IMD 4.8-6

In More Depth

In More Depth: Synthetic Benchmarks

Synthetic benchmarks are artificial programs that are constructed to try to
match the characteristics of a large set of programs. The goal is to create a sin-
gle benchmark program where the execution frequency of statements in the
benchmark matches the statement frequency in a large set of benchmarks.
Whetstone and Dhrystone are the most popular synthetic benchmarks. Whet-
stone was based on measurements of Algol programs in a scientific and engi-
neering environment. It was later converted to Fortran and became popular.
Dhrystone, which was inspired by Whetstone, was created as a benchmark for
systems programming environments and was based on a set of published fre-
quency measurements. Dhrystone was originally written in Ada and later con-
verted to C, after which it became popular.

One major drawback of synthetic benchmarks is that no user would ever
run a synthetic benchmark as an application because these programs don’t
compute anything a user would find remotely interesting. Furthermore,
because synthetic benchmarks are not real programs, they usually do not
reflect program behavior, other than the behavior considered when they were
created. Finally, compiler and hardware optimizations can inflate performance
of these benchmarks, far beyond what the same optimizations would achieve
on real programs. Of course, because these benchmarks are not natural
programs, they may not reward optimizations of behavior that occur in real
programs. Here are some examples of how Dhrystone may distort the impor-
tance of various optimizations:

Optimizing compilers can easily discard 25% of the Dhrystone code;
examples include loops that are executed only once, making the loop overhead
instructions unnecessary. To address these problems, the authors of the bench-
mark “require” both optimized and unoptimized code to be reported. In addi-
tion, they “forbid” the practice of inline procedure expansion optimization
because Dhrystone’s simple procedure structure allows elimination of all pro-
cedure calls at almost no increase in code size.

One C compiler appears to include optimizations targeted just for Dhrys-
tone. If the proper option flag is set at compile time, the compiler turns the
portion of the C version of this benchmark that copies a variable-length string
of bytes (terminated by an end-of-string symbol) into a loop that transfers a
fixed number of words. The compiler also assumes that the source and destina-
tion of the string is word-aligned in memory. Although an estimated 99.70% to
99.98% of typical string copies could not use this optimization, this single
change can make a 20% to 30% improvement in Dhrystone’s overall perfor-
mance.



In More Depth IMD 4.8-7

4.27 (3 hours] <§4.3> Pick two computers, A and B, and run the Dhrystone
benchmark and some substantial C program, such as the C compiler, calling
this program P. Try running the two programs using no optimization and max-
imum optimization. Then calculate the following performance ratios:

a. Unoptimized Dhrystone on computer A versus unoptimized Dhrystone on

computer B
b. Unoptimized P on A versus unoptimized P on B
¢. Optimized Dhrystone on A versus optimized Dhrystone on B
d. Optimized P on A versus optimized P on B

e. Unoptimized Dhrystone versus optimized Dhrystone on computer A
f. Unoptimized P versus optimized P on A

g. Unoptimized Dhrystone versus optimized Dhrystone on B

h. Unoptimized P versus optimized P on B

We want to explore whether Dhrystone accurately predicts the performance
of other C programs. If Dhrystone does predict performance, then the follow-
ing equations should be true about the ratios:

a=bandc=d

If Dhrystone accurately predicts the value of compiler optimizations for real
programs, then

e=fandg=h

Determine which of the above relationships hold. For the situations where the
relationships are not close, try to find the explanation. Do features of the com-
puters, the compiler optimizations, or the differences between P and Dhrys-
tone explain the answer?

4.28 [3 hours] <§4.3> Perform the same experiment as in Exercise , replacing
Dhrystone with Whetstone and choosing a floating-point program written in
Fortran to replace P.




