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Utility infrastructure has been part of the urban fabric 

for millenia

Modern utility services established in the 19th

Century

• Most assets laid in the street

• Which has become increasingly congested

• Organisation\legislative structures have changed dramatically

• Private – public – private companies

• Asset recording systems have developed autonomously

• Until mid 80s based on hand drawn engineering plans

• Since 80s many companies have migrated to GIS based asset records

Background 



 Massive network of buried services: gas, water, 

electricity, telephone, cable, sewage, drains … 

 Need to know asset location for planning and 

maintenance

 street work

 ~4M street openings p.a.

 Direct costs of £1B p.a.

 Indirect costs of £3B-£5B p.a.

 Safety!

The Problem



Don’t the utility companies 

have maps?

Incomplete

- lacking depth information

- missing records

- missing attributes

Inaccurate

- spatially relative to features no longer present/visible

- errors introduced through digitisation

- inaccurate survey technologies

- deliberate inaccuracies (for better display)



Can’t we use sensors to find 

the  buried assets?

• Expensive in time

• Ground Penetrating Radar (GPR) doesn’t work in 

clay

• Plastic hard to detect
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BURIED ASSETS 
KNOWN TO BE 
BENEATH THE 
SURFACE …

… As uncovered 
during a complete 
reconstruction of 
the junction

(UKWIR Location 
Trials in 2001)

Ground truth 
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BT

PLAN OF BURIED 
ASSETS …

… As produced by 
one of three survey 
contractors

(UKWIR Location 
Trials in 2001)

One surveyor’s map:



A new approach

• Multi sensor

- Ground Penetrating Radar (GPR)

- Sonar sensor

- 2 x Magnetic field sensors

• Use expectations from utility records

• Intelligent data fusion



The data fusion problem

How to build a map from sensor data?

Two approaches:

1) Analogical approach: treat a map as pixel array (raster image)

- no explicit knowledge of what 

2) Symbolic approach: vector map 

– each asset is vectorised polyline

- can have symbolic attributes (e.g. size, material...)

Modern Utility records are in second form

Approach at Leeds is to create symbolic, vectorised map.

Need to convert all sensor readings to a symbolic hypotheses

- e.g. There is an asset, at position x,y,z, of diameter d

- hypotheses can have probabilities.



Inputs to data fusion

1) Statutory Records

- VISTA: Visualising Integrated Information on Buried Assets to Reduce 

Streetworks (£2.4 M)

- Integrate and Visualize Heterogeneous Utility Data from different Utility 

companies (24 Partners)

- Syntactic and semantically homogenous vectorised, attributed map

2) Survey of Street furniture

- x,y,z locations of each manhole

- estimate directions of assets as they leave manhole

- depth of assets in manhole

3) Sensor data

- GPR, acoustic, EM...

Currently just GPR



The problem

Statutory records are

- incomplete (may not record all apparatus, or not all 

attributes, or only x,y, not z)

- inaccurate (may record items in wrong absolute position)

- inaccurate (may have wrong attribute information)

Sensor readings may be:

- noisy (sense things that are not apparatus)

- incomplete (may not detect everything (soil, asset material))

How to “join the dots” – i.e. link up readings from different points



Approach: Bayesian Data Fusion 

(BDF)

Treat problem as finding the most probable 

interpretation, given the evidence:

1. the statutory records 

2. survey of street furniture

(and approximate direction of pipes after lifting cover)

3. the sensor readings

4. information about soil

- ...



Statutory Records provide a Prior  

Probability on asset locations

Statutory records are inaccurate and incomplete.

For each sensor detection, can search utility records for 

possible matches, to give a prior probability that the 

detection relates to that record.



Street furniture Data

a series of manhole locations and estimated 

asset directions, along with an uncertainty 

matrix.



Hyperbola Identification

Automated algorithm to find hyperbolae in GPR scans

Problems:

• Noise in data

• How many hyperbolae?

• Real time operation desirable



Find hyperbolae in successive parallel 

GPR scans: estimate direction

The model to estimate pipe direction by GPR data and the corresponding 

GPR data illustration.  The angle is 



Sensor data (GPR)

• Find hyperbolae in scans

• [Chen and Cohn, 2010a,] outlines the approach to 

determine the approximate direction of a pipe segment.

• Each observed pipe can be represented by a vector O = (x, 

y, Ɵ) and the uncertainty is represented by a matrix Co.

O = (x, y, Ɵ) 

Co = diag(Δx,Δy,ΔƟ)



Pipe linearity assumption L

Pipe linearity assumption is an indirect data source 

based on the observations of other pipe locations.

• Most pipes are approximately linear, this variable 

provides evidence as to whether to connect pipes 

segments detected by GPR scans or manhole 

inspections.



Flowchart of BDF



Experiments

• Two real data sets from the UK: each data set consists of 

statutory records, set of GPR point scans and the street 

survey results.



BDF Output

Site 1 without statutory record           Site 1 with statutory record

□ - manhole, red line - pipe



Birmingham City University Water Pipes

No connection errors for site 2 data. 



Simulated Data

Simulated GPR Result Simulated Data Set

Mapping without statutory record Mapping with statutory record



Data Sets and Connection Errors

The connection errors of BDF, BDF without statutory records (BDF\V), BDF 

without pipe linearity assumption (BDF\L), BDF without GPR (BDF\GPR), 

JCBB on only GPR/manhole survey (JCBB(O)), and statutory records (V) on 

two real-world data sets (R1 and R2) and four simulated data sets (S1-S4).

Summary information 

for  two real data sets 

(R1, R2) and four 

simulated data sets 

(S1, S2, S3 and S4). 



Spatial Error or BDF Related Algorithms

• The spatial errors and uncertainty.  E(x, Ɵ) represents the mean spatial 

distance (in metres) from the real PoI from the estimated PoI and the mean 

difference (in degrees) of real pipe direction and the estimated direction. 

• C(x, Ɵ) stands for the uncertainty of these two terms.



Summary of experiments

• BDF with full data sources outperforms other algorithms.

• JCBB with only GPR/manhole survey is the worst. 

• BDF\V is equal or inferior to BDF\L, indicating the statutory records 

usually contain more information, if presented, than the pipe linearity 

assumption.

• In general it is very unlikely that only using observations of street furniture 

(such as manholes) and statutory records will give good results (some 

buried utilities may well have no such street furniture in the surveyed 

area). Therefore, BDF\GPR generates inferior performance than BDF 

with all data sources. 

• The computation time are recorded on a 2.4Ghz laptop with 4GB memory 

on a single core.  Clearly, the algorithm can operate in real time as data 

is gathered (given the push speed of the GPR).

All these results confirm the benefits of inclusion of more data sources and the 

effectiveness of the BDF algorithm in utility mapping. 



Conclusion and Future Work

• Previous approaches to produce buried utility pipeline maps depend on  

manual drawing and expert interpretation of  GPR scans.

• Our work represents the first attempt to automatically map utility data from 

sensor input. 

• Algorithms for Bayesian data fusion (BDF) of multiply data sources to connect 

these manholes and GPR scan locations. 

• Comparison of BDF methods with different combinations of data sources. 

• The uncertainty on the location and direction of pipes are both considered in 

the algorithm.

Future Work

• Incorporate expectations from other sensors, e.g. sonar,  passive 

electromagnetic and low frequency electromagnetic. 

• Real-time on-line operation (cf SLAM)

• RF VACANCY
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