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Abstract— This paper proposes to incorporate bootstrap of
data, random feature subspace and evolutionary algorithm with
negative correlation learning to automatically design accurate
and diverse ensembles. The algorithm utilizes both bootstrap
of training data and random feature subspace techniques to
generate an initial and diverse ensemble and evolves the ensem-
ble with negative correlation learning. The idea of generating
ensemble by simultaneous randomization of data and feature
is to promote the diversity within the ensemble and encourage
different individual NNs in the ensemble to learn different parts
or aspects of the training data so that the ensemble can learn
better the entire training data. Evolving the ensemble with
negative correlation learning emphasizes not only the accuracy
of individual NNs but also the cooperation among different
individual NNs and thus improves the generalization. As a
byproduct of bootstrap, out-of-bag (OOB) estimation, which can
estimate the generalization performance without any extra data
points, serves another benefit of this algorithm. The proposed
algorithm is evaluated by several benchmark problems and in
these cases the performance of our algorithm is better than the
performance of other ensemble algorithms.

I. INTRODUCTION

Ensemble of multiple learning machines, i.e. a group of
learners that work together as a committee, has received a
lot of research interests in the machine learning community
because it is thought as a good approach to improve the
generalization ability [1]. The term “ensemble” can be used
to describe the paradigm that brings together a number of
learning machines to provide a single output. This technique
originates from Hansen and Salamon’s work [1], which
shows that the generalization ability of a neural network
can be significantly improved through ensembling a number
of neural networks. Because of the simple and effective
properties, neural network ensemble has become a hot topic
in machine learning communities and has already been suc-
cessfully applied to many areas, for example face recognition
[2], character recognition [3], image analysis [4], etc.

It is demonstrated by both theoretical [1][5] and empir-
ical studies [6] that the generalization ability of ensemble
depends greatly on both accuracy and diversity among indi-
vidual classifiers in the ensemble. However, it is difficult to
design an accurate yet diverse ensemble since there is a trade-
off between accuracy and diversity in the ensemble. The
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existing ensemble algorithms pay more attention to either
accuracy or diversity. For example, Bagging, Bagging of fea-
ture and random forests focus on diversity by randomization
of data or/and feature and Adaboost concentrates on accuracy
by changing the sampling weight of each sample to reduce
the training error.

Bagging [7] and Random feature subspace [8], the well-
known ensemble algorithms which have attracted an ex-
tensive research interest, employ bootstrap sampling [9] of
training data and random selection of feature subsets to
promote the diversity and thus improve the performance of
ensemble. Random forests [10], a successful example that
combines bootstrap sampling and random subspace method,
holds an excellent generalization ability in many areas.

However, these ensemble algorithms (Bagging, Random
feature subspace and Random Forests which rely on ran-
domization of data or/and feature) pay more attention to
diversity but ignore the importance of accuracy of individual
classifiers in the ensemble. This may degrade the perfor-
mance of ensemble. Take random forest for example, though
the generalization error converges to a limit as the number
of trees in the forest becomes large, the predictions may
fluctuate greatly because simultaneous randomization of data
and features may lead to weak accuracy of individual classi-
fiers in the ensemble. The disadvantage of these algorithms
inspires us to develop an algorithm which pays attention to
both accuracy and diversity.

This paper proposes to incorporate evolutionary algorithm
and negative correlation learning to automatically design and
train random neural network ensembles, i.e. simultaneous
sampling of data and feature to train individual neural
networks to constitute ensemble. In order to promote the
diversity among individual classifiers, bootstrap sampling
and random subspace method are employed together to
generate the initial neural ensemble. This will encourage
different individual NNs in the ensemble to learn different
parts or aspects of the training data so that the ensemble
can learn better the entire training data. Then an evolution-
ary algorithm with negative correlation learning has been
employed to search for a population of diverse individual
NNs that together solve a problem. Negative correlation
learning [11], which is a successful neural network ensem-
ble learning technique, creates negatively correlated NNs
using a correlation penalty term in the error function to
encourage different individual networks in the ensemble to
cooperate with each other. In negative correlation learning,
the individual networks are trained simultaneously, rather
than independently or sequentially. Evolving the ensemble



with negative correlation learning emphasizes not only the
accuracy of individual NNs but also the cooperation among
different individual NN and thus improve the generalization.
In the evolving processing, the algorithm will keep the
randomization of data and feature to maintain the diversity
in the ensemble.

As each member in the ensemble is learned from bootstrap
sample of the training examples, which typically omits
1/e ~ 37% of the training examples, out-of-bag (OOB)
estimation, based on recording the votes of each member on
those training examples omitted from its bootstrap sample
and aggregating the votes for each training example for an
estimation of the generalization error, serves another benefit
of this algorithm.

The rest of this paper is organized as follows. After the
background description in Section II, the proposed algo-
rithms are described in Section III. Experimental results and
discussion are presented in Section IV. Finally, Section V
will conclude the paper and discuss future work.

II. BACKGROUND

Neural network ensembles [1] is a learning paradigm
where a collection of neural networks are trained for the same
task. There have been many ensemble methods studied in the
literatures, such as Bagging [7], Boosting [12], ensemble of
features and so on.

Bagging is proposed in [7] based on bootstrap sampling
[9]. In a Bagging ensemble, each base learner is trained
on a set of n training samples, drawn uniformly at random
with replacement from the original training set of size n.
Predictions on new samples are made by simple averaging.
For unstable learners such as neural networks or decision
trees Bagging works very well. Generally speaking, Bagging
can reduce the error due to deduction of variance of the base
learner [13].

AdaBoost is one of the best known variations of Boosting
[12]. Its main idea is to introduce weights on the training
set D and pay more attention to those training samples that
are misclassified by former classifier in the training of next
classifier. It is widely believed that AdaBoost approximately
maximizes the margins of the training samples [14]. Ad-
aBoost often gives a satisfying result for many different
applications. However, it seems to be very sensitive to noise
[15].

Apart from randomly sampling the training set, random
feature subspace [8] method generates ensemble by adopting
different feature subsets for different ensemble members to
promote the diversity [8] [16] and most of the existing
ensemble feature methods claim better results than traditional
methods [17][18], especially when the data set has a large
number of features and not too few samples [8].

Random forests [10] combines Bootstrap sampling and
random subspace method to generate decision forests. It is
consisted of a number of decision trees which grow with the
examples bootstrap sampled from the training set and ran-
domly employ different feature subsets for different decision
nodes. Random forests performs the same as Adaboost in

terms of error rate, but are more robust with respect to noise.
Though the generalization error converges to a limit as the
number of trees in the forest becomes large, the predictions
may fluctuate because of simultaneous randomization of data
and features.

In order to construct more flexible and efficient ensembles,
evolutionary algorithms have been employed to train neural
network ensemble. Negative correlation learning [19] [20]
is a successful neural network ensemble learning algorithm
originated from the evolutionary computation literature. It is
different from previous work such as bagging or boosting and
it emphasizes interaction and cooperation among the individ-
ual base learners in the ensemble, and uses an unsupervised
penalty term in the error function to produce biased individ-
ual base learners whose error tend to be negatively correlated.
Islam et al. [21] take a constructive approach to building
the ensemble, starting from a small group of networks
with minimal architecture. The networks are all partially
trained using negative correlation learning. To our knowl-
edge, the approach can automatically determine weights,
network topologies and ensemble membership. However, the
process of constructing ensemble is complicated and there
are many parameters needed to be tuned in practice.

Diverse and Accurate Ensemble Learning Algorithm [22]
is an approach that combines evolving neural network and
multiobjective algorithm. In this paper, adaptive Gaussian
variance is developed for generating the offsprings and
Mimetic Pareto Neural Network Algorithm [23] is used
for evolving neural network. Finally, diverse and accurate
classifier can be achieved through these procedures.

Oliveira et al.’s work [17] incorporates ensemble of feature
selection and multiobjective algorithm to solve handwritten
word recognition. This algorithm produces a set of classifiers
which have small number of features and low error rate,
which is achieved by evolving these classifiers with differ-
ent randomly chosen features. The combination weight of
ensemble is obtained by multiobjective algorithm with two
different objectives: diversity and accuracy.

Cooperative Coevolution of Artificial Neural Network
Ensembles [24] combines the coevolution of different sub-
populations of diverse networks and the evolution of the
combination weights of these networks. In this algorithm,
the cooperation with the rest of the networks is defined as
one objective, each network is evaluated in the evolutionary
process using multiobjective method. Thus, the algorithm
encourages the collaboration among ensemble and improves
the combination schemes for ensemble.

Chen et al. [25] proposed to incorporate evolutionary
multiobjective algorithm and Bayesian Automatic Relevance
Determination (ARD) to automatically design and train en-
semble. The algorithm adopts different feature subsets, se-
lected by Bayesian ARD, to maintain accuracy and promote
diversity among individual NNs in an ensemble and employs
multiobjective algorithms to encourage the networks with
lower error rate and fewer features.



III. EVOLVING RANDOM NEURAL ENSEMBLES WITH
NEGATIVE CORRELATION LEARNING (ERNE)

It is widely believed that the success of ensemble algo-
rithms depends on the accuracy and diversity among these
base classifiers [26]. In general, the individual classifiers
in ensemble are designed to be accurate and diverse. For
example, Bagging relies on bootstrap that produces different
subsets of the training data; Ensemble of features employs
different features instead of training data to generate diverse
ensemble [8]. Random forests [10] combines bootstrap sam-
pling and random subspace method to generate more diverse
ensembles. However, the predictions of random forests may
fluctuate because of simultaneous randomization of data and
features. Although the disadvantage of this could be slightly
offset by including more and more decision trees in the
ensemble, this of course leads to extended training times and
more resources consumed.

The existing methods, random sampling of data and fea-
tures, may promote the diversity but degrade the accuracy.
How to improve the accuracy and simultaneously maintain
the diversity to make sure that the obtained ensemble is both
accurate and diverse is a key factor for ensemble algorithms.
ERNE offers a natural way to optimize accuracy and simul-
taneously maintain the diversity among the individuals in
the ensemble. In the algorithm, randomization of both data
and features have been adopted/kept to generate/maintain
the diversity in the ensemble. Evolutionary ensemble with
negative correlation learning provides the opportunities for
these individual NNs to negatively correlated with each other
and thus improves the accuracy of these individual NNs.

In this paper, we are interested in evolutionary algorithms
since combining individual NNs from a population into a
NNs ensemble has a close relationship with the design of NN
ensembles. Though the individual in the evolution population
is not an appropriate solution for machine learning problems,
since the individual with the lowest training error might
not be the individual with the best generalization error,
combining the entire population would be expected to have
better generalization than any single individual. Previous
works have acknowledged the successful applications of evo-
lutionary learning for generating neural network ensembles
[19], [11].

Our method for designing neural network ensemble has
made full use of the feature of diversity generation tech-
niques: bootstrap of data and random feature subspace, and
evolutionary ensemble with negative correlation learning to
construct the ensemble, which make the individual neural
networks accurate and diverse.

A. Evolutionary Random Ensemble

In this subsection, we will present an ensemble training
algorithm based on evolving random neural ensemble with
negative correlation learning.

The algorithm firstly generates an initial population of
Neural Networks (NNs), each of which is trained on boot-
strap of training data and random feature subspace. Then
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Fig. 1. The architecture of ERNE

the diverse population is evolved to improve the accuracy of
individual NN.
The whole process could be illustrated as following.

1) Sample the original training set and obtain M replica-
tions of training set {B;},.

2) Generate an initial population of M Neural Networks
(NNs), the number of hidden nodes for each NN,
n;(i = 1,..., M) is specified randomly restricted by the
maximal number of hidden nodes. The random initial
weights are distributed uniformly inside a small range.

3) Train each NN on each bootstrap set B; with randomly
selected feature subset {F;}2, for a certain number
of epochs that is proportional to the number of hidden
nodes using negative correlation learning and calcu-
late the out-of-bag estimation as the ensemble fitness
function.

4) In each generation, randomly choose s NNs to create
offspring NNs!. For each offspring s;, evolve each
s NNs with Gauss mutation?, and train it with its
corresponding parent’s bootstrap set B; and feature
subset F;. s is specified by the user.

5) Compare the fitness of each s; NN with their respective
parents and include the better one in the population and
recalculate the out-of-bag error as the fitness.

6) Go to the next step if the maximum number of gen-
erations has been reached. Otherwise, and go to Step
3.

7) Combining the population to form the ensemble.

The architecture of our algorithm can be shown in Figure
1. There are four advantages of this algorithm: (1) Ensemble
of different data subset and feature subset promote the

!Each individual, selected to be mutated with equal probability, reflects
the emphasis on evolving a diverse set of individuals.

2Add Gauss noise to the weight vector of neural network. The parameter
of Gauss noise is: mean = 0 and wvariance = pu, will be specified
manually.



diversity among individual classifiers in the ensemble. (2)
Evolving the individual NN in the ensemble helps to improve
the accuracy. (3) Negative correlation learning enables these
individual NNs in the ensemble correlated with each other
and improves the generalization performance. (4) It generates
an internal unbiased estimate of the generalization error,
OOB, as the NN ensemble building progresses.

B. Negative Correlation Learning

Negative Correlation Learning (NCL), a successful neu-
ral network ensemble learning technique developed in the
evolutionary computation literature, has shown a number
of empirical successes and varied applications, including
regression problems [27] and classification problems [11]. It
has consistently showed very competitive results with other
techniques like Mixtures of Experts, Bagging, and Boosting
[19] [28] [29].

NCL introduces a correlation penalty term into the error
function of each individual network in the ensemble so
that all the networks can be trained simultaneously and
interactively on the same training data set. The error function
e; for network 7 is defined by

1
§(fi—d)2+)\pi (1)

where d is the true value of the training point, A\ is a
weighting parameter on the penalty term p;:

pi=fi—-HY_(fi- P )
J#i
and f is defined by f = = SM £,

The first term in the right side of (1) is the empirical risk
function of network ¢. The second term, p;, is a correla-
tion penalty function. The purpose of minimizing p; is to
negatively correlate each network’s error with errors for the
rest of the ensemble. The A parameter controls a trade-off
between the objective and penalty terms. With A = 0 we
would have an ensemble with each network training with
plain back propagation, exactly equivalent to training a set
of networks independently of one another. If )\ is increased,
more and more emphasis would be placed on minimizing the
penalty.

Liu et al. [11] implemented NCL by gradient descent
method for training neural network. From equation (1), the
minimization of the empirical risk function of the ensemble is
achieved by minimizing the error functions of the individual
networks. In fact, negative correlation learning provides a
novel way to decompose the learning task of the ensemble
into a number of subtasks for different individual networks.

€; =

C. Out-of-Bag Fitness Evaluation

In ERNE, out-of-bag (OOB) estimation error is taken
as the objective to be optimized. As each member in the
ensemble is learned from bootstrap sample of the training
examples, which typically omits 1/e ~ 37% of the training
examples. The out-of-bag estimate is based on recording the
votes of each member on those training examples omitted

from its bootstrap sample and aggregating the votes for each
training examples for an estimation of the generalization
error. Out-of-bag estimates [30] is proposed as an ingredient
in estimates of generalization error, which has been empir-
ically supported by [31] that the out-of-bag estimate is as
accurate as using a test set of the same size as the training
set. ByLander [32] examined the out-of-bag estimate and
found that out-of-bag estimate and 10-fold cross-validation
have similar performance. Because no additional predictors
are generated, out-of-bag estimate requires considerably less
time than 10-fold cross-validation.

IV. EXPERIMENTS

This section will evaluate performance of ERNE on six
well known benchmark problems, which cover a wide variety
of problems including different numbers of patterns, different
kinds of input types and different application areas. The
results of these problems can reveal the performance of our
algorithm clearly. In the following, experimental details and
results are described.

TABLE I
SUMMARY OF DATA SETS

Data Set Examples | No. Features | Output Classes
Card 690 14 2
Diabetics 768 8 2
Cancer 277 9 2
Sonar 208 60 2
Ionosphere 351 34 2
Splice 3175 60 2

A. Experimental Setup

In this experiments, six benchmark problems are used to
evaluate the performance of ERNE: they are Australian credit
card assessment problem, the breast cancer problem, the
diabetics problem, sonar signal classification, ionosphere and
splice problems, which are obtained from the UCI machine
learning benchmark repository [33].

As we know, the experimental results depend on the
partitions of data set. It may vary significantly for different
partitions of the same data set. The old benchmark method-
ology has been criticized for its strategy to fix the training,
validation and test data because the strategy will lead to poor
estimation of generalization error and the situation will be
especially worst when the test data becomes smaller. In this
paper, cross validation is employed as the criteria to evaluate
the performance. In k-fold cross-validation [34], the data is
divided into k subsets of equal size. Then train the classifier
k times, each time leaving out one of the subsets from
training, but using only the omitted subset to compute error
rate. If k equals the sample size, it is called leave-one-out
cross-validation which gives an almost unbiased estimate of
expected generalization error [35]. This paper employs two-
fold cross validation to allow a sufficient test set to estimate
the generalization error.
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TABLE II
COMPARISON AMONG ERNE WITH OTHER WORKS IN TERMS OF
AVERAGE CROSS VALIDATION ERROR FOR SIX DATA SETA. THE RESULTS
ARE AVERAGED ON 20 RUNS OF 2-FOLD CROSS-VALIDATION,
RESPECTIVELY

% error ERNE | Random Forests | Bagging | Adaboosting
Card 11.28 12.46 14.64 13.70
Diabetics 20.97 24.93 24.15 26.11
Cancer 22.16 23.29 24.73 31.41
Sonar 20.74 23.22 24.76 21.08
Tonosphere 6.44 7.12 8.11 8.12
Splice 1.28 2.83 4.35 3.80

TABLE III

RESULTS (P VALUE) OF TWO-TAIL PARED T-TEST IN TERMS OF
PREDICTION ERROR BETWEEN ERNE AND RANDOM FORESTS,
BAGGING, ADABOOST ON CARD, DIABETICS, CANCER, SONAR,
IONOSPHERE AND SPLICE PROBLEMS

Method Card Diab. Cancer | Sonar Iono. Splice

R. F 0.0187 | 0.0101 | 0.0287 | 0.0349 | 0.0426 | 0.0278
Bagging | 0.0062 | 0.0152 | 0.0124 | 0.0008 | 0.0112 | 0.0016
Adaboost | 0.0127 | 0.0057 | 0.0000 | 0.2431 | 0.0198 | 0.0093

The input attributes are rescaled to between 0.0 and 1.0
by a linear function as the preprocessing procedure. The
network we used in this paper is three-layer feed-forward
NN. The number of hidden nodes will be initialized randomly
but restricted in the range 3 to 8. Initial connection weights
for individual NNs in an ensemble are randomly chosen.
The parameter A is set to 0.8 and the variance of Gaussian
mutation is 1.

The parameters in use are set to: the population size M
(200), the number of offspring s (max[20, M]), the number
of generations (100). These parameters are chosen after some
preliminary experiments. They are not meant to be optimal.

B. Experimental Results

In this experiment, we have compared ERNE with other
ensemble methods: Bagging of Decision Trees, Adaboosting
of Decision Trees, i.e. Adaboost.M1 algorithm in [12], and
Random Forests. In these ensemble approaches, regression
and classification tree (CART) is used as base classifiers. In
order to allow a sufficient test set to estimate the generaliza-
tion error, two-fold cross validation is employed to evaluate
these methods.

Figure 2 shows the results of ERNE over 20 independent
cross validation on six different problems. In each sub-figure,
we record the performance of these four algorithms with
respect to the scale of the ensemble, i.e. the number of
classifiers in this ensemble. Table II lists the comparisons.
In the table, we show the average error of classification over
the 20 runs and Table III gives the result of two-tail pared
t-test in terms of prediction error between ERNE and other
classifiers.

From Figure 2, ERNE consistently outperforms other

algorithms in terms of cross validation error. In [36], we
also evaluated ERNE on Ames test mutagenicity problem
and ERNE exhibits good performance as well. This is under-
standable since the performance of random forests is better
than or similar as the other ensemble algorithms in most of
the cases, and ERNE maintains good diversity by adopting
bootstrap and random feature subspace, which is similar as
random forests, and evolves the ensemble to optimize the
accuracy and cooperation. Generally speaking, ERNE will
perform no worse than random forests.

The success of random forest, which is the state-of-the-
art algorithm [10], is largely due to that it uniquely adopts
both bootstrap of data and feature subset selection, which
is particularly of value for handling a data set with a large
amount of feature variables [8]. ERNE not only keeps the
benefits of random forests but also improves its performance
by optimizing the accuracy. The superiority of ERNE over
random forests can be observed in the experimental results.
In our experiments, we also find that Adaboost.M1 of trees
sometimes overfits when adding more and more trees in the
ensemble.

There are two points to explain the reason why the
performance of our algorithm is better than the performance
of others.

o ERNE generates a diverse ensemble. Firstly, bootstrap
sampling of data and random feature subsets generate a
diverse ensemble in the initial population, which inherits
the merits of random forests. In the evolving stage, the
diversity is maintained by only mutating the weight of
individual NN but not changing the bootstrap of data
and the feature subset used by this individual NN.

o Evolving ensemble with negative correlation learning
optimizes the accuracy and cooperation of the existing
individual NNs in the ensemble. The combination of the
two points, optimization of accuracy and maintenance
of diversity, reduces the generalization error and makes
ERNE powerful.

V. CONCLUSIONS

This paper proposes an efficient ensemble algorithm that
combines bootstrap of data, random feature subspace and
evolutionary algorithm with negative correlation learning.
ERNE adopts bootstrap sampling of training points and
random feature subsets to promote and maintains diversity
among individual NNs in the ensemble. In the following,
evolving random neural ensemble with negative correlation
learning provides the opportunities for these individual NNs
to negatively correlated with each other and thus improves
the accuracy of these individual NNs. Out-of-bag (OOB)
estimation, which requires considerably less time than 10-
fold cross-validation and saves the data points for validation,
facilitates fitness evaluation in the evolutionary algorithm.

Several experiments have been carried out in this paper
to evaluate how does ERNE perform on different problems
in comparison with other ensemble algorithms. ERNE has
shown an excellent performance in the solution of these data



sets. In the experimental discussion, we conclude two reasons
why the performance of ERNE outperforms others.

The following work is to analyze ERNE further. It is also
interesting to implement ensemble selection algorithms to
select the effective combination of NNs to constitute a small
ensemble instead of ensembling all of them, whose aims are
to improve the generalization performance and to save the
computational resources.
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