt} = \left[\frac{1}{m^*}\right] \cdot F \\ F = -ev \times B \end{cases}$

在主轴坐标系中有

$$\frac{\mathrm{d}v_x}{\mathrm{d}t} = \frac{1}{m_x^*} F_x, \quad \frac{\mathrm{d}v_y}{\mathrm{d}t} = \frac{1}{m_y^*} F_y, \quad \frac{\mathrm{d}v_z}{\mathrm{d}t} = \frac{1}{m_z^*} F_z$$

若磁场方向取在 z轴方向, **B**=B_k, 即可写出其相 应的准经典运动方程。

$$\frac{\mathrm{d}v_x}{\mathrm{d}t} = -\frac{eB}{m_x^*}v_y$$
$$\frac{\mathrm{d}v_y}{\mathrm{d}t} = \frac{eB}{m_y^*}v_x$$
$$\frac{\mathrm{d}v_z}{\mathrm{d}t} = 0$$

这与普通物理中的结果是一致的。

二、自由电子的量子理论

在没有磁场时,自由电子的哈密顿量为: 当有磁场存在时,电子运动的哈密顿量为

$$H = \frac{1}{2m} (\boldsymbol{p} + \boldsymbol{e}\boldsymbol{A})^2$$

A为磁场的矢势, $B = \nabla \times A$ 若磁场 B 沿 z 方向,则可取 A = (-By, 0, 0)

$$\therefore \hat{H} = \frac{1}{2m} \left[\left(\hat{p}_x - eBy \right)^2 + \hat{p}_y^2 + \hat{p}_z^2 \right]$$

 $H = \frac{p^2}{2m}$

由于哈密顿算符中不含 x 和 z,

根据量子力学, $H和 p_x$ 、 p_z 有共同本征态。 设 ψ 为其共同本征态,有

$$\hat{p}_{x}y = \mathbf{h}k_{x}y$$

$$\hat{p}_{z}y = \mathbf{h}k_{z}y$$
波函数可以写成 $y(\mathbf{r}) = e^{i(k_{x}x+k_{z}z)}j(y)$
代入波动方程 $\hat{H}y = Ey$

上式是中心位置在 $y = y_0$,振动园频率为 ω_0 的线性谐振子。

解为
$$j_n(y-y_0) \approx N_n \exp\left[-\frac{mW_0}{2\mathbf{h}}(y-y_0)\right] H_n\left[\sqrt{\frac{mW_0}{\mathbf{h}}}(y-y_0)\right]$$

*N_n*为归一化因子,*H_n(y)*为厄密多项式。 相应的能量本征值为

$$e_{n} = \left(n + \frac{1}{2}\right)hW_{c} \qquad n=0, 1, 2, \dots$$

$$\therefore y(r) = e^{i(k_{x}x + k_{z}z)}j_{n}(y - y_{0})$$

$$E(k) = \frac{h^{2}k_{z}^{2}}{2m} + e_{n} = \frac{h^{2}k_{z}^{2}}{2m} + (n + \frac{1}{2})hW_{c}$$

即:根据量子理论,电子在垂直于磁场平面内的匀速圆周 运动对应于一种简谐振动,其能量是量子化的。我们将这 种量子化的能级称为朗道能级(Landau level)。 公式说明沿磁场方向电子 保持自由运动,在垂直磁 场的x-y平面上,电子运动 是量子化的,从准连续的

 $\frac{\mathbf{h}^2}{2m} \left(k_x^2 + k_y^2 \right)$ 变为: $\left(n+\frac{1}{2}\right)\mathbf{h}\mathbf{w}_{c}$ 在这种情况下,电子的能 量由准连续的能谱变成一 维的分立的磁次能带,每 条次能带都成抛物线形状 ,如右图所示。

由于能量-波矢关系的改变,波矢空间描写状态的代表点的分布也发射变化,集聚在一系列的圆周上,如下图所示。

于是,磁场中的能态 密度曲线和磁场为零 时的能态密度曲线相 比发生了巨大变化, 形成了一系列的峰值 ,相邻两峰之间的能 量差是**h**w_c。能态 密度变化的这种特点 深刻地影响了晶体的 物理性质。

De Haas-Van Alphen效应就是这 一性质的具体反映。

见方俊鑫 书6.9 节p266

三、晶体中电子的有效质量近似

晶体中电子在磁场中运动时,其哈密顿量为

$$H = \frac{1}{2m} (\boldsymbol{p} + \boldsymbol{e}\boldsymbol{A})^2 + U(\boldsymbol{r})$$

其中,U(r)为晶体的周期性势场,严格求解晶体中的电子 在磁场中的运动是非常困难的。但在有些情况下,可将哈 密顿量近似写成

$$H = \frac{1}{2m^*} (\boldsymbol{p} + \boldsymbol{eA})^2$$

这里,周期场的影响概括为有效质量的变化,称为有效质量近似。一般半导体材料中,在导带底和价带顶附近常常可以采用有效质量近似。对有些金属材料(如碱金属)有时也可以采用。在有效质量近似的框架内,前面我们对自由电子的讨论可以推广到晶体中的电子,只需用有效质量 *m**代替自由电子的质量*m*即可。

四、电子回旋共振(electron cyclotron resonance)

将一晶片垂直置于磁场中,若沿磁场方向输入一频 率为ω的交变电场,电子做回旋运动,如图所示:

当ω=ω_c时,电子回旋与 电场同步,电子吸收电场 能量达到极大,这种现象 称为电子回旋共振。从量 子理论的观点,电子吸收 了电场的能量,相当于实 现了电子在朗道能级间的 跃迁。测量回旋共振的频 率ω_c,即可算出电子(或 空穴)的有效质量 m*。

$$W_c = \frac{eB}{m^*}$$

电子回旋共振不仅可以测量载流子的有效质量 m*,还 可以根据出射波的偏振方向来判断电场的能量是被电子还是 被空穴吸收的。

在自由电子情形,可以算出: $f_c = \frac{W_c}{2p} = 2.8BGHz$ 当 B = 1KGs时, $f_c = 2.8 GHz$ (千兆赫)属于微波波段。

根据回旋共振吸收曲 线确定出回旋频率代 入公式即可计算出有 效质量,其精度取决 于交变场频率和磁场 的测量精度。

右图是吸收系数与频率关系图

电子回旋共振常被广泛地用来测定半导体导带底电 子或价带顶空穴的有效质量,研究其能带结构。

在半导体的导带底或价带顶附近,其等能面一般为 椭球面,在主轴坐标系中,有

$$E(\mathbf{k}) = \frac{\mathbf{h}^{2}}{2} \left(\frac{k_{x}^{2}}{m_{x}^{*}} + \frac{k_{y}^{2}}{m_{y}^{*}} + \frac{k_{z}^{2}}{m_{z}^{*}} \right)$$

当发生电子回旋共振时, $W_c = \frac{eB}{m^*}$

这里, m*为电子回旋共振的有效质量, 与外加磁场的方向有关。

$$\frac{1}{m^*} = \sqrt{\frac{a^2 m_x^* + b^2 m_y^* + g^2 m_z^*}{m_x^* m_y^* m_z^*}}$$

其中, α、β、γ为磁场在主轴坐标系中的方向余弦。

由于电子在运动过程中会受到声子、晶格缺陷以及杂 质的散射,因此,为了能观察到回旋共振现象,必须满足 w_ct >>1,其中t是电子在相邻两次碰撞间的平均自由时间。 通常,实验都必须在极低温度(液He温度)下,选用高纯的 单晶样品,以提高t值,同时加强磁场以提高w_c。近年来, 利用红外激光为交变讯号源,可以观测到非常清晰的共振线。

N型情回旋共振实验 (110)面内 见黄昆书p262

在4K时Si的迴旋共振吸收。使用频率为23GHz的平面偏振辐射,载流子被光激发。

(引自 R. W. Dexter, H. J. Zieger and B. Lan, *Phys. Rev.*, 104, 637(1956).)

五. 霍尔(Hall)效应。

将一通电的导体放在磁场中,若磁场方向与电流方向 垂直,那么,在第三个方向上会产生电位差,这种现象称 为Hall效应。。

背景知识: E.H.Hall在1879年试图确定磁场对载流导线的作用到底作用 于导线上还是(按照现代的说法)作用在导线内的电子上面。"if the current of electricity in a fixed conductor is itself attracted by a magnet, the current should be drawn to one side of the wire, and therefore the resistance experienced should be increased"。Hall没有测出额外的电阻——磁致电 阻,但是"The magnet may tend to deflect the current without being able to do so. It is evident that in this case there would exist a state of stress in the conductor, the electricity pressing, as it were, toward one side of the wire""State of stress",就是我们现在所熟知的横向电势差(Hall电压, Hall voltage) 我们先采用自由电子模型说明:

在如下图所示配置下,导体中电荷 e 受的洛伦兹力:

$$F = -e(\mathbf{n}^{\mathbf{v}} \times \mathbf{B})$$

在-y方向产生电场 E_H, 平衡时应有:

在外磁场的作用下,原来在-x方向漂移的电子受到 Lorentz力作用发生向下的偏转,电子积累在晶体下表面, 产生净负电荷,同时上表面因缺少电子而出现净正电荷, 于是,这些正负表面电荷形成了霍尔电场。

$$\mathbf{Q} \ \boldsymbol{j}_x = n(-e)\boldsymbol{v}_x \qquad \therefore \boldsymbol{E}_H = -\frac{1}{ne}\boldsymbol{j}_x \boldsymbol{B}$$

定义: $R_{H} = -\frac{1}{ne}$ 为霍尔系数(Hall coefficient) 霍尔电场与电流密度和磁场强度乘积成正比,其比例系 数为霍尔系数。所以**霍尔效应成为测量晶体电子浓度的** 权威方法。

测量了很多金属的霍尔系数,和自由电子论预计的理论 计算值相符,但也有一些金属霍尔系数理论和实验值不符 (见下页表), 甚至符号也相反, 存在正电荷导电的判断已 在能带论中得到解释。从公式不难看出,载流子浓度越低, Hall系数就越大,霍尔效应就越明显,因此,霍尔效应在半 导体的研究和应有中有重要价值,由霍尔系数的测定可以直 接确定半导体中载流子的浓度,它的符号可以确定载流子 的

类型,是电子导电还是空穴导电。(见黄昆书P346)

半导体的霍尔效应也可以用于磁场测量。

元素	Ζ	R _H (实验) /(10 ⁻¹⁰ m ³ ・C ⁻¹)	$-1/R_{\rm H}ne$
Li	1	-1.7	0.8
Na	1	-2.5	1.0
K	1	-4.2	1.1
Cu	1	-0.55	1.3
Ag	1	-0.84	1.3
Au	1	-0.72	1.5
Be	2	+2.44	-0.10
Zn	2	+0.33	-1.4
Cd	2	+0.60	-1.1
Al	3	-3.0	0.1

一些金属元素室温下的霍尔系数

注:*R*_H 实验值,除 Al 外,取自饭田修一等编《物理常用数表》,张质贤等 译,科学出版社,1979 年. Al 的数据取自 R. G. Lerner 和 G. Trigg 主编 "Concise Encyclopedia of Solid State Physics", Addison-Wesley, 1983, p. 166.

当晶体中同时有两种导电载流子存在时,比如能带有交迭,导电电子存在于上面的能带,空穴存在于下面的能带,可以证明其霍尔系数:

$$R_{H} = \frac{R_{e}\boldsymbol{S}_{e}^{2} + R_{h}\boldsymbol{S}_{h}^{2}}{\left(\boldsymbol{S}_{e} + \boldsymbol{S}_{h}\right)^{2}}$$

其中*R_eσ_e*, *R_hσ_h*分别为电子和空穴各自的霍尔系数 和电导率。显然霍尔系数的符号可正可负,取决于电子 和空穴贡献的相对大小。这就是有些多价金属(例如 Zn,Cd)表现出正霍尔系数值的原因。

上述磁场输运过程的讨论中有一个推论值得注意,即x 方向的电流本身并不受磁场的影响,其电阻与磁场无关,其 原因在于影响 x 方向电流的 Lorentz 力与霍尔电场力平衡, 相互抵消了,使得电子沿水平方向流经样品时,"无视"该磁 场的存在。磁致电阻为零。但实验结果并不是这样,虽然很 多金属的磁致电阻都不大,但并不为零。一些铁磁金属还会 有较大的数值。近十几年来,发现了一些磁致电阻特别大的 材料,并获得了巨大应用。

六. 德·哈斯-范·阿尔芬(De Haas-Van Alphen)效应:

1930年 De Haas和 Van Alphen在低温下研究 Bi单晶 在强磁场中的磁化率,发现磁化率随磁场变化而显现出 振荡。我们将磁化率 c 随磁场的倒数 1/B 作周期振荡的 现象称为 De Haas-Van Alphen效应。后来人们发现金 属的电导率、比热等物理量在低温强磁场中也有类似的 振荡现象。这种现象与金属费米面附近的电子在强磁场 中的行为有关,因而与金属的费米面结构有密切关系, 这些现象是研究金属费米面结构的有力工具。通过测定 De Haas-Van Alphen 效应的振荡周期,确定极值的面 积,就可以相当准确地勾画出费米面的形状。

14.2K 铋单晶磁化率随磁场的变化

图136 锌的德哈斯-范阿耳芬效应; T=4.2K

产生这些效应的原因是回旋轨道的量子化,因而也就是 电子总能量随磁场强度的振荡式变化,下面我们将证明:以 磁场强度的倒数做标尺时,振荡是等距的,对应的恒定周期 反比于垂直于磁场和费米面的截面极大值和极小值。在晶体 取向相对于磁场取不同方向的情况下,测量德哈斯--范阿尔 芬效应中的周期就可以了解费米面的形状。

所以德哈斯--范阿尔芬效应和回旋共振一样,能够给出 费米面形状和金属电子有效质量的信息,都是凝聚态物理最 重要的物理实验手段。
1. 二维自由电子气模型: 没有外场时,自由电子气有: $E(k) = \frac{\mathbf{h}^2 k^2}{2m}$ k 在一个平面内取值。如果加上外磁场时, 能量本征值 则成为一系列的朗道能级: $E_n = \left(n + \frac{1}{2}\right) W_c$ 自由二维电子气具有 准连续的能谱, 在垂 p = 3(7/2)hwc [*B*-(*h*²*k*²/2*m*)] 直磁场下聚集成间隔 P=2 为 hoc 的分立能级。 (5/2)hωc 这种改变是量子态的 p=1(3/2)hwc 改变,但量子态的总 P = 0(1/2)hwc 数应当不变。

由此可以判定,每个 Landau 能级所包含量子态的总数等于 原来连续能谱中能量间隔 hω_c内的量子态数目,即 Landau 能级是高度简并的,如上图所示。

容易证明二维电子气的能态密度是与能量无关的常数,因此朗道能级的简并度为:

$$D = \frac{mL^2}{p\mathbf{h}^2} \cdot \mathbf{h} w_c = \frac{L^2 e}{p\mathbf{h}} \cdot B$$

自由电子气在磁场中形成一系列高度简并的分立能级

(Landau能级),而Landau能级简并度随磁场强度B变化,

使得电子气系统的能量随磁场强度变化而变化,这就是产 生德•哈斯-范•阿尔芬效应的原因。

定性说明: 黄昆书p266~268

朗道能级电子填充情况随磁场强度的变化

随磁场强度的减小,电子系统能量的增量ΔE周期性 变化,每当Landau能级(n+1/2) hω₀与费米能级重合时,就 出现能级增量的峰值。

设相邻两次峰值分别为 B_1 、 λ 和 B_2 、(λ +1),则有:

$$ID_{1} = (I+1)D_{2} = N$$
$$I\frac{L^{2}e}{ph}B_{1} = (I+1)\frac{L^{2}e}{ph}B_{2} = N$$

N为系统电子总数。 能量增量随磁场的变化为:

$$\Delta \left(\frac{1}{B}\right) = \left(\frac{1}{B_2} - \frac{1}{B_1}\right) = \frac{L^2 e}{p \mathbf{h} N} = \frac{2p e}{\mathbf{h} S_F}$$

其中:
$$S_F = 2p^2 \frac{N}{L^2} = pk_F^2$$

为二维自由电子气费米圆的面积。
 $\mathbf{Q}_2 \cdot \frac{L^2}{(2p)^2} \cdot pk_F^2 = N$
 $\therefore S_F = pk_F^2 = 2p^2 \frac{N}{L^2}$
而二维自由电子气系统的磁矩为: $M = -\frac{\partial E}{\partial B}$

系统的能量随1/B周期变化,因此系统的磁矩也随磁场 做周期性震荡变化。而从实验上测出M随1/B变化的周期, 定出费米面 S_F ,这是十分有用的。

2. 三维自由电子模型

在(二)中已经讨论过三维 电子气在磁场中的解,

$$E(\boldsymbol{k}) = \frac{\boldsymbol{h}^2 k_z^2}{2m} + \left(n + \frac{1}{2}\right) \boldsymbol{h} \boldsymbol{w}_0$$

在与磁场垂直的 k_z= 常数的 平面内,轨道是量子化的, 沿磁场方向的k_z 取值是准连 续的,在 k 空间形成了一系 列的圆柱面,如右图所示。 每一个圆柱面对应于一个确 定的量子数n。

磁场中三维自由电子气在k空间形成子带。

和二维情况类似,改变磁场 B的数值, hw。会发生变化, 态密度峰值位置发生变化,即圆柱有不同的间隔。每当: $\left(n+\frac{1}{2}\right)hw_{c}$ 即某个圆柱面与费米能 E_{F} 重合时,能量增量最大 所以,磁场变化引起圆柱的半径变化,每当有一个圆柱面 恰好与费米球相切时,系统能量增量最大,这就使得电子 系统能量增量随1/B呈周期性变化。因而感生磁矩M随1/B 周期性变化。这就是De Haas-Van Alphen效应的起因。 磁场作用使电子能级量子化,这些量子化的等能线数目: $n \approx \frac{E_F}{\mathbf{h}W_e} = \frac{mE_F}{\mathbf{h}eB} = (0.86 \times 10^8) \frac{E_F}{B} \frac{G}{eV} \qquad \mathbf{Q}E_F \sim eV, B \sim 10^4 G$ 所以, n~104,是很密集的, 磁场变化会引起多次振荡。

磁场虽然使电子分布发生变化,但垂直于磁场方向的费米 面截面的形状并没有改变,因此我们可以借助于**De Haas**-**Van Alphen效应来测量晶体的费米面。**如二维电子气的上分 析,自由电子情形的振荡周期为: $\Delta \left(\frac{1}{B}\right) = \frac{2pe}{\mathbf{h}} \frac{1}{S_F}$

每当费米面内半径最大的圆柱越过费米面时,与能量密切相 关的物理性质就会振荡一次,所以**通过振荡周期就可以测定** 垂直于磁场方向费米面的极值截面积。

上面对自由电子的讨论可以推广到Bloch电子,只需要用 有效质量 *m** 代替 *m*即可,因为前者已经涵盖了周期场的影 响,上式推广到 Bloch 电子,有: $\Delta \left(\frac{1}{B}\right) = \frac{2pe}{h} \frac{1}{A_F}$

A_F是垂直于磁场的费米面极值截面积,如果我们测出磁场沿不同方向给出的截面积,就可以绘出费米面的形状。

通过分析可以知道,极值截面给出的周期在观察到的 De Haas-Van Alphen效应中占主导地位,因为不同的非 极值轨道的贡献相互抵消,所以无论多么复杂的费米面, 也会得到尖锐的共振峰。

Au费米面在不同方向上的极值截面图。

3. 应用举例:费米面的测定:

★碱金属的费米面,由于只有一个价电子,其费米面近 似为球体,不同磁场方向应该有相同的极值截面,De Haas-Van Alphen效应应该有相同的振荡周期,实际测量 结果证实了这点,给出的 k_F 值和中按自由电子模型计算处 的 k_F 值基本一致,

★于是 fcc 结构,贵金属Cu,Ag,Au 的 费米面明显不是球形,有8个颈状突起部分,在这种情况 下,磁场沿不同方向时, De Haas-Van Alphen效应应该 表现出不同的性质,磁场沿<111>方向时,Ag的De Haas -Van Alphen振荡有2个周期,一个对应于"肚子"轨道, 截面积大, $\Delta\left(\frac{1}{B}\right)$ 的周期小;另一个对应于"脖子"轨道,截面积小, $\Delta\left(\frac{1}{B}\right)$ 的周期大。细密间距反映"肚子"轨道。粗疏间距反映"脖子"轨道,实验给出的两个截面之比分别是: Ag Cu Au

 $A_{\rm max} / A_{\rm min}$: 27 51 29 belly; nech

因为振荡周期反比于截面积,磁场值较低(~10⁴G)时先看到的 是由小的极值截面产生的振荡,只有当磁场接近10⁵G时,才有 足够精度观察到和布里渊区大小接近的截面积产生的振荡。这 并不是容易做到的。

磁场沿<111>方向时银的德哈• 见黄昆书图5-26 斯-范•阿尔芬效应

磁场在 [111]方向的两个极值轨道

图 29 铜的费密面,引自 Pippard。*fcc* 结构的布里渊区是第 2 章中导出的截角八面体。 在 k 空间中的 [111] 方向上,费米面与布里 渊区的六角面中心处边界相接触。图中所示的 两个"腹部"极值轨道用 B 表示;极值"颈 部"轨道用 N 表示。

磁场在[100] 方向的极值轨道

图 30 磁场中铜或金费密面上电子 的"枯骨形"轨道。这是类空穴轨道因 为能量增加的方向指向轨道内部。

见Kittel 书8版p175

蠹场沿<110>方向时金属

银费米面的极值轨道

开轨道

见黄昆书 图**5-27** 与Kittel书标注不 同 **?**! 4. 磁场中电子波矢在费米面上的运动:电子轨道;空穴轨道 和开放轨道。静磁场中的电子在垂直于磁场的平面上,沿 等能面运动,费米面上的电子沿费米面上的一条曲线运动, 可能有3种情况:a是顺时针运动,是类空穴轨道,b是反 时针运动,是类电子轨道;接近带底的费米面电子给出电子

轨道,而处于近满带带顶费米面上的空轨道给出类空穴轨道。

(a)

图 13 (a) 处于接近被充满的能带角隅上的 空态,在约化能区图式中绘出。(b) 周期能区图 式中费米面各部分是相互连通的,每一个圆构成 一个类空穴轨道。不同的圆彼此完全等价,态密 度是单个圆的态密度(轨道不需要是真正的圆, 对于所示的晶格,只要求轨道具有四重对称性)。

图 14 三维晶体中接 近被充满的能带顶端附近 的空态示意图。这个图与 图 12 (a) 等价。

见Kittel 书8版p162

图 c 中的轨道不闭合,当粒子达到布里渊区边界 A 处,立即 折回到 B 点,这里 B 和 B' 相差一个倒格矢,是等价的,这 样的轨道被称作开放轨道,开放轨道对磁致电阻影响很大。

借助于开放轨道对磁致电 阻的影响,磁场电效应的 测量已经成为研究费米面 形貌的有力手段。曾用这 种方法连同反常趋肤效应 一起证明了 Cu 的费米面 确实是联通的,并证明在 [111]方向上与布里渊区边 界相切。

最后,要特别说明:

虽然De Haas-Van Alphen效应首先是在磁化率 的测量中发现的,但是**原则上任何依赖于费米能级处** 的状态密度以及传导电子轨道运动的晶体性质都应该 出现这种振荡,事实上,霍尔效应、磁致电阻以及声 衰减中都观察到了这种振荡。后面这些测量,文献上 一般称作Schubnikov-de Haas 效应。 6.5 能带结构的实验研究:

从前面的讨论中已经知道,通过晶体的能带结构,特别 是对费米面的了解,就能够理解晶体的各种物理性质,虽然 已经有了许多计算晶体能带和费米面的方法,但必须得到实 验的验证才行。能够证明晶体中出现能带的实验是很多的, 且已经发展了多种测定晶体能带结构的实验方法,不但有效 地验证了能带计算模型和方法的符合程度,而且也成为探知 晶体能带结构,理解晶体性质的重要手段。

能带实验研究依然要从晶体的热、电、磁及光学性质的测量入手,经常使用的实验方法有:电子热容测量;软X射线的发射与吸收;光吸收与磁光吸收;回旋共振与Azbel-Kaner 共振;反常趋肤效应;De Hass-van Alphen 效应; 磁场电效应(磁致电阻效应);超声衰减;磁声几何效应等

利用低温电子热容和温度关系可以测定Bloch电子的有效质量*m**或*N*(*E*),但热容是晶体的整体性质,无方向性,所以给出的只能是各个方向的平均值,对于探知能带结构来说是远不够的。De Hass-van Alphen 效应是测定费米面的有效手段,上节已经比较详细的介绍,这里都不再重复。

一. 软 X 射线的发射与吸收

二.光吸收与磁光吸收

三.回旋共振与Azbel-Kaner 共振

四.反常趋肤效应

五.磁声技术

参考: Kittel 8版 9.4 节p167 Busch 书 6.8节

一. 软X射线发射谱:

当晶体被一束高能电子轰击时,低能带的一些电子被激发,会留下一些空能级,如果电子从价带或导带落入这些空能级,就会发射出一个软 X射线范围的光子,记录下这些光子的能量范围和强度变化即可探知价带或导带电子分布情况。

- K: 外层电子落入 空的1s态而发射 的X射线;
- L₁: 外层电子落入 2s态所发射的X 射线;
- L₂: 外层电子落入 2p态所发射的X 射线。

由于**低能带**和导带或价带相比非常窄,几乎可以看作是 分立能级,电子从能级准连续分布的价带上不同能级跃迁到 内层将发射不同能量的光子,因而测得的能量范围应该和价 带中电子占据的范围(即和费米能级)相当。

又因为发射谱的强度: $I \propto N(E) \times$ 跃迁几率(随能量变化不大)

测得的X射线发射谱强度的变化可以直接地反映出价电子能带能态密度的状况。金属和绝缘体是明显不同的。

金属的发射谱 高端突然下降

而绝缘体的发射谱 两端都缓慢下降

见Busch 几种不同金属的X射线发射谱。K和Ls表示能项。电子由 书 p251 导带向这些能项所代表的能级跳跃而发射X射线 金属发射谱的特征是在高能端出现突然的强度降落,发射边和 费米能的位置相对应, *E > E_F*后,态密度 *N*(E)急降至零。在 谱的低端,强度的下降相当于*N*(E)逐渐下降至零的情形。强 度谱的形状还受多种因素影响,但发射谱的宽度应与费米能 值相当。如果与自由电子费米能计算值比照还可估算出*m**。

通过软 X 射线发射测量得出的金属费米能(参照上面曲线)

〔按自由电子模型(5.24)式计算的和从X射线

元素	ζ [电子伏]		m / m *
	理论值	实验值	
Li	4.7	4.2 ± 0.6	0.89
Na	-3.2	3.5 ± 1	1.09
Be	13.8	13.5±2.5	0.98
Mg	7.2	4.0 ± 1.5	0.55
Al	12.0	16.0±2	1.33

发射谱实验测定的值〕

绝缘体、金属、半导体和半金属的分布函数

and the second second

说明: 在前面的的讨论中, 我们已经看到求得杰密度函 数 N(E) 的重要性和困难性,要从理论上求出晶体的 N(E), 必须先给出晶体的能谱 E_n(k) 表达式, 一般说来, 这是比较 困难的(只有自由电子近似下,才有简明的表达式),即便 是得到了, 由于 E_n(k)函数的复杂性也会给求解 N(E)带来不 少数学上的困难,因此,从实验上来测定实际材料态密度函 数就变得十分重要, 软 X 射线发射谱是最常用的实验之一。 此外,**X**射线的吸收谱——电子从低能级向未被占据态 的激发所致——也常被用来测量未被占据态的能态密度。

二. 光吸收与磁光吸收

紫外光技术测定能带结构原理图如下所示:当光束射到金属上时,电子从费米能级以下跃迁到较高的一个能带,这种带间吸收可以用光学方法来观察,并获得能带形状的信息。

因为结果涉及到 两个能带,所以 但只能先知道一 个能带的形状, 才能探知另一个 能带情况。大多 数金属的吸收频 率位于紫外区。

见Omar 书p270

图5.46 带间光吸收。

光学区段的光子能量仅足以激发同一能带中占据态与非占据 态之间的跃迁(带内跃迁)或者相邻能带之间的跃迁(价带与导 带之间的带间跃迁),在这一能谱区中(10⁻⁵cm~10⁻³cm),绝缘 体和半导体的吸收性质与金属的完全不同,可以直接得出价带与 导带间能隙大小的信息,入射波能量只有达到最小的能隙值时, 价带的电子才能被激发到导带中去,故绝缘体和半导体的强吸收 从 hw_{min} 开始,这个最小能量值由能隙宽度给出: $E_{a} = hw_{min}$ hw_{min} 对应的波长称作基本吸收的吸收边。实际情况中影响光吸 收的因素是复杂的,给出的能带信息需要仔细分析。GaAs 的情 况较简单,吸收主要决定于直接跃迁,吸收边很陡,其位置相当 于价带和导带之间的能差,见下页图。

三. 回旋共振与Azbel-Kaner 共振

前面已经提到利用回旋共振能够测定有效质量的张量分 量,因而能够确定相应能量曲面的曲率,这样我们就可以得 知费米面的形状或者得知对应于价带顶或导电底等能面的情 况。在回旋共振的测量中除去必须满足 w_t >1 外,还必须考 虑到交变电场穿入样品的程度,计算表明只有载流子数目较 少的半导体样品,这个条件才容易满足。Si、Ge的回旋共振 有明显的方向性, 说明相应的能量曲面不是球形。通过仔细分 析给出了它们导电电子的能量曲面形状。

Si与Ge中导电电子的能量曲面

经典回旋共振的安排下,金属电阻率低,射频信号不能透入 样品太深,致使共振现象难以观察,

一种可以用于测量金属回旋共振的方法称作 Azbel-Kaner 共振,沿着金属表面加上磁场和交变电场,电子以周期 W_c 做回 旋运动,频率为 ω 的反时针方向圆偏振交变电磁场沿金属表面 传播,只能穿透很小的范围,其值等于趋肤深度,但电子的回 旋运动是超过这个深度的,因此共振条件变为: W=lW_c

这里 *l* = 1, 2, 3, **gg**

实际测量中是维持ω 不变,而改变磁场强 度以满足上式。

测得Cu的AKCR谱见 下图。

T=4.2K时Cu的AKCR谱。晶体表面(上表面)沿 (100)面切割,曲线的纵坐标表示表面电阻率对磁场 的导数。[引自 Haüssler and Wells, Phys. Rev. 152, 675,1966]

这种方法不仅可以用来测出 ω_c ,从而算出有效质量 m*,

还可以用来确定费米面的形状,因为电子在费米面的不同区 域具有不同的回旋频率,最强的效应发生在与磁场垂直的FS 的极值截面——即最大和最小截面。因此改变磁场取向,测 得各个方向的极值截面即可绘出费米面的形状。

和普通回旋共振一样,也需要低温强磁场和高纯样品, Wct 31 的条件,在这种极限条件下,电子 在一次碰撞时间内,完成了多次回旋,可以得到一个尖锐的 具有高分辨率的共振。
四. 反常趋肤效应: (见Busch 书p258)

五. 磁声技术和其它:

利用晶格振动和布里渊区、乃至和费米面的关系发展起来磁声技术,尤其是几何共振已经成为测量费米面大小的重要方法,它的最大特点是能够测量在 k 空间任何方向的 k_F数值,这是其它方法很难做到的。

正电子湮灭技术也是研究金属及合金费米面的有力 工具。更扩展一些说:凡是已经确切知道和费米面关系 的物理性质,都可以用来测量费米面的性质。