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Abstract

This paper focuses on the Tennessee Eastman (TE) Process and for the first
time investigates it in a cognitive way. The cognitive fault diagnosis does
not need to know prior knowledge of the fault numbers and signatures. This
approach firstly employs deterministic reservoir models to fit the multiple-
input and multiple-output signals in the TE process, which maps the signal
space to the (reservoir) model space. Then we investigate incremental learn-
ing algorithms in this reservoir model space based on the “function distance”
between these models. The main contribution of this paper is to provide a
cognitive solution to this popular benchmark problem. That is, our approach
is not only applicable to fault detection, but also to fault isolation without
knowing the prior information about the fault signature. Experimental com-
parisons with other state-of-the-art approaches confirmed the benefits of our
approach. Our algorithm is efficient and can run in real-time for practical
applications.

Keywords: Learning in the Model Space, Tennessee Eastman Process,
Fault Detection, Cognitive Fault Diagnosis, Reservoir Computing, One
Class Learning

1. Introduction

With the development of chemical industry, chemical processes become
more complex. The product efficiency and consistency become essential.
Therefore, on-line monitoring and fault diagnosis are gaining more attention
for produce quality and plant safety. In recent years, there has been a lot
of research in the design and analysis of fault diagnosis schemes for different
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dynamic systems (for example, [1, 2]). A significant part of the research has
focused on linear dynamical systems, where it is possible to obtain rigorous
theoretical results. More recently, considerable effort has been devoted to the
development of fault diagnosis schemes for nonlinear systems with various
kinds of assumptions and fault scenarios [3, 4, 5].

These traditional fault diagnosis approaches rely, to a large degree, on
the mathematical model of the “normal” system. If such a mathematical
model is available, then fault diagnosis can be achieved by comparing ac-
tual observations with the prediction of the model. Most autonomous fault
diagnosis algorithms are based on this methodology. However, for complex
chemical processes operating in dynamic environments, such mathematical
models may not be accurate or even unavailable at all. Therefore, it is nec-
essary to develop cognitive fault diagnosis methods based on the real-time
data.

In a typical chemical process, there are a large number of input vari-
ables, measurement (output) variables in chemical plants. Some of these
variables are highly correlated, which increases the difficulty to extract use-
ful information in the diagnosis process. For example, a significant change
in output variables may be driven by input variables or by faults. Most of
the existing data-driven fault diagnosis approaches that rely on detection of
output concept drift using signals cannot deal with this kind of situation.
The usual methodology is to employ an estimator, such as a neural network,
to approximate the mapping from input variables to output variables. Then,
the difference between the exact observations and the predicted outputs are
compared for fault diagnosis. As this methodology has employed the estima-
tor to approximate the input-output mapping, it may reduce the false alarm
rate. However, the estimator can only produce accurate results when given
sufficient data in all kinds of situations, such as in the normal regime and
various fault scenarios. In a practical chemical process, it is expensive to
obtain all such data. The absence of training data would result in low fault
detection rate.

To address these problems, we introduce a novel “learning in the model
space” framework for dealing with fault detection and fault isolation when
no or very limited knowledge is provided about the underlying system [6].
In this framework, we do not assume that we know the type, the number or
the functional form of the faults in advance. The core idea is to transform
the signal into a higher dimensional “dynamical feature space” via reservoir
computation models and then represent varying aspects of the signal through
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variation in the linear readout models trained in such dynamical feature
spaces. In this way parts of the signal captured in a sliding window will be
represented by the reservoir model with the readout mapping fitted in that
window.

Reservoir Computing (RC) [7] is a class of state space models based on
a “fixed” randomly constructed state transition mapping, realized through
so-called reservoir and an trainable (usually linear) readout mapping from
the reservoir. In our formulation, the underlying reservoir will be the same
throughout the signal - the differences in the signal characteristics at differ-
ent times will be captured solely by the linear readout models and will be
quantified in the function space of readout models.

We assume that for some sufficiently long initial period the system is in
a ‘normal/healthy’ regime so that when a fault occurs the readout models
characterizing the fault will be sufficiently ‘distinct’ from the normal ones. A
variety of novelty/anomaly detection techniques can be used for the purposes
of detection of deviations from the ‘normal’. In this paper we will use one-
class support vector machines (OCS) [8] in the readout model space. As new
faults occur in time they will be captured by our incremental fault library
building algorithm operating in the readout model space.

The main contributions of this paper include:

• This paper for the first time investigates the cognitive fault diagnosis
on the TE process without prior knowledge of the fault numbers and
types. To our knowledge, there is no existing work on cognitive fault
diagnosis on the TE process. All existing work on fault diagnosis on
the TE process relies on the assumption that all the fault patters are
known in advance.

• This paper also studies the strategy to dynamically construct fault
dictionary in real time.

The rest of this paper is organized as follows. The background and the
related work are reviewed in Section 2. Section 3 introduces deterministic
reservoir computing and the framework of “learning in the model space”,
followed by the incremental one class learning algorithm for cognitive fault
diagnosis in Section 3.2. The experimental results and analysis on Tennessee
Eastman Process are reported in Section 4. Finally, Section 5 concludes the
paper and presents some future work.
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2. Background and Related Work

The fault diagnosis procedure can often be investigated in three steps: (i)
fault detection is the process of determining whether a fault has occurred or
not; (ii) fault isolation deals with the issue of determining the location/type
of fault; and (iii) fault identification provides an estimate of the magnitude
or severity of the fault. In some cases, the issues of fault isolation and fault
identification are interwoven, since they both deal with determining the type
of fault that has occurred.

Most automated fault diagnosis algorithms are based on the available
mathematic models. However, for complex engineering systems operating in
uncertain environments, such mathematical models may not be accurate or
even unavailable at all. Therefore, it is necessary to develop cognitive fault
diagnosis methods based on the observed data.

The data driven approaches are popular fault diagnosis methods when
the system models are unclear, especially in distributed systems. A general
learning methodology for fault diagnosis of nonlinear systems was first devel-
oped by Polycarpou and Helmicki [9], where the stability and approximation
properties of the learning scheme were rigorously investigated for the ideal
case without modelling uncertainty. There have been other learning based
approaches to fault detection and diagnosis, e.g. [10, 11, 12, 13]. Neural net-
works were used as learning algorithms for fault detection and diagnosis, e.g.
[10, 12, 11]. In 2011, Barakat et al. proposed to use self adaptive growing
neural network for faults diagnosis [14]. They applied wavelet decomposition
and used the variance and kurtosis of the decomposed signals as features to
train neural networks.

In fault detection and diagnosis, Tennessee Eastman (TE) process, cre-
ated by the Eastman Chemical Co., has been widely used as a benchmark
for evaluating process diagnosis methods (Figure 2). In 2009, Yélamos et. al
[15] proposed to use support vector machines for fault diagnosis in chemical
plants. In a specific application, neural network and support vector ma-
chines have been employed to identify ball bearings faults [13]. Principal
component analysis (PCA) [16, 17, 18], multiway PCA [19], partial PCA
[20], nonlinear dynamic PCA [21], pattern recognition [22], Fisher discrim-
inant analysis (FDA) [23], PCA-wavelet [24], steady-state-based approach
[25], support vector machines (SVM) [23], and PCA-QTA (qualitative trend
analysis) [26] have all been applied to the TE process. Most of the previous
methods are based on multivariate statistics, and several studies have used
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nonlinear or dynamic models to consider process dynamics and nonlinearity
[19]. Although data driven methods show good diagnostic performance, they
either assume that all the fault patterns are known a priori, or are inappli-
cable for unknown faults, which is unrealistic for practical systems operating
in an uncertain environment,

The fault diagnosis framework [6] used in this paper is able to identify new
faults by employing the incremental one-class learning approach in the model
space. Learning in the model space [6] is naturally applicable to the current
industrial MIMO system, and the framework is robust to imperfection in
data/signal, such as missing values, high dimensionality, etc.

3. The Framework of Learning in the Model Space

This section introduces the recently proposed “learning in the model
space” framework [6], which includes multiple-input and multiple-output
(MIMO) signal simulated by deterministic reservoir models, and the learning
stage using incremental one-class learning with the ‘model distance’ as the
input features.

3.1. Learning in the Model Space

Recently, Chen et al. [6] proposed to use deterministic reservoir comput-
ing (DRC) [27] to represent MIMO signal segments and to use incremental
one-class learning for fault diagnosis. Learning in the model space is to use
models fitted on parts of data as more stable and parsimonious representa-
tions of the data. Learning is then performed directly in the model space,
instead of the original data space.

Reservoir Computing (RC) [7] is a class of state space models based on
a “fixed” randomly constructed state transition mapping, realized through
so-called reservoir and an trainable (usually linear) readout mapping from
the reservoir. DRC [27] is a deterministic version of RC. The motivation
to use DRC is because the traditional randomized RC is largely driven by
a series of randomized model building stages, which could be unstable and
difficult to understand, especially for fault diagnosis. Due to linear training,
the DRC model can be trained fast and run in real-time.

Given the input signal u and output (target) signal y, the reservoir model
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Figure 1: Illustration of the deterministic reservoir model space. R is the reservoir weight
matrix (N × N), V is the input weight matrix (N × O) to the reservoir, and O is the
dimensionality of the time series.

with N reservoir (state) units1 is formulated as follows:

x(t) = tanh(R x(t− 1) + V u(t)), (1)

f(x(t)) = Wx(t) + a, (2)

where x(t) = [x1, · · · , xN ]
T ∈ ℜN is the state vector of reservoir activations,

u(t) is the input signal at time t, R is the reservoir weight matrix (N×N), V
is the input weight matrix (N ×O) to the reservoir, O is the dimensionality
of the time series, tanh(·) is the state-transition function of the reservoir, W
is the weight matrix (O × N) from reservoir to output, and f(x(t)) is the
output of the linear readout from the reservoir. The state transition and
output parts of the state space model are described by eqs. (1) and (2),
respectively.

This paper will focus on specific forms of ESN since they constitute one of
the simplest, yet effective forms of RC. ESN has a “non-trainable” recurrent
part (“the reservoir”) (eq (1)) and a simple linear readout (eq (2)). Typically,
the reservoir weights R and the input weights V to the reservoir are randomly

1In this paper, the value of N is fixed to 100. Based on our previous results [27], a
larger N might lead to better performance. Instead of optimizing the number, we fix the
number just to demonstrate that the algorithm can work well even with a non-optimal
parameter N . In general, larger N would lead to larger computational overhead with small
performance gain. As in other applications of ESN, The danger of over-fitting is minimal,
since the only adaptive part is the linear readout [28].

6
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generated so that the “Echo State Property” is satisfied. Loosely speaking,
this means that the reservoir output would be independent of the initial
conditions [29]. Training of ESN can be efficiently performed through linear
regression. For more details we refer the interested reader to e.g. [7].

The downside of reservoir models is that their construction is largely
driven by a series of randomized model building stages. Recently, Rodan et
al. [27] proposed to use a simple deterministic constructed cycle reservoirs
with regular jumps (DRC). This reservoir architecture has been shown to
be comparable to (or better than) the traditional ESN on a wide variety of
time series modeling and prediction tasks [27]. In DRC the reservoir nodes
are connected in a uni-directional cycle with bi-directional shortcuts (jumps)
(Figure 1). All cyclic reservoir weights rc have the same value; all jumps rj
share the same weight. This results in a simple, sparse and deterministically
constructed reservoir coupling weight matrix R. Specifically, R is a very
sparse matrix with rc and rj spreaded over, e. g. a network of 10 internal
units with 2 as jump size, the matrix R is of the form as follows:

0 0 rj 0 0 0 0 0 rj rc
rc 0 0 0 0 0 0 0 0 0
rj rc 0 0 rj 0 0 0 0 0
0 0 rc 0 0 0 0 0 0 0
0 0 rj rc 0 0 rj 0 0 0
0 0 0 0 rc 0 0 0 0 0
0 0 0 0 rj rc 0 0 rj 0
0 0 0 0 0 0 rc 0 0 0
rj 0 0 0 0 0 rj rc 0 0
0 0 0 0 0 0 0 0 rc 0


The input weight matrix V is highly constrained as well. The absolute

weight values are the same ri, the only difference is in the signs of individual
weights, the sign pattern needs to be aperiodic. This has been analyzed
empirically and theoretically in [30, 27]. Algorithm 1 details how to train
the reservoir.

The main idea of “Learning in the Model Space framework” is that, pro-
vided the reservoir is able to represent a rich set of features of the input-
output mapping, the model-based representation of the input-output map-
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Algorithm 1 Reservoir Training Algorithm

1: Input: Set of input signals u1, · · · ,uT ; output signals y1, · · · ,yT ; pa-
rameters (number of reservoir units N ; DRC weights (rc, rj, ri); ridge
regression parameter λ (The parameter λ was chosen by cross valida-
tion).

2: Output: the trained reservoir weight W.
3: Construct the input weight matrix V using ri and the state transition

matrix R using rc and rj.
4: for each time step t, t = 1, · · · , T do
5: Drive the reservoir state evolution with the input sequence x(t) =

tanh(R x(t− 1) + V u(t)), (eq. (1)).
6: end for
7: Construct the state matrix X = [x(1); · · · ;x(T )] and the output matrix

Y = [y(1); · · · ;y(T )] by accumulating the state evolution and the output
signal, respectively.

8: Given the linear readout mapping from the reservoir, the weight W is
calculated by ridge regression, i.e. W = (XTX+ λI)−1XTY .

ping will be given by the linear readout mapping2 f(x;u) operating on reser-
voir activations x to minimize the normalized mean square error (NMSE)
between the model predictions f(x;u) and targets y(t).

In this framework, it is necessary to generate the model space from the
original signal space. One possible way is to identify parameterized models
with their parameter vectors and work in the parameter space. This, how-
ever, will make the learning highly dependent on the particular model param-
eterization used. A more satisfying approach is to use parameterization-free
notions of distance or similarities between the models.

To simplify the notation, we will denote the readout f(x;ui) fitted to
sequence ui by fi(x) in this section. In the model space, the m-norm distance
between models f1(x) and f2(x) (f1, f2 : ℜN → ℜO) is defined as follows:

Lm(f1, f2) =

(∫
C

Dm (f1(x), f2(x)) dµ(x)

)1/m

,

2Note that in our formulation, the underlying dynamic reservoir will be the same
throughout the signal - the differences in the signal characteristics at different times will
be captured solely by the linear readout models.

8
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where Dm (f1(x), f2(x)) = ∥f1(x)− f2(x)∥m is a function to measure the
difference between f1(x) and f2(x), µ(x) is the probability density function
of the input domain x, and C is the integral range. In this paper, we adopt
m = 2 and first assume that x is uniformly distributed. Of course, non-
uniform µ(x) can be adopted as well by using samples generated from it or
by estimating it directly using e.g. Gaussian mixture models.

In the following, we demonstrate the application of the distance definition
in the model space for linear readout models of reservoir models. The readout
model of reservoir computing can be represented by the following equation

f(x) = Wx+ a,

where x = [x1, · · · , xN ]
T is a reservoir state vector, N is the number of

reservoir units in the model, W are the parameters (O × N matrix) in the
model, O is the output dimensionality, and a = [a1, · · · , ao] ∈ ℜO is the bias
vector of output nodes.

The distance between two readouts from the same reservoir can be cal-
culated based on the follow equation [6]:

L2(f1, f2) =

(∫
C

∥Wx∥2 + ∥a∥2 dx
)1/2

=

(
2N

3

N∑
j=1

O∑
i=1

w2
i,j + 2N ∥a∥2

)1/2

where wT
i is the i-th row of W , wi,j is the (i, j)-th element of W , f1(x) =

W1x+ a1, f2(x) = W2x+ a2, W = W1 −W2 and a = a1 − a2.
Scaling of the squared model distance (L2

2(f1, f2)) by 2−N we obtain

1

3

N∑
j=1

O∑
i=1

w2
i,j + ∥a∥2 ,

which differs from the squared Euclidean distance of the readout parameters

N∑
j=1

O∑
i=1

w2
i,j + ∥a∥2 ,

by the factor 1/3 applied to the differences in the linear part W of the affine
readouts. Hence, more importance is given to the ‘offset’ than ‘orientation’
of the readout mapping.

The above analysis assumed that the distribution of x is uniform in the
integral range C. When the distribution of x is non-uniform, sampling tech-
niques and analytical techniques using e.g. a Gaussian mixture model can
be employed to calculate the distance. Please refer to [6] for details.
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3.2. Incremental One Class Learning for Cognitive Fault Diagnosis

In fault diagnosis, it is relatively cheap and simple to obtain measure-
ments from a normally working system. In contrast, sampling from faulty
situations requires the system to break down in various ways to obtain faulty
measurement examples. Therefore, it will be very expensive, or completely
impractical to construct a fault library.

We will follow [6] and employ the incremental one-class learning algorithm
to identify unknown faults and construct a fault library dynamically, which
will facilitate fault isolation based on this library. One-class classification[8] is
a special type of classification algorithm. It tries to learn from a training set
containing only the points of one particular class, i.e. one class, to distinguish
this particular class of points from all other possible classes.

The incremental one class learning is to use each one-class learner to
represent each fault/sub-fault segment by using the “learning in the model
space” approach. In the beginning, a normal one-class learner Θ0 will be
constructed based on the normal MIMO signal segments. When the sliding
window is moving forward, the one-class learner Θ0 will be applied to judge
whether a fault occurs. If a fault, judged by Θ0, is detected, we will train a
new one-class-learner Θi to represent fault i. Then, we keep monitoring the
signal and determine whether the ongoing signal segment belongs to either
normal state or a known fault. If neither, a new one-class learner Θi will be
built and included in the model library. The algorithm includes the following
major steps:

1. Normal data preparation by applying deterministic reservoir model to
the sliding windows in the first t steps, i.e. the “normal” regime is
sequentially induced.

2. Calculate the pairwise model distance matrix L2(fi, fj) and employ one
class SVMs (OCS) to obtain the normal class Θ0. In one class SVMs,
Gaussian RBF kernel is employed with the data distance replaced by
the model distance L2(fi, fj);

ϕσ(fi, fj) = exp {−σ · L2(fi, fj)} .

3. With the sliding window moving forward, if a new fj belongs to an
existing model Θk

3, update the existing Θk with this new data fj,

3If the new point fj is classified to more than one model by one-class SVMs, count the
point in the last model due to sequential correlation.

10
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and empty the candidate pool4. Otherwise, put the “point” fj in the
candidate pool.

4. If the number of data points in the candidate pool exceeds half of the
window size, construct a new one-class learner Θk+1 and empty the
candidate pool.

In the above description, the assumption is that the system is running
normally in the first t steps. The window size m should be relatively large
(e.g. > 300 time steps) to accurately train the dynamic models (e.g. deter-
ministic reservoir computing in this paper). The sliding window is moved
forward by one step at a time, which can reduce fault detection delays.

4. Experimental Studies

This section presents experimental results for Tennessee Eastman Chal-
lenge Process. This paper investigates fault detectability and fault isolation-
ability using a number of approaches. In order to compare with previous
methodologies, this section studies the supervised setting and the cognitive
setting, respectively. The supervised setting assumes that we have plenty
training data on various faults and the cognitive setting assumes that we do
not know the fault data at all. The only assumption in the cognitive setting
is that the system is running normally in the first several days. In this sec-
tion, we also compare our cognitive approach with some other popular fault
detection algorithms in Section 4.5.

4.1. Tennessee Eastman Challenge Process

TE process [31] was proposed by Downs and Vogel to provide a realistic
industrial process for evaluating process control and monitoring methods.
There are five major units, including a reactor, condenser, recycle compres-
sor, vapor/liquid separator, and product stripper, and eight components,
A-H (Figure 2).

In TE process simulator5, we can simulate the process with different op-
erating/initialization conditions, and inject faults at specific time . There are
12 manipulated (input) variables and 41 measured (output) variables (Tables

4The candidate pool is used to save the “outlier points”, which do not belong to existinig
fault classes, until there are sufficent points to train a new one-class learner.

5available at http://web.mit.edu/braatzgroup/TE_process.zip
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Figure 2: Process flow of the TE Process [31].

1 and 2). In the simulator, we simulate the system for 192 hours. The system
runs normally in the first 96 hours, then we inject faults to the process from
the beginning of 97 hours to end. The sampling interval of 12 manipulated
and 41 measured variables is three minutes. All the process measurements
include Gaussian noise. In the TE process, 20 preprogrammed faults (Table
3) are included , 15 of which are known and 5 are unknown.

To our knowledge, there is no existing work on cognitive fault diagnosis
on the TE process. All existing work on fault diagnosis on the TE process
relies on the assumption that all the fault patters are known in advance. This
paper for the first time investigates the cognitive fault diagnosis on the TE
process.

4.2. Experimental Settings

In our experiments, to evaluate the “learning in the model space” frame-
work for fault diagnosis, two experimental settings, i.e. supervised setting
and cognitive setting, are employed.

12
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Variable Description Variable Description
XMV(1) D feed flow (stream 2) XMV(7) separator pot liquid flow (stream 10)
XMV(2) E feed flow (stream 3) XMV(8) stripper liquid product flow
XMV(3) A feed flow (stream 1) XMV(9) stripper steam valve
XMV(4) total feed flow (stream 4) XMV(10) reactor cooling water flow
XMV(5) compressor recycle valve XMV(11) condenser cooling water flow
XMV(6) purge valve (stream 9) XMV(12) agitator speed

Table 2: Measured (output) Variables of the TE Process. The sampling interval is 3
minutes.

Variable Description Variable Description
XMEAS(1) A feed (stream 1) XMEAS(22) condenser cooling water outlet temp
XMEAS(2) D feed (stream 2) XMEAS(23) composition of A (stream 6)
XMEAS(3) E feed (stream 3) XMEAS(24) composition of B (stream 6)
XMEAS(4) total feed (stream 4) XMEAS(25) composition of C (stream 6)
XMEAS(5) recycle flow (stream 8) XMEAS(26) composition of D (stream 6)
XMEAS(6) reactor feed rate (stream 6) XMEAS(27) composition of E (stream 6)
XMEAS(7) reactor pressure XMEAS(28) composition of F (stream 6)
XMEAS(8) reactor level XMEAS(29) composition of A (stream 9)
XMEAS(9) reactor temp XMEAS(30) composition of B (stream 9)
XMEAS(10) purge rate (stream 9) XMEAS(31) composition of C (stream 9)
XMEAS(11) separator temp XMEAS(32) composition of D (stream 9)
XMEAS(12) separator level XMEAS(33) composition of E (stream 9)
XMEAS(13) separator pressure XMEAS(34) composition of F (stream 9)
XMEAS(14) separator underflow (stream 10) XMEAS(35) composition of G (stream 9)
XMEAS(15) stripper level XMEAS(36) composition of H (stream 9)
XMEAS(16) stripper pressure XMEAS(37) composition of D (stream 11)
XMEAS(17) stripper underflow (stream 11) XMEAS(38) composition of E (stream 11)
XMEAS(18) stripper temperature XMEAS(39) composition of F (stream 11)
XMEAS(19) stripper steam flow XMEAS(40) composition of G (stream 11)
XMEAS(20) compressor work XMEAS(41) composition of H (stream 11)
XMEAS(21) reactor cooling water outlet temp

13
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Table 3: Faults Defined in the TE Process [31]. The sampling interval is 3 minutes. The
fault magnitudes are obtained by comparing the fault and normal data.
Fault ID Description Type Magnitude
IDV1 A/C Feed Ratio, B Composition Constant (Stream 4) Step 203%
IDV2 B Composition, A/C Ratio Constant (Stream 4) Step 105%
IDV3 D Feed Temperature (Stream 2) Step 5%
IDV4 Reactor Cooling Water Inlet Temperature Step 9%
IDV5 Condenser Cooling Water Inlet Temperature Step 15%
IDV6 A Feed Loss (Stream 1) Step 342%
IDV7 C Header Pressure Loss - Reduced Availability (Stream 4) Step 25%
IDV8 A, B, C Feed Composition (Stream 4) Random Variation 736%
IDV9 D Feed Temperature (Stream 2) Random Variation 8%
IDV10 C Feed Temperature (Stream 4) Random Variation 112%
IDV11 Reactor Cooling Water Inlet Temperature Random Variation 567%
IDV12 Condenser Cooling Water Inlet Temperature Random Variation 8%
IDV13 Reaction Kinetics Slow Drift 16%
IDV14 Reactor Cooling Water Valve Sticking 1285%
IDV15 Condenser Cooling Water Valve Sticking 5%
IDV16 Unknown Random Variation 78%
IDV17 Unknown Random Variation 557%
IDV18 Unknown Step 57%
IDV19 Unknown Random Variation 73%
IDV20 Unknown Random Variation 310%

In the supervised setting, we aim to demonstrate the superiority of the
model space representation compared with the signal space using a number
of existing classifiers. Since many traditional fault diagnosis approaches are
based on supervised learning, this setting can be employed to compare model
space approaches with those traditional fault diagnosis approaches. In cog-
nitive setting, we compare the incremental one class learning algorithm with
other unsupervised algorithms using the model space representations. In ad-
dition, the ability to dynamically construct fault dictionary of our algorithm
is demonstrated.

In both settings, the signal space is generated by selecting p consecutive
points, i.e. {st, · · · , st+p−1}, where st = (ut,1, · · · , ut,V , yt,1, · · · , yt,O)T , u’s
and y’s are the inputs and outputs, respectively, as a training point by re-
arranging these p points to one vector, and V is the dimensionality of the
input signal. The order p will be selected in the range [1, 30]6.

We generate 3000 time steps for normal signal and each fault signal,

6The sampling interval of TE process is 3 minutes, and the upper bound of the lag
equals to 90 minutes.
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respectively, and employ a sliding window (size 500) to generate a series
of signal segments, which are employed to train the deterministic reservoir
model.

The fault detection ability is measured by fault detection rate (FDR) and
false alarm rate (FAR). In fault isolation, the performance is measured by
Precision, recall (or sensitivity), and specificity. The precision, recall and
specificity are defined as follows:

precision =
tp

tp+ fp
,

recall =
tp

tp+ fn
,

specificity =
tn

tn+ fp
,

where tp, tn, fp, fn indicate true positive, true negative, false positive, false
negative, respectively. Their definitions are detailed as follow:

• true positive tp: fault signal correctly diagnosed as fault

• true negative tn: normal signal correctly diagnosed as normal

• false positive fp: fault signal incorrectly identified as normal

• false negative fn: normal signal incorrectly identified as fault

Based on these definitions, the fault detection (FD) rate is defined as
FD = tp

tp+tn+fp+fn
. The false alarm rate (FAR) is defined as FD = fn

tp+tn+fp+fn
.

Precision measures the proportion of positive test results that are true
positives, also referred to as positive predictive value. Recall measures the
proportion of actual faults which are correctly identified as such and speci-
ficity measures the proportion of normal data which are correctly identified.

4.3. Supervised Setting

In the supervised setting, we demonstrate the superiority of the model
space compared with the signal space using a number of existing classifiers.
Since many traditional fault diagnosis approaches use supervised learning,
this setting can be employed to compare model space representation with
those traditional fault diagnosis approaches.

15
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Table 4: Algorithms and Parameters in Supervised Setting

Algorithm Parameters
CART -

NaiveBayes -
Bagging num of Trees: 100
Boosting num of Trees: 100

SVM
σ Gaussian kernel parameter
C soft margin parameter

OCS
σ Gaussian kernel parameter
ν the upper bound of outliers

Table 5: Comparisons of model space and signal space using supervised learning tech-
niques in terms of fault detection rate (FDR) and false alarm rate (FAR). The ∗ means
the difference between model and signal representations is statistically significant. The
reported results are based on 10 runs of 5-fold cross validation.

CART Bagging Boosting SVM OCS
model signal model signal model signal model signal model signal

FDR 99.00 87.27∗ 99.85 93.36∗ 96.09 92.05∗ 99.99 94.36∗ 93.37 49.74∗

FAR 0.16 0.15 0.04 0.07∗ 0.07 2.14∗ 0.14 0.29∗ 0.87 0.14∗

Table 5 reports the comparisons of the representations of model space
and signal space using a number of supervised learning algorithms for fault
detection ability, including classification and regression trees (CART), naive
Bayes, support vector machines (SVMs), one class support vector machine
(OCS), Bagging (100 trees) and Adaboosting (100 trees).

Since the default setting of MATLAB is to optimize the classification
and regression trees (CART) algorithm7, we follow the default setting in
MATLAB for CART. Bagging and Adaboosting are ensemble algorithms
with decision trees (CARTs) as based learners (CARTs have been optimized
by MATLAB). They have only one parameter8 to specify, i.e. the number of
trees in the ensembles. We are using a popular choice (100 decision trees) in
our comparisons. The parameters of SVMs and one-class SVMs are optimized
by 5-fold cross validation. The parameters used in supervised setting are

7In matlab function ‘classregtree’, the default is to compute the full tree and the optimal
sequence of pruned subtrees.

8Different variants of Bagging and Adaboosting may require more parameters.
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Table 6: Comparisons of model space and signal space using supervised learning techniques
for each fault in terms of fault detection rate (Details of Table 5). The reported results
are based on 10 runs of 5-fold cross validation.

CART Bagging Boosting SVM OCS
model signal model signal model signal model signal model signal

IDV1 99.87 99.52 100 100 100 100 100 100 100 100
IDV2 99.59 99.80 100 100 99.75 100 100 100 100 100
IDV3 89.44 9.84 97.04 0.00 70.00 58.11 99.86 66.36 24.53 2.56
IDV4 97.84 99.72 100 100 95.31 100 100 100 99.59 4.52
IDV5 97.52 89.51 100 99.85 80.91 99.16 100 100 44.03 8.41
IDV6 99.95 100 100 100 100 100 100 100 100 100
IDV7 99.73 99.61 100 100 98.15 100 99.99 100 100 47.54
IDV8 100 98.89 100 100 100 99.31 100 99.93 100 99.89
IDV9 99.31 58.43 100 83.52 94.19 67.10 100 77.38 99.20 2.25
IDV10 99.70 87.93 100 99.28 98.77 86.56 100 95.06 100 14.27
IDV11 98.88 94.47 100 99.91 98.97 98.94 100 86.67 100 4.72
IDV12 100 98.86 100 100 100 99.89 100 99.23 100 99.41
IDV13 99.93 99.56 100 100 99.96 100 100 99.13 100 100
IDV14 99.78 99.30 100 100 99.96 100 100 99.83 100 88.24
IDV15 99.19 57.97 100 86.60 93.17 66.38 100 84.72 100 2.73
IDV16 99.59 86.69 100 99.34 95.88 79.09 100 83.15 100 6.58
IDV17 99.68 98.99 100 100 99.47 99.96 100 100 100 60.94
IDV18 99.90 99.69 100 100 99.96 99.96 100 100 100 99.58
IDV19 99.40 79.39 100 100 99.01 95.34 100 97.36 100 35.61
IDV20 99.80 87.32 100 98.71 98.35 91.15 100 98.43 100 17.53

Table 7: Comparisons of fault isolation by using the model space and signal space using
supervised learning techniques. The ∗ means the difference between model and signal
representations is statistically significant. The reported results are based on 10 runs of
5-fold cross validation.

precision recall specificity
model signal model signal model signal

CART 97.74 66.78∗ 97.72 66.07∗ 99.88 98.21∗

SVM 99.82 67.54∗ 99.82 66.41∗ 100 98.23∗

NaiveBayes 93.60 43.49∗ 91.93 45.65∗ 99.58 97.14∗

Bagging 99.98 80.51∗ 99.98 79.63∗ 100 98.93∗

Adaboost.M2 29.96 15.40∗ 36.79 21.77∗ 96.67 95.88∗
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reported in Table 4.
The reported results in Tables 5-7 are based on 10 runs of 5-fold cross

validation. Tables 5 and 6 report the performance for fault detection, and
Table 7 reports the performance for fault isolation.

Based on these tables, the model space representation usually achieves
statistically significantly better results. SVM achieves the best performance
for fault detection rate (99.99%) and Bagging achieves the smallest false
alarm rate (0.04%).

In OCS, it distinguishes one class of points from all other possible points
by learning from a training set containing only the points of that class. It
means that only the partial data, i.e. ‘normal’ class, is employed. Therefore,
OCS achieves the worst performance in terms of FDR (93.37%) and FAR
(0.87%) in the model space.

Table 7 reports the fault isolation ability in both model and signal spaces.
The performance is measured by Precision, recall (or sensitivity) and speci-
ficity. Based on this table, Bagging and SVM outperform other classifiers in
terms of three metrics. Adaboost.M2 seems to overfit the noise and leads to
inferior results.

All these results demonstrate that the model space representation of the
signal scan achieve better classification performance than using the original
signal representation with the same kind of classifiers, which confirms the
benefits to use the model space rather than the signal space in fault diagnosis.

4.4. Cognitive Setting

To evaluate the incremental one class learning for cognitive fault diag-
nosis, in this setting we compare with other unsupervised algorithms in the
model space. In addition, the ability to dynamically construct fault dictio-
nary of our algorithm is demonstrated.

In cognitive setting, we do not know which data are faulty and the fault
classes. The only assumption in the cognitive setting is that the initial part of
the signal is normal. In this setting, we employ some clustering algorithms
to compare with our proposed algorithm. These algorithms include affin-
ity propagation (AP) [32], Kmeans, agglomerative hierarchical cluster tree
(Hclustering), landmark-based spectral clustering (LSC) [33], and statistic
test based approach “Hotelling’s T-squared statistic test (T2)” [34], one class
SVMs [8] (only for fault detection). Table 8 summaries all the algorithms
and their parameters employed in this paper. The parameters of one class
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Algorithm Parameters
T2 -
AP -

Kmeans number of clusters: 50
Hclustering number of clusters: 50

LSC number of clusters: 50

OCS
σ Gaussian kernel parameter
ν the upper bound of outliers

Cognitive
σ Gaussian kernel parameter
ν the upper bound of outliers
N number of nodes in reservoir (100)

Table 9: Comparisons of the model space and signal space in terms of fault detection
rate (FDR) and false alarm rate (FAR) using cognitive learning techniques. The ∗ means
the difference between model and signal representations is statistically significant. The
reported results are based on 10 runs of 5-fold cross validation.

FDR (%) FAR (%)
model signal model signal

T2 39.24 46.12∗ 10.00 10.00
OCS 94.41 51.85∗ 8.08 2.7∗

Kmeans 84.29 44.29∗ 0.00 0.00
Hclustering 92.00 20.25∗ 0.00 0.00

LSC 91.55 48.02∗ 0.00 0.00
AP 96.37 69.18∗ 0.00 0.00

cognitive 97.98 60.96∗ 0.00 0.00
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Table 10: Comparisons of the model space and signal space for each fault in terms of fault
detection rate using “cognitive” learning techniques (Details of Table 9). The reported
results are based on 10 runs of 5-fold cross validation.

T2 OCS Kmeans Hclustering LSC AP Cognitive
model signal model signal model signal model signal model signal model signal model signal

IDV1 97.98 100 100 100 0 6.01 0.00 6.01 0.00 6.01 100 100 97.12 12.71
IDV2 100 100 100 100 40.06 0.00 40.06 0.00 40.06 0.00 100 83.23 76.95 12.71
IDV3 16.33 9.60 30.26 6.60 100 0.00 100 0.00 100 0.00 100 83.03 100 10.57
IDV4 29.01 10.86 100 8.15 100 93.99 100 93.99 100 93.99 100 83.03 100 99.22
IDV5 3.75 9.70 58.12 6.79 59.94 100 100 6.01 100 100 100 99.80 100 91.27
IDV6 0.86 100 100 100 84.05 86.23 100 0.10 100 83.41 100 75.45 100 100
IDV7 35.54 20.08 100 48.30 59.94 6.01 100 0.00 100 5.23 100 98.80 100 17.94
IDV8 25.46 93.50 100 99.90 94.81 0.00 100 0.00 100 0.10 100 22.36 100 34.92
IDV9 17.10 7.76 100 4.46 100 0.00 100 0.00 100 0.10 100 39.32 100 8.73
IDV10 37.46 16.49 100 19.01 100 83.41 100 4.56 100 77.01 100 27.15 100 96.90
IDV11 0.19 10.57 100 8.63 100 94.18 100 0.29 100 96.80 100 94.81 100 100
IDV12 75.70 93.21 100 100 75.12 68.77 100 0.00 99.04 100 100 100 100 97.09
IDV13 30.45 97.87 100 100 100 3.88 100 0.00 100 6.01 100 86.83 100 8.63
IDV14 0.86 20.66 100 90.11 100 0.00 100 0.00 100 0.10 100 36.93 100 19.69
IDV15 29.88 9.31 100 4.07 85.98 45.49 100 0.00 93.76 63.24 100 26.75 100 91.27
IDV16 82.52 9.80 100 10.28 87.70 97.87 100 93.99 98.08 98.93 100 64.27 100 97.09
IDV17 100 53.25 100 65.47 98.27 6.01 100 6.01 100 6.01 100 100 97.21 67.99
IDV18 0.00 100 100 100 100 0.00 100 0.00 100 27.16 100 30.54 100 73.81
IDV19 83.67 43.84 100 40.06 100 93.99 100 93.99 100 96.22 100 31.54 100 99.13
IDV20 18.06 15.91 100 25.32 100 100 100 100 100 10 100 99.80 100 100

Table 11: Comparisons of the model space and signal space in terms of fault isolation
ability using cognitive learning techniques. The ∗ means the difference between model
and signal representations is statistically significant. The reported results are based on 10
runs of 5-fold cross validation.

precision recall specificity nclass
model signal model signal model signal model signal

Kmeans (K=50) 67.88 43.82∗ 70.21 42.53∗ 98.47 97.14∗ 50 50
Hclustering 76.13 24.30∗ 80.04 19.28∗ 99.03 95.96∗ 50 50
LSC 76.92 36.05∗ 76.58 37.66∗ 98.82 96.91∗ 50 50
AP 89.10 51.54∗ 90.15 51.81∗ 99.51 97.59∗ 453 923
Cognitive 98.58 48.90∗ 97.15 41.00∗ 99.86 97.10∗ 606 139
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SVMs will be optimized by 5-fold cross validation using the first 500 data
points.

The reported results in Tables 9-11 are based on 10 runs of 5-fold cross
validation. Tables 9 and 10 report the performance for fault detection, and
Table 11 reports the performance for fault isolation in both model and signal
spaces.

Based on these tables, the model space representation usually achieves
statistically significantly better results. The cognitive approach achieves the
best performance for fault detection rate (97.98%) and lowest false alarm rate
(0.00%). In the model space, each data point is a series of signal segments
selected using a sliding window. Therefore, the two data points could be
generated with overlapping signal segments, which indicates they are not
independent. Therefore, T2 achieves the inferior performance in the model
space than in the signal space. The clustering algorithms are all very good
in terms of false alarm rate in both model and signal spaces. This might
indicate that the normal signal segments within the sliding window of TE
process in both model and signal space form easily identified clusters. These
clustering algorithms achieve much better performance in the model space
than in the signal space in terms of fault detection rate, indicating that the
clusters representing various faults are easily identified in the model space.

Table 11 reports the fault isolation ability in both model and signal spaces.
In this table, we also report the true number of classes and the discovered
classes (i.e. number of faults plus normal class) using a number of algorithms
for each data set. Since in the cognitive setting, there is no prior informa-
tion about faults, the clustering algorithms always discover more classes than
the actual number of faults by decomposing each true fault into several sub-
clusters. Since the number of discovered faults does not equal to the true
number of faults, we compare each true cluster and these discovered clusters
and merge those discovered clusters with the maximizing overlap with each
true cluster to a pseudo-cluster. The performance metrics are obtained by
comparing true clusters and merged clusters. Based on this table, the cog-
nitive algorithm can achieve a very good performance in these three metrics
and significantly outperform other algorithms. As a base algorithm, kmeans
generates inferior results in all three metrics.

Tables I-10 have reported the proposed approach on a common MIMO
system with 20 programmed noise and disturbances defined as IDV1 to
IDV20, which are called ‘faults’ in this paper. These disturbances include
several types, including step (IDV1-IDV7), random variation (IDV8-IDV12),
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Table 12: Comparisons of our cognitive approach with other approaches in terms of fault
detection rate (FDR) and false alarm rate (FAR).

Cognitive PCA DPCA ICA MICA FDA PLS TPLS MPLS SAP
FDR 97.98 73.79 82.07 80.97 80.37 79.57 82.60 84.39 84.39 80.54
FAR 0.00 6.38 15.13 2.63 1.5 6.38 7.12 12.13 10.75 1.25

slow drift (IDV13), sticking (IDV14-IDV15), and some unknown types (IDV16-
IDV20).

Based on Table 10, the cognitive approach performs well on most of the
faults, i.e. achieving 100% fault detection rates, except on step disturbances:
IDV1 (97.12%), IDV2 (76.95%), and unknown disturbance IDV17 (97.12%).
It seems that the cognitive approach is robust against random disturbances
IDV8-IDV12 (noise).

According to Tables 3, 6 and 10, it can be observed that small fault
magnitudes often lead to relatively small fault detection rates. For example,
with IDV3 (5%), IDV4 (9%) and IDV15 (5%), the signal based algorithms
always have very small fault detection rates, e.g. CART (9.84) with IDV3,
OCS (4.52) with IDV4 in Table 10, and AP (26.75) with IDV15. However, the
model space based approaches are relatively robust to small fault magnitudes.
For example, CART performed much better in model space (89.44) than in
signal space (9.84) with IDV3; the same as OCS (99.59 vs. 4.52) with IDV4
and AP (100 vs. 26.75) with IDV15. This is understandable since model
space based approaches focus on ‘model/function change’ with disturbance
while signal space based approaches focus more on ‘signal change’, which
could be easily disturbed by imposed faults.

All these results including fault detection/isolation confirm the benefits
of using the model space rather than the signal space in fault diagnosis.

4.5. Benchmark Comparisons

In the literature, most of the algorithms focus on fault detection ap-
proaches available for TE process. Therefore, we will compare our cognitive
approach with some popular fault detection algorithms for the TE process.

These compared algorithms include principle component analysis (PCA),
dynamic PCA (DPCA) [35] to deal with autocorrelation of process variable,
independent component analysis (ICA), modified ICA (MICA) [36, 37], fisher
discriminant analysis (FDA) [23], partial least squares (PLS), total projection
to latent structure (TPLS) approach [38], modified approach (MPLS) [39],
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and subspace aided approach (SAP) [40]. Based on the settings of [41], all
the parameters of those compared algorithms are optimized.

In this comparison, we follow the same methodology as previous exper-
iments in this paper. That is, we simulate the system for 192 hours. The
system in the first 96 hours is normal and the system in the rest hours is
faulty. The sampling interval is three minutes. Based on the simulated sig-
nals, 3000 time steps for normal signal and each fault signal are generated,
respectively.

The results are reported in Table 12. Based on these results, our approach
outperforms all other algorithms. All these results confirm the benefits of our
algorithm in cognitive fault diagnosis for the TE process.

5. Conclusion

In this paper, we introduce a recently-proposed framework “learning in
the model space” to diagnose faults in the Tennessee Eastman Process. In-
stead of conducting fault diagnosis in the signal space, this paper investigates
“learning in the model space” framework that represents the multiple-input
and multiple-output data as a series of models trained using the signal seg-
ments within a sliding window. By investigating the characteristic of these
trained models using a learning approach in the model space, we can identify
and isolate faults effectively.

This paper for the first time investigates TE process without prior knowl-
edge of the fault numbers and types based on the cognitive fault diagnosis.
This paper also studies the strategy to dynamically construct fault dictio-
nary in real time. The extensive experiments and comparisons with other
algorithms validate the effectiveness of the proposed approach for the TE
process.

In the cognitive setting, the number of discovered faults is often larger
than the true number of faults due to the absence of information about faults.
Our future work will focus on this issue and try to minimize the difference
between the number of discovered faults and the number of true faults.
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