Multithreaded Architectures

Metha Jeeradit and Wajahat Qadeer

Outline

- Introduction
- Papers
- Discussion

2

Introduction: Motivations

- Long Memory latency
 - Speed gap between memory system and processor is increasing
 - Especially in multiprocessors
- Two approaches
 - Avoid it (e.g., cache)
 - Tolerate it (e.g., dynamic scheduling)
- · Multithreading is a latency tolerant scheme
 - Any latency and not just memory

Introduction: Requirements

- · Way to store multiple contexts
 - Register states and PCs for each context
- · Non-blocking cache
- Bandwidth (Memory and Network)
- · Low context-switching cost

.

Introduction: Existing Architectures

- 3 categories:
 - Fine-grained
 - · Perform work from different threads in each cycle
 - · Zero-cycle switching overhead
 - Only allow one instruction from each context to be active in the pipeline (no interlock)
 - No data cache
 - Blocked (Fast-context switching)
 - · Condition switch when long latency event is encountered
 - e.g., on every branch misprediction or on every cache miss
 - · Significant Switching cost
 - Interleaved
 - · Like Fine-grained but has data cache and interlock
 - · Substantial complexity

5

Paper 1 (cont.): Analysis of Multithreaded Architecture for Parallel Computing

(R. H. Saavedra-Barrera, D. E. Culler, T. V. Eicken)

- Summary (cont.)
 - 2 operating regions: Linear vs Saturation

- C/R is the most important parameter
 - · Ratio dictates peak utilization value

7

Paper 1: Analysis of Multithreaded Architecture for Parallel Computing

(R. H. Saavedra-Barrera, D. E. Culler, T. V. Eicken)

Summary

- Characterize the behavior of a multithreaded architecture with an analytical model based on 4 parameters: Latency (L), number of threads (N), switching cost (C), and run-length interval (R)
 - · First 3 parameters are architectural dependent
 - · R is both architectural and application dependent

6

Paper 1 (cont.): Analysis of Multithreaded Architecture for Parallel Computing

(R. H. Saavedra-Barrera, D. E. Culler, T. V. Eicken)

Strenaths

- A deterministic model that can be used to gauge the performance of your designed architecture
- Weaknesses
 - Debatable assumptions:
 - · Sufficient parallelism available
 - · Ignore synchronization issues
 - · Constant latency values
- Future Work
 - Improve the model by incorporating synchronization issues and limited parallelism effects

Paper 2: Interleaving: A Multithreading Technique Targeting Multiprocessors and Workstations

(James Laudon, Anoop Gupta, Mark Horowitz)

· Summary

Architectural changes in commodity microprocessors benefiting workstations and multiprocessors with little hardware complexity

9

Paper 2: Interleaving: A Multithreading Technique Targeting Multiprocessors and Workstations

(James Laudon, Anoop Gupta, Mark Horowitz)

Results

Considerable improvement over blocked scheme in both workstation and multiprocessor environments due to low switching cost and ability to hide small latencies

11

Paper 2: Interleaving: A Multithreading Technique Targeting Multiprocessors and Workstations

(James Laudon, Anoop Gupta, Mark Horowitz)

Interleaved Multiple Context

- Extension of fine-grained multiple-context model
- Addition of caching and pipeline interlocks
- Efficient support for single as well as multiple contexts

10

Paper 2: Interleaving: A Multithreading Technique Targeting Multiprocessors and Workstations

(James Laudon, Anoop Gupta, Mark Horowitz)

Strengths

 Performance improvement for both workstation and multiprocessor environments with the same microprocessor

Weaknesses

- Significant hardware complexity for caches and PCU for RISC based machines
- Hardware complexity for Superscalars dramatically higher

Paper 2: Interleaving: A Multithreading Technique Targeting Multiprocessors and Workstations

(James Laudon, Anoop Gupta, Mark Horowitz)

Future Work

Extension of interleaved multiple context scheme to dynamic super-scalar processors.

13

Paper 3: Comparative Evaluation of Latency Reducing and Tolerating Techniques

(Anoop Gupta, John Henessy, Kourosh Gharachorloo, Todd Mowry and Wolf-Dietrich Weber)

Results Summary

- Coherent Caches offer a substantial gain in performance
- Relaxed Memory Consistency Model offers potential performance gains
- Software controlled prefetching though application dependent offers gains in reads and writes
- Multiple Context Processors also application dependent, offer little gain when combined with pre-fetching

15

Paper 3: Comparative Evaluation of Latency Reducing and Tolerating Techniques

(Anoop Gupta, John Henessy, Kourosh Gharachorloo, Todd Mowry and Wolf-Dietrich Weber)

Summary

Provides a consistent framework for the evaluation of the following techniques for multi-processor architectures

- Coherent Caches
- Memory consistency models
- Software controlled pre-fetching
- Multiple contexts

14

Paper 3: Comparative Evaluation of Latency Reducing and Tolerating Techniques

(Anoop Gupta, John Henessy, Kourosh Gharachorloo, Todd Mowry and Wolf-Dietrich Weber)

Strengths

Various performance enhancement techniques in multiprocessors considered in a systematic and consistent manner with sufficient overlapping.

Weaknesses

- Not enough applications to substantiate results
- Sophisticated software control needed for pre-fetching
- Pre-fetching and multiple contexts not considered appropriately
- Lock-up free caches not exploited for read misses

Discussion Issues

Usefulness

- What are the negative impacts of multithreading? How big must a thread be and when do you want to switch threads?
- How useful is multithreading compared to other latency tolerance techniques?

Synchronization

- · How would we implement synchronization in multiprocessors?
- · How do we prioritize threads?

17

Discussion Issues (cont.)

Relevance to CMP

- · What changes are needed to use multithreading in CMP?
- How many threads do you need to keep a CMP with x cores busy?

Other issues

- · Can we live without coherent caches or just L2 coherency?
- · How do we implement coherent caches?
- · What about memory consistency model?