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Abstract

An ensemble is a group of learners that work together
as a committee to solve a problem. However, the exist-
ing ensemble training algorithins sometimes generate un-
necessary large ensembles, which consume extra computa-
tional resource and may degrade the performance. Ensem-
ble pruning algorithm aims to find a good subset of ensem-
ble members to constitute a small ensemble, which saves the
computational resource and performs as well as, or better
than, the non-pruned ensemble. This paper will introduce a
probabilistic ensemble pruning algorithm by choosing a set
of “sparse” combination weights, most of which are zero,
to prune the large ensemble. In order to obtain the set of
sparse combination weights and satisfy the non-negative re-
striction of the combination weights, a left-truncated, non-
negative, Gaussian prior is adopted over every combina-
tion weight. Expectation-Maximization algorithm is em-
ployed to obtain maximum a posterior (MAP) estimation
of weight vector. Four benchmark regression problems and
another four benchmark classification problems have been
employed to demonstrate the effectiveness of the method.

1 Introduction

Ensemble of multiple learning machines, i.e. a group of
learners that work together as a committee, has received a
lot of research interests because it is thought as a good ap-
proach to improve the generalization ability [6]. Because of
the simple and effective properties, ensemble has become a
hot topic in the machine learning communities. There have
been many approaches to train ensemble, such as Bagging
[2], Boosting [10], negative correlation learning and evolu-
tionary computation based algorithms [8][7].

In general, the training of ensemble can be decomposed
into two steps, i.e., training a number of ensemble members
and then combining their predictions. In the second step,
most ensemble training algorithms employ all of the avail-

able ensemble members to constitute an ensemble, which is
sometimes unnecessarily “large” and thus consumes extra
computational resource and may degrade the performance.
Some theoretical and empirical evidences have also shown
that ensembling many of them may be better than ensem-
bling all of them [12][2].

Motivated by this point, this paper will develop a prob-
abilistic ensemble pruning algorithm, which is based on
Bayesian framework. By introducing a sparseness-inducing
prior over combination weight vector w, many of the pos-
teriors of weights are sharply distributed at zero, lead-
ing to pruning those irrelevant learning machines. A left-
truncated, non-negative prior will be adopted for w; since
it is reasonable to force the combination weight w; to be
non-negative [2]. Based on the Bayesian framework and
expectation-maximization (EM) algorithm, the Maximum a
posteriori (MAP) estimation of weights can be obtained. An
empirical study on several regression/classification bench-
mark data sets also shows that our algorithm utilizes far less
component learners but performs as well as, or better than,
the non-pruned ensemble.

The rest of this paper is organized as follows. The
sparseness-inducing prior is introduced in Section 2. Sec-
tion 3 will present the probabilistic algorithm for regression
problems and Section 4 is proposed for classification prob-
lems. Experimental results are presented in Section 5. Fi-
nally, Section 6 will conclude the paper.

2 Sparseness-inducing and Non-negative

Prior

In our algorithm, to encourage sparsity in the estimation
of weight vector w and satisfy the non-negative restriction,
a left-truncated, non-negative, Gaussian prior is introduced
for each weight w;:

p(wla) = IY p(ws|oi) = L Ny(w;[0,0;71), (D)

where o =(ag, ag, - -+, apr)? and Ny (w;]0, a;l) is a left-
truncated Gaussian distribution. This can be formalized in



Figure 1. A two dimensional Gaussian prior
p(w|a) and the student-t prior p(w).

Equation (2).
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To follow the Bayesian inference, hierarchical hyperpri-
ors over a will be defined. With Gamma hyperprior [11],

p(a) =TT (a) 0% e, 3)

2

where I'(a) = [ t* 'e~"dt is the gamma function. The
complete prior can be obtained by marginalizing with re-
spect to each «;:

p(wila,b)
20°T(a+3) fw? —(a+d) ,
= | @ (20T w200
0 ifw; <0

Equation (4) shows that the hierarchical prior is equivalent
to a truncated student-t prior, which is sharply peaked at
zero and more peaky than a Gaussian prior, as illustrated in
Figure 1.

3 Ensemble Pruning for Regression Prob-
lems

In this section, we will present the model specification
of ensemble pruning algorithm for regression problems and
detail expectation-maximization [3] procedures.

In the standard regression model, we are given a data
set of input-target training pairs {x,,, t, }_;, where ¢, is a
scalar. To follow the standard probabilistic formulation, we
assume the ensemble output is corrupted by an i.i.d. addi-
tive Gaussian noise ¢, = N(0, 0?) with its mean zero and
variance o2

M
tn = Z wi.f’i(xn) + €n, (5)
=1

where f;(x,),i =1--- M is the output of ensemble mem-
ber f; at point x,. According to Equation (5), the true
value t,, 1s distributed as a Gaussian distribution with mean
Zf\il w; fi (x,,) and variance o2. Based on the assumption
of independence of ¢,,, the likelihood can be represented by:
pltlw, 0%) = (270?) N/ expl o 6~ Fwl?). (6)
where t = (t1---tn)T, w = (wy--wpy)? and F =
(F(x1)T,F(x2)T, - ,F(xn)")T is a N x M matrix,
wherein F(Xn> = (fl (Xn)7 fQ(Xn), ) fM(Xn))

Since the prior o over weight vector w is a truncated
Gaussian, the integral in the standard Bayesian inference is
intractable. In this paper, expectation-maximization algo-
rithm will be employed to get the MAP estimation of w and
o2, where the parameter « is regarded as hidden variable in
the EM algorithm. With the definition of hidden variable,
the complete log-posterior is obtained in Equation (7) by
incorporating Equation (6) and Equation (1).

logp(w, o?[t, )

1
o —Nlogo? — — It — Fwl|? —wlAw, (7)
o
where A is a diagonal matrix: A = diag(aq, g, -+, an).

Expectation-step: After obtaining the log-posterior, the
expectation step [1] can be done in the following equation:

Q(W, 0,2 ‘Wold’ (0_2)old)

Eq[log p(w, a[t, @) [t, w'?, (%))

®)

1
= —Nlogo? — — It = Fwl|? — wl E,[Alt, w°'e, (6%)°]w,
o

where the expectation is with respect to the hidden value a.
The computation the expectation: E,[Alt, wold, (52)°14]
which can be decomposed to a diagonal matrix  with its
elements as Q = diag(E,, [o;[t, wo'?, (62)°14]), since A is
a diagonal matrix: A = diag(aq, g, -+, anr).

a; = Eal [Ozi|t, Vvold7 (0_2)old]

I i p(wilog)p(og)do; a+1/2

T T wileopagda;  wrtb O

Based on Equation (9), the @ function is reorganized as
follows:

Q(W,O'2|W01d, (02)old)
1
= —Nlogo? — — It - Fw|? - wiQw. (10)
g

Maximization-step: In this step, the optimal values of
w and o2 can be given by analyzing the derivative of Equa-
tion (10). By setting the derivatives to zero, we can get the
update (o2)mev:

[t — Fwl|?

2\new __
(O—) - N ’

(11)



and w"ev:

w = (FTF 4 (0?)"v Q) 'F't, (12)

In order to obtain a parameter-free model, the parameters
a, b will be set to zero. However, in this situation, the eval-
uation of &;(= 1/(2w?)) is unstable when w; approaches
zero and a minor modification [4] is adopted on Equation
(12).

W = M(MFTFM + (62)"*T)"'MF”t, (13)
where the diagonal elements in the diagonal matrix M =
dia’g(mlamQa T 7mM) arc

(A N-l/2 V2w; ifw; >0
o= a2 = { YR RZ0 g

4 Ensemble Pruning for Classification Prob-
lems

In the standard classification model setting, we are given
a data set of input-target training pairs {x,, yn}{}'zl, con-
sidering two-class classification only, i.e. y; € {—1,+1}.
Probit link function will be used to allow a steep and smooth
transition between two classes.

= /L N(t[0,1)dt, (15)

where ®(x) is the Gaussian cumulative distribution func-
tion. After incorporating the probit link function, the en-
semble model becomes:

M
= ‘I’(Z w; f3(x))

where [ is the probabilistic output, which is bounded by the
interval [ € [0, 1], we canmap [ to [—1,+1] by y = 21 — 1.

We follow the standard probabilistic formulation and as-
sume that Zf\il w; fi(xy,) is corrupted with an additive ran-
dom noise €, where €, ~ N (0, 1). According to the probit
link model, if h(x,,) = F(xn)W + €, > 0, y,, will be set to
1 and if h(x,) = F(xn)W + €, < 0, y,, = —1, otherwise.
We can reconstruct the probit mode by the random noise €,,.

= ®(F(x)w). (16)

p(yn = 1|Xna W)

= p(F(Xn)W + €, > O) = @(F(XH)W).(17)

From Equation (17), h(x,) is a hidden variable because €,
is an unobserved variable. If h(x,) is known, the likeli-
hood of w can be given by standard probabilistic formula-
tion: p(h(x,)|w) = N(h(x,)|F(xn)w,1). Take the N x
M matrix form F = (F(x1)T,F(x2)T, - ,F(xn)")7,
wherein F(x,) = (fi(Xn), f2(Xn), -, far(Xn)), and

vector form for H = (h(x1), h(x2), -, h(xn))T, we ob-

tain
1
p(H|w) = (2m) =N/ exp{—5[[H —Fw|*}.  (8)
In order to obtain the complete log-posterior of w, we need
two hidden variables: H = (h(x1),h(x2), -+, h(xy))T
and a =(ay, g, -+, apr) T,

With the definitions of hidden variables, the complete
log-posterior is obtained in Equation (19).
log p(wly, H,o) oc w ' FT(2H — Fw) — wl Aw, (19)
Expectation-step: After obtaining the log-posterior, the
expectation step [1] can be done in the following equation:

(w|w0ld) = ow!FTE[H|y, w"'] — w FTFw
TE[Aly, w"w, (20)

where the expectation is with respect to the hidden vari-
ables: H,«. The computation of @ function reduces to
compute the expectations F[H |y, w°'¢] and E[Aly, w!].

hy, = E[h(xn) Y, WOld}

— Z’nq)(z’n) + N(Z'n,|07 1) ify, =+1 Q1)
o 2n®(—2zn) — N(2,]0,1) ify, =—1

where z,, = F(x,,)w.

Note that y,, in Equation (21) is to restrict the integral
bound: when y,, = +1, p(h(x,)|yn, w°'?) is distributed as
a left-truncated Gaussian from zero to infinity with mean
F(x,)w and when y, = —1, p(h(x,)|yn, wo'?) is dis-
tributed as a right-truncated Gaussian from negative infinity
to zero with mean F(x,,)w.

Since A is a diagonal
diag(ar, ag, -+ ,anr), the expectation E[Al|y, w
can be decomposed to a diagonal matrix €2 with its elements
as ) = diag(E|a;|y, wold]).

matrix: A =
ld 10ld
o} , bo }

Q; = E[ai|y7W0ld]
fooo i - p(wi|ag)p(ai)da; a4+ 1/2 (22)
fo (w; o )plag)doy wl+b’

Based on Equations (21) and (22), the ) function is or-
ganized as follows:

Q(w|wo') = 2wTFTH — wIFTFw — w'Qw (23)

where H is a vector or h,,: H = (h1,ha,--- ,hn)7T.

Maximization-step: In this step, the gradient of w can
be given by analyzing the derivative of Equation (23). By
setting the derivative to zero, we get the update weight vec-
tors:

w' = (FTF+ Q) 'FTH (24)



Table 1. Average Test MSE, Standard De-
viation and their normalized mean for four
Benchmark Data sets based on 30 runs.

Table 2. Size of Training Set, Size of Pruned
Ensemble and Computational Time of Our Al-
gorithm.

SincG | SincU | Fried. Hous. Mean SincG SincU | Friedman | House
Non-Pruned | 0.0028 | 0.0183 | 7.4546 | 27.8699 1 Training Size 100 100 200 400
S.D. 0.0008 | 0.0056 | 0.7663 | 8.5879 1 Size 27408 | 2.54+0.6 | 4.7+1.4 | 4.7+1.2
Pruned 0.0015 | 0.0173 | 5.7161 | 17.5307 | 0.72 Time (s) 0.016 0.017 0.031 0.03
S.D. 0.0006 | 0.0058 | 0.5676 | 6.3944 | 0.82

As same as regression problem, a minor modification
[4] is adopted on Equation (24) to allow a stable numeri-
cal computation in practice.

whew — M(MFTFM + I)_lMFTH, (25)

where the diagonal elements in the diagonal matrix M =
diag(my, mso,- -+ ,myy) are same as Equation 14.

5 Experimental Results

This section will present the experimental results of our
algorithm for regression problems and classification prob-
lems, respectively.

Neural networks with single hidden layer, which has 5
hidden units, are employed as ensemble members. The
training set for these neural network is generated via boot-
strap sampling from the training set. An ensemble is com-
posed of 25 neural networks. In the training process,
the generalization error is estimated by a validation set,
which is bootstrap sampled from the training set, every five
epoches. Once the estimated generalization error does not
change or tends to increases, the training process will be
terminated to avoid overfitting. The average weights, i.e.
the weights of Bagging, will be adopted as the initialized
weight vector w for expectation-maximization algorithm.

5.1 Results for Regression Problems

The four benchmark regression data sets will be em-
ployed in our paper. The first two data sets are sinc =
sin(x)/x with different noises, where 100 z’s are equally
sampled in the interval [—10,10]. The first data set is
Sinc-G with zero-mean Gaussian noise and standard devi-
ation 0.1; The second is Sinc-U with a uniform noise in
[—0.1,0.1]. In both cases, the test sets are consisted of 1000
noise-free data points. The third problem is the synthetic
Friedman function [5]. For the data set, 200 training points
and 1000 noise-free test points are generated randomly. The

last data set is Boston Housing from UCI Machine Learning
Repository [9]. For this data set, 400 training points and the
remaining 106 test points are sampled randomly.

For every data set, we run thirty times and record the
average mean squared error (MSE) and the standard devia-
tion (S.D.) on test set for the non-pruned ensemble and the
pruned ensemble. By way of summary, the our algorithm
statistics are also normalized by those of the non-pruned
ensemble and the overall average is displayed in Table 1.
For our algorithm, the measure of “sparseness”, i.e. the av-
erage number of neural networks in the ensemble and the
standard deviation, has also been recorded.

Table 1 shows the performance of non-pruned ensemble
versus pruned ensemble based on thirty independent runs.
We also show the number of selected ensemble members
and running time versus the size of training set for these
four data sets in Table 2. The performance of pruned en-
semble on these four benchmark problems is far better than
non-pruned ensemble in terms of generalization ability and
sparsity. Pruned ensemble achieves better performance by
employing only a few of the available neural networks (25
in total).

5.2 Sparse Classification Ensemble

In this subsection, we will use four benchmark classifica-
tion data sets: waveform, diabetics, titanic and credit card,
to compare the performance of pruned ensemble with non-
pruned ensemble. All of the data sets are obtained from UCI
Machine Learning Repository [9].

The training set and test set are generated randomly from
these four data sets and the number of training and test
points are 1000, 4000 for waveform, 400, 368 for diabet-
ics, 500, 1701 for titanic and 400, 390 for credit card. For
every data set, we run thirty times and record the average
error rate and the standard deviation on test set of the two
ensemble: pruned ensemble and non-pruned ensemble. By
way of summary, the our algorithm statistics are also nor-
malized by those of the non-pruned ensemble and the over-
all average is displayed in Table 3. For our algorithm, the



Table 3. Average Test error, Standard De-
viation and their normalized mean for four
Benchmark Data sets based on 30 runs.

wave diab. | Titanic | Card | Mean
NonPruned | 0.1013 | 0.2305 | 0.2172 | 0.1416 1
S.D. 0.0078 | 0.0183 | 0.0085 | 0.0237 1
Pruned 0.0994 | 0.2304 | 0.2170 | 0.1443 | 1.00
S.D. 0.0072 | 0.0163 | 0.0087 | 0.0239 | 0.96

Table 4. Size of Training Set, Size of Pruned
Ensemble and Computational Time of Our Al-
gorithm.

wave diabe. Titanic Card
Training Size 1000 400 500 400
Size 6.4+0.8 | 6.4+0.8 | 5.3+3.1 | 4.241.0
Time (s) 0.266 0.172 0.203 0.109

measure of “sparseness”, i.e. the average number of neural
networks in the ensemble and the standard deviation, also
has been recorded.

Table 3 shows the performance comparison of non-
pruned ensemble versus our algorithm based on thirty inde-
pendent runs and we also show the number of selected en-
semble members and running time versus the size of train-
ing set for these four data sets in Table 4. The error rate of
our algorithm is comparable with non-pruned ensemble but
employs fewer component neural networks. The ensemble
pruning algorithm can achieve the sparseness in ensemble
without hurting the generalization ability. It provides a way
to reduce the computational complexity and make the en-
semble more compact.

6 Conclusion

In this paper, a probabilistic ensemble pruning algorithm
has been proposed in order to get a set of sparse combina-
tion weights to prune the ensemble by introducing a left-
truncated, non-negative, Gaussian prior over every combi-
nation weight. Our algorithm offers a way to estimate the
combination weights and prune the ensemble with the fol-
lowing compelling advantages: a) Good generalization abil-
ity. Although our algorithm employs only a few of the en-
semble members, they performs as well as, or better than,

the non-pruned ensemble; b) The highly spare model is ob-
tained by the sparseness-inducing prior and behaves opti-
mally compact; ¢) No parameters to tune.

However, the present algorithm is not applicable to large
ensemble (e.g. roughly M > 1000) because the EM up-
date rules involve an inverse operation of matrix, which re-
quires O(M?) complexity, where M is the number of se-
lected ensemble members. Although the pruning process in
EM algorithm will reduce M to a manageable size in most
problems, M may be very large at initialization when the
non-pruned ensemble is very large and this will cost a lot of
training times.
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