Multithreaded Architectures

Metha Jeeradit and Wajahat Qadeer

Outline

« Introduction
* Papers
- Discussion

Introduction: Motivations

+ Long Memory latency

- Speed gap between memory system and processor is
increasing

- Especially in multiprocessors

+ Two approaches
- Avoid it (e.g., cache)
- Tolerate it (e.g., dynamic scheduling)

* Multithreading is a latency tolerant scheme
- Any latency and not just memory

Introduction: Requirements

+ Way to store multiple contexts
- Register states and PCs for each context

+ Non-blocking cache
+ Bandwidth (Memory and Network)
+ Low context-switching cost




Introduction: Existing Architectures

+ 3 categories:
- Fine-grained
+ Perform work from different threads in each cycle
+ Zero-cycle switching overhead
+ Only allow one instruction from each context o be active in the
pipeline (ho interlock)
+ No data cache

- Blocked (Fast-context switching)
+ Condition switch when long latency event is encountered
- eg., onevery branch misprediction or on every cache miss
+ Significant Switching cost

- Interleaved
+ Like Fine-grained but has data cache and interlock
+ Substantial complexity

Paper 1: Analysis of Multithreaded Architecture

for Parallel Computing
(R. H. Saavedra-Barrera, D. E. Culler, T. V. Eicken)

+ Summary
- Characterize the behavior of a multithreaded architecture
with an analytical model based on 4 parameters: Latency (L),
number of threads (N), switching cost (C), and run-length
interval (R)
+ First 3 parameters are architectural dependent
+ Ris both architectural and application dependent

Paper 1 (cont.): Analysis of Multithreaded

Architecture for Parallel Computing
(R. H. Saavedra-Barrera, D. E. Culler, T. V. Eicken)

+ Summary (cont.)
- 2 operating regions: Linear vs Saturation

1.0 S ap ML= 0]~ mil)= .04

0.0 4

0.7 4

e T

ER e

0.6

wn

0.5

0.4 4

cache included
K = 0.20

1 20 30 40
by Number of Contexts

- C/Ris the most important parameter
* Ratio dictates peak utilization value

Paper 1 (cont.): Analysis of Multithreaded
Architecture for Parallel Computing
(R. H. Saavedra-Barrera, D. E. Culler, T. V. Eicken)

- Strengths

- A deterministic model that can be used to gauge the
performance of your designed architecture

+ Weaknesses
- Debatable assumptions:
+ Sufficient parallelism available
+ Ignore synchronization issues
+ Constant latency values

« Future Work

- Improve the model by incorporating synchronization issues
and limited parallelism effects




Paper 2: Interleaving: A Multithreading Technique
Targeting Multiprocessors and Workstations
(James Laudon, Anoop Gupta, Mark Horowitz)

+ Summary
Architectural changes in commodity microprocessors
benefiting workstations and multiprocessors with little
hardware complexity

Paper 2: Interleaving: A Multithreading Technique
Targeting Multiprocessors and Workstations
(James Laudon, Anoop Gupta, Mark Horowitz)

+ Interleaved Multiple Context
- Extension of fine-grained multiple-context model
- Addition of caching and pipeline interlocks
- Efficient support for single as well as multiple contexts

IF1 IF2 RF EX DF1 DF2 | wB

3]

o]
o
3]
2]

Paper 2: Interleaving: A Multithreading Technique

Targeting Multiprocessors and Workstations
(James Laudon, Anoop Gupta, Mark Horowitz)

* Results
Considerable improvement over blocked scheme in both
workstation and multiprocessor environments due to low
switching cost and ability to hide small latencies

Paper 2: Interleaving: A Multithreading Technique

Targeting Multiprocessors and Workstations
(James Laudon, Anoop Gupta, Mark Horowitz)

- Strengths
- Performance improvement for both workstation and
multiprocessor environments with the same microprocessor

* Weaknesses
- Significant hardware complexity for caches and PCU for
RISC based machines
- Hardware complexity for Superscalars dramatically
higher




Paper 2: Interleaving: A Multithreading Technique
Targeting Multiprocessors and Workstations
(James Laudon, Anoop Gupta, Mark Horowitz)

Future Work
Extension of interleaved multiple context scheme to dynamic
super-scalar processors.

Paper 3: Comparative Evaluation of Latency
Reducing and Tolerating Techniques
(Anoop Gupta, John Henessy, Kourosh Gharachorloo, Todd
Mowry and Wolf-Dietrich Weber)

+ Summary
Provides a consistent framework for the evaluation of the
following techniques for multi-processor architectures
- Coherent Caches

- Memory consistency models
- Software controlled pre-fetching
- Multiple contexts

Paper 3: Comparative Evaluation of Latency

Reducing and Tolerating Techniques
(Anoop Gupta, John Henessy, Kourosh Gharachorloo, Todd
Mowry and Wolf-Dietrich Weber)

+ Results Summary
- Coherent Caches offer a substantial gain in performance

- Relaxed Memory Consistency Model offers potential
performance gains

- Software controlled prefetching though application
dependent offers gains in reads and writes

- Multiple Context Processors also application dependent,
offer little gain when combined with pre-fetching

Paper 3: Comparative Evaluation of Latency

Reducing and Tolerating Techniques
(Anoop Gupta, John Henessy, Kourosh Gharachorloo, Todd
Mowry and Wolf-Dietrich Weber)

- Strengths
Various performance enhancement techniques in multi-
processors considered in a systematic and consistent
manner with sufficient overlapping.

* Weaknesses
- Not enough applications to substantiate results
- Sophisticated software control needed for pre-fetching
- Pre-fetching and multiple contexts not considered
appropriately
Lock-up free caches not exploited for read misses




Discussion Issues

- Usefulness

* What are the negative impacts of multithreading? How big
must a thread be and when do you want to switch threads?

+ How useful is multithreading compared to other latency
tolerance techniques?

*+ Synchronization
+ How would we implement synchronization in multiprocessors?
+ How do we prioritize threads?

Discussion Issues (cont.)

Relevance to CMP
* What changes are needed to use multithreading in CMP?

+ How many threads do you need to keep a CMP with x cores
busy?

Other issues
+ Can we live without coherent caches or just L2 coherency?
+ How do we implement coherent caches?
+ What about memory consistency model?




