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Abstract

Statutory records of underground utility apparatus
(such as pipes and cables) are notoriously inaccu-
rate, so street surveys are usually undertaken before
road excavation takes place to minimize the extent
and duration of excavation and for health and safety
reasons. This involves the use of sensors such as
Ground Penetrating Radar (GPR). The GPR scans
are then manually interpreted and combined with
the expectations from the utility records and other
data such as surveyed manholes. The task is com-
plex owing to the difficulty in interpreting the sen-
sor data, and the spatial complexity and extent of
under street assets. We explore the application of
AI techniques, in particular Bayesian data fusion
(BDF), to automatically generate maps of buried
apparatus. Hypotheses about the spatial location
and direction of buried assets are extracted by iden-
tifying hyperbolae in the GPR scans. The spatial
location of surveyed manholes provides further in-
put to the algorithm, as well as the prior expecta-
tions from the statutory records. These three data
sources are used to produce the most probable map
of the buried assets. Experimental results on real
and simulated data sets are presented.

1 Introduction

Spatial information is ubiquitous and of vital importance for
any agent operating in the physical (and many virtual worlds).
The quantity and availability of spatial data is increasing dra-
matically, for example through the use of GPS-enabled mo-
bile devices, sensors of all kinds, and the prevalence of GIS
systems. However, owing to different provenances and meth-
ods of collection, spatial data relating to the same location
may not be easy to integrate. Frequently spatial informa-
tion concerning the same objects is available from multiple
sources, but the data may conflict. This might be for many
reasons, including varying granularity or accuracy of the in-
formation source, because of the use of relative mapping, or
because of data ageing. In this paper, we explore one particu-
lar instance of this generic problem, but one which has great
practical impact across the urbanised world.

Under the streets of most countries in the world, in partic-
ular industrialised ones, are millions of kilometres of buried
utility assets: cable TV, telecommunication cables, gas (ser-
vice pipes1 and/or mains), electricity (ducts and cables), wa-
ter mains and service pipes, and sewers. Maintaining and up-
grading these networks are major undertakings, and as many
are buried beneath roads and pavements, repairs and improve-
ments are a major source of disruption to traffic.

In order to avoid unnecessary holes dug in wrong places
and to minimize accidental strikes, it is normally required
that information about buried utilities must be obtained be-
fore excavation occurs. However, the mapping information
supplied by utilities is often of limited use, for many rea-
sons, but particularly since they are notoriously spatially in-
accurate, particularly for older assets [Burtwell et al., 2004].
Thus, street surveys are usually conducted before excavation
takes place to minimize the extent and duration of excava-
tion and for health and safety reasons. These surveys use
sensors such as Ground Penetrating Radar (GPR). The GPR
scans are then manually interpreted and combined with the
expectations from the utility records and other data such as
surveyed manholes. The task is complicated due to the diffi-
culty in interpreting the sensor data, and the spatial complex-
ity and extent of under street assets.

This paper proposes embedding AI into a surveying device
by using a Bayesian data fusion (BDF) algorithm to automat-
ically generate maps of buried utility apparatus by combining
the hypotheses extracted from the sensor(s), the spatial loca-
tion of surveyed manholes, as well as the expectations from
the statutory records. In this paper we use GPR as the sole
sensor, so hypotheses about the spatial location of buried as-
sets are generated from GPR scans using a hyperbolae iden-
tification algorithm in the GPR “B-scans” – each such hyper-
bola may represent a “point identification” of a utility asset.
To detect the direction of the buried pipes (and also to provide
confirming evidence of their existence), several GPR scans
are normally performed in parallel lines in close proximity

1In this paper we use the word “pipe” generically to refer to
buried underground apparatus such as pipes, cables, telecom con-
duits and sewers, which are generally laid in linear sections (though
often not completely in a straight line as they may be bent as they
are laid to follow a curve in the road, or because they were buried us-
ing “trenchless technology”, in which the tunneling apparatus rarely
follows a completely straight line).
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and an estimation of the direction of a linear asset such as a
pipe may be formed.

2 Background

This paper investigates an algorithm for utility pipeline map-
ping by combining GPR scans, the spatial location of sur-
veyed manholes and the statutory records. This algorithm re-
lies on GPR data interpretation and BDF algorithms.

GPR has been widely used as a non-destructive tool for the
investigation of the shallow subsurface, and is particularly
useful in the detection and mapping of subsurface utilities
and other solid objects [Dell’Acqua et al., 2004]. Typically,
two patterns, hyperbolic curves and linear segments (see Fig.
4(a)), are observed in GPR images: the hyperbolic curves are
due to objects with cross-section size of the order of the radar
pulse wavelength; the linear segments stem from planar in-
terfaces between layers with different electrical impedances.
There are several approaches dealing with the automatic de-
tection of patterns associated with buried objects in GPR data.
Hough transform [Windsor et al., 2005] based methods are a
typical technique. However, this method often needs to run
hundreds of Hough transforms with different combinations
of hyperbola parameters (a, b) to search the best fit hyper-
bola shape and this usually cannot be deployed in real-time
applications. Another problem with this kind of algorithm is
how to specify a suitable threshold for the number of votes to
determine the number of hyperbolae in the image.

In [Chen and Cohn, 2010b] a swift and robust probabilis-
tic mixture model based on a classification expectation max-
imization algorithm and orthogonal distance fitting was pro-
posed for hyperbola identification to address these problems.
We employ this improved algorithm to investigate GPR data
interpretation based on sets of consecutively scanned GPR
data in a particular neighbourhood.

Data fusion is a technique to combine information com-
ing from multiple sources in order to achieve improved accu-
racy and better inferences than by means of a single source.
In general, fusion of multiple sources of information pro-
vides significant advantages over single source data. There
are many applications of data fusion in surveillance systems
[Jones et al., 2003], robotics [Cremer et al., 2001] and classi-
fication of remote sensing images [Simone et al., 2002]. Al-
though Bayesian methods [Ahmed and Campbell, 2010] have
been widely used for data fusing, there has been little work
to utilize this framework in the spatial prediction area, and in
particular for buried utility mapping problems.

In [Chen and Cohn, 2010a], we used GPR data and man-
hole observations (without statutory records, pipe linear-
ity assumption and data fusion) for utility detection. Joint
Compatibility Branch and Bound (JCBB) [Neira and Tardós,
2001] was proposed to connect the utility pipes. This pa-
per uses the same JCBB algorithm to generate an initial map.
Then, we use BDF to update the map and the uncertainty by
fusing several data sources, i.e. GPR, manhole observations,
statutory records and the pipe linearity assumption.

3 Utility Pipeline Mapping Based on Bayesian

Data Fusion

In this section, we present a utility pipeline mapping algo-
rithm based on Bayesian data fusion (BDF), which includes
relevant aspects of GPR data processing, and the BDF.

3.1 GPR Data Analysis and Spatial Direction
Estimation

GPR has been widely used in the detection and mapping of
subsurface utilities and other solid objects [Dell’Acqua et al.,
2004]. In practical operation, it is better to operate the GPR
perpendicular to the pipes, since this will generate the charac-
teristic hyperbolae (see Fig. 4.a). However, it will be difficult
to satisfy this requirement for every scan in practice, espe-
cially when the scan is conducted off the road2.

In order to solve this problem, GPR operators make several
scans in sequence (our GPR data consists of six scans in each
position) forming a square3. We can then estimate the di-
rection of the buried pipes from these GPR scans. [Chen and
Cohn, 2010a] illustrate the most common three situations, i.e.
the scan direction is perpendicular to, parallel to and at any
other angle to, the pipe, when operating the GPR machine;
we use this approach to determine the position of hyperbola
automatically and thus to determine the approximate direc-
tion of a pipe segment.

3.2 Bayesian Data Fusion with Sensor Data

In practice, third-party utility maps are usually produced
based on street survey, GPR scans and statutory records. Sur-
veyors will investigate the on-site street furniture, such as
manholes, for useful information about the buried assets: the
absolute position of these manholes can be recorded, and, by
lifting the inspection cover, it is usually possible to estimate
the direction of pipes as they leave the chamber. However,
this information is insufficient on its own for producing the
utility pipeline maps. For example, it is difficult to know
whether one pipe will extend beyond an intersection with an-
other pipe (of the same asset type). In this case, GPR and
statutory records will be employed to verify these hypothe-
ses. BDF uses the following three kinds of data:

• Prior: statutory records. The BDF algorithm is applied
at a set of “interesting” points and at each point (x, y),
the information is extracted from statutory records.
Since statutory records are inaccurate, local search near
(x, y) is employed to find matching pipes. Denote a
matching pipe as V =(x, y, θ)T . Uncertainty is repre-
sented by a matrix Cv , where θ is the direction of a pipe
passing point (x, y), Cv = diag(Δx,Δy,Δθ) is the di-
agonal matrix where Δx, Δy and Δθ are the uncertainty
variables.

2Utility map records, which although notoriously inaccurate, at
least in the UK, generally give the rough direction of the line of the
buried apparatus (which is typically along the line of the road).

3Note that it is normally considered to expensive (in operator
time) to conduct a GPR survey of the entire area to be surveyed.
Thus these small scale scans are made successively, sampling the
area until sufficient confidence is gained that all apparatus has been
detected.
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• Hypotheses extracted from GPR scans and observations
from manhole locations. Each observed pipe can be rep-
resented by a vector O = (x, y, θ)T and the uncertainty
is represented by a matrix Co

4.

• Pipe linearity assumption L. This is an indirect data
source based on the observations of other pipe locations.
Since most pipes are approximately linear, this variable
provides evidence as to whether to connect pipes seg-
ments detected by GPR scans or manhole inspections.

In the Bayesian formation, suppose there is a variable of
interest t = (x, y, θ) at a location (x, y), where θ is the di-
rection of a pipe. In this study, the prior comes from statu-
tory records V. The secondary information consists of a GPR
scan or manhole survey5

O at (x, y), and a linear assumption
of pipes, L. This data at (x, y) is related to the variable of
interest t through error terms Eo and El.

O = t+Eo,

L = t+El.

The BDF framework seeks the posterior probability
p(t|O,L), given the information O,L at location (x, y). Ac-
cording to the Bayesian theorem for the posterior:

p(t|O,L) =
p(O,L|t)p(t)

p(O,L)
.

The prior p(t) can be inferred from the statutory records,
which we assume follows a Gaussian distribution with mean
V and covariance Cv, i.e.

p(t) =
1

(2π)3/2 |Cv|
1/2

exp

{
−
1

2
(t−V)TC−1

v (t−V)

}
.

Under the assumption of mutual independence of these
data sources conditionally to the variable t,

p(O,L | t) = p(O | t)p(L | t),

Thus, the posterior probability is characterised by the fol-
lowing proportionality:

p(t|O,L) ∝ p(O | t)p(L | t)p(t)

which shows that the posterior probability density function
(pdf) p(t|O,L) can be written as a function of the prior p(t)
and the conditional pdf.

Since the spatial error terms Eo and El represent an in-
dependent noise process, and it is reasonable to assume that
p(O | t) and p(L | t) follow mean-zero Gaussian distribution
with covariance matrixes Co and Cl, i.e.

p(O | t) =
1

(2π)3/2 |Co|
1/2

exp

{
−
1

2
(t−O)TC−1

o (t−O)

}
,

4Note that the uncertainty of GPR Co,g is larger than the un-
certainty of manhole observation Co,m as manhole investigation is
generally more reliable than GPR scans.

5It is unnecessary to conduct GPR scans on the manhole loca-
tions as manholes usually deliver more reliable results. Therefore,
GPR scans and a manhole survey will not occur at the same location
(at least for the same asset type).

(a) Joint Compatibil-
ity
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(b) Uncertainty
Expansion

Figure 1: Illustration of Joint Compatibility in Map Connec-
tion and Uncertainty Expansion. The blue (gray) points rep-
resent the ending manholes and the circle (blank) points rep-
resent the regressed starting points

then the posterior p(t|O,L) is also a Gaussian N(m,C).
The posterior mean m and covariance matrix C can be ob-
tained by the following equations:

m = (C−1

o +C
−1

l +C
−1

v )−1(C−1

o O+C
−1

l L+C
−1

v V),

C = (C−1

o +C
−1

l +C
−1

v )−1.

These two equations indicate the Bayesian fusion rule is
a weighted average of these three predictions. The weights
are determined by the confidence value. The more the confi-
dence, the larger the weights.

3.3 Data Preparation for Bayesian Data Fusion

Pipe linearity Assumption by Joint Compatibility Branch
and Bound

To use the pipe linearity assumption, we need to connect GPR
and manhole survey to generate an initial map. This is similar
to the spatial data association problem in robotics [Durrant-
Whyte and Bailey, 2006]. In this paper, the data association to
be made is the connection of the observed manhole and GPR
detection, i.e. determining the pipes among the observed in-
formation from manholes and GPR data analysis.

Joint Compatibility Branch and Bound (JCBB) is proposed
to search for the possible pipes linking manholes and GPR
scan points. JCBB looks for a set of correspondences be-
tween the measurements (GPR detections) and ending points
(manholes) which are jointly consistent, and it measures the
joint compatibility of a set of pairings that successfully re-
jects spurious matchings, and is hence known to be more ro-
bust in complex environments [Neira and Tardós, 2001]. The
mechanics of JCBB is illustrated in Fig. 1(a), where there
are two GPR detections and two ending points denoting man-
holes, and the error of these two pairings are correlated.

After JCBB generates possible connections, each pipe will
be regressed from the starting point to a possible ending point.
The uncertainty of the starting point will also be regressed,
yielding an ending point area. As Fig. 1(b) shows, the final
uncertainty consists of location uncertainty and the angle un-
certainty. If there is more than one pipe (in the initial map)
going through the point of interest, the regressed pipe with
minimal Mahalanobis distance between the regressed pipe
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and the pipe of interest at point (x, y) will be selected. The
selected regressed pipe represents the pipe linearity assump-
tion data L.

Statutory Records as Prior

Statutory records of underground utility apparatus are inac-
curate6 and incomplete. However, statutory records are our
prior information for the mapping (at the least they usually
give a reasonable indication of the minimum number of pipes
in the ground). We employ information extracted from statu-
tory records information for a prior in BDF algorithm.

Given a point of interest (PoI) (x, y), i.e. where a GPR
detection has been found, we search the pipes in nearby lo-
cations (the extent is determined by accuracy and variance
of the statutory records, which is specified manually) in the
statutory records. The matching pipes are only accepted when
their difference is less than a validation gate7. Denote each
matched pipe as V = (x, y, θ). For unmatched pipes there
is no record of the pipe in the statutory record and thus no
statutory record V for the prior.

3.4 Algorithm Description
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Figure 2: The flowchart of the BDF Algorithm

Based on the previous description, the algorithm can be
summarised in Fig. 2. Note that the output of BDF is the
posterior of the spatial location and direction of the pipes.

A verification method is employed to refine the map. The
nearest neighbour standard filter (NNSF) [Chen and Cohn,
2010a] is used to verify the initial connection at each PoI.
NNSF calculates the Mahalanobis distance between the re-
gressed pipe and the posterior pipe, and accepts the initial
connection when the distance is smaller than a validation
gate (we use the same parameter in Section 3.3). Otherwise,
NNSF rejects the initial connection, searches for another con-
nection, reruns the BDF algorithm and conducts the verifica-
tion again. If the refined connection does not pass the verifi-
cation, the system does not use this connection.

6This inaccuracy arises for many reasons, including changing
survey techniques over the years, discrepancies arising from relative
recording and manual digitisation.

7The validation gate is obtained from the inverse cumulative dis-
tribution at a significance level (typical values are 0.95 or 0.99). We
use 0.99 as the significance level.

(a) Satellite Image from
Google Maps

(b) Autocad Survey Drawing

(c) Autocad Survey Drawing
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Figure 3: Satellite Image (a) and Autocad Survey Drawings
(b, c) and the algorithm output (d-f). The black ellipse indi-
cates a typical connection error. The axes in (d, e and f) are
geometrical coordinates for the pipes and manholes.

Initially, the uncertainty matrixes for these three kinds of
data are specified manually. When BDF obtains the poste-
rior of the pipe location and direction at each PoI, these un-
certainty matrixes will be updated by using the mean of the
current uncertainty with the estimated uncertainty, i.e. the
difference between posterior and the observed data.

4 Experimental Study

In order to evaluate the proposed algorithm, this section ap-
plies our algorithm to two real-world data sets and several
simulated data sets. A summary of these data sets are reported
in Table 1. Each real-world data set consists of an AutoCAD
drawing representing the ground truth8, simulated statutory

8Determining the actual ground truth would involve excavation.
In lieu of this we used the drawings made by a professional survey
company from a detailed in-street survey. (The GPR scans we use
come from this company.)
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Table 1: Summary information for two real data sets (R1,
R2) and four simulated data sets (S1, S2, S3 and S4). Note
that one pipe can be separated into several pipe segments by
manholes.

Data Area (m×m) # Pipe segments # Manhole #Scans
R1 100×100 19 18 23

R2 100×100 10 2 26

S1 100×100 22 7 36
S2 100×100 38 10 54

S3 100×100 44 18 76

S4 100×100 61 21 93

records that are generated by adding Gaussian spatial noise9,
sets of GPR point scans and the manhole survey results. Each
GPR scanning area consists of six pushes in a three metres
neighbourhood area. The GPR is pushed forward three me-
tres in each scan. The GPR scan boxes (the small boxes with
a line going through the box) are also illustrated in Fig. 3(b)
and 3(c). The line going through the box indicates the direc-
tion of GPR scan (i.e. the scan starts from the side of the
box closest to this line) and the GPR operates orthogonally to
this line. Each simulated dataset consists of a specification of
underground pipeline networks, the statutory records, where
the Gaussian spatial noise is added to the ground truth, sets of
simulated GPR point scans and surveyed manholes. The GPR
simulator GprMax [Giannopoulos, 2005] is used to generate
a GPR response given an underground pipe specification in
the simulated data sets.

In the experiments, the uncertainty for the manhole loca-
tion was chosen as 0.2 metres and the uncertainty for the
GPR point scan location as 0.4 metres. The uncertainty of
pipe directions is fixed to 8 degrees for manhole observations,
i.e. the uncertainty covariance matrix for manhole observa-
tion Co = diag(0.2, 0.2, 8), and the uncertainty is fixed at
10 degrees for GPR scans if we can successfully identify the
pipe direction. However, if some of the six scans are incon-
sistent with the model, the uncertainty is increased to 15 de-
grees. This situation often occurs when GPR machines scan
inappropriate surfaces, e.g. very moist soil or metal man-
hole covers, or part of the scans is limited by surface objects.
The uncertainty for the statutory records Cv is specified as
Cv = diag(1, 1, 8). The uncertainty matrix for the pipe
linearity assumption is chosen as Cl = diag(1.5, 1.5, 15).
Although the uncertainty is specified manually initially, the
BDF algorithm will use its outputs to adapt the uncertainty
matrix Co, Cv and Cl as described in Section 3.4. Therefore,
the initial setting of uncertainty is not critical for convergence.

Fig. 3(a) shows a bird’s eye view of one survey site repre-
senting the real world data, which is from a city centre area
in the UK. Fig. 3(b) and 3(c) provide the AutoCAD draw-
ings of the survey sites, from which we introduce Gaussian

9The variance for this noise is 1 × 1 metre for spatial pipe loca-
tions and 8 degrees for pipe directions, i.e. the covariance matrix for
statutory records Cv = diag(1, 1, 8). This is the same as simulated
data. Note this process may introduce connection errors as well, e.g.
it might merge two nearby manholes or two nearby parallel pipes.

Table 2: The connection errors of BDF, BDF without statu-
tory records (BDF\V), BDF without pipe linearity assump-
tion (BDF\L), BDF without GPR (BDF\GPR), JCBB on
only GPR/manhole survey (JCBBO), and statutory records
(V) on two real-world data sets (R1 and R2) and four simu-
lated data sets (S1-S4). The computation time of BDF is also
reported.

#error BDF BDF\V BDF\L BDF\GPR JCBB(O) V Time(s)

R1 0 2 1 3 5 1 6.6

R2 0 0 0 0 0 0 2.9
S1 0 3 2 5 5 2 9.3

S2 1 2 1 4 3 2 10.2

S3 1 1 1 6 4 1 13.7
S4 2 4 3 8 6 3 14.6

spatial noise to generate statutory records (not shown). Fig.
3(e) depicts the map obtained using BDF for this site, whilst
Fig. 3(d) shows the effect of not using statutory records. Fig
3(c) shows the survey drawing for a second site, and Fig. 3(f)
shows the map obtained by combining all three data sources
for the second site.

Fig. 4(b) shows a simulated dataset, where the arrows in-
dicates the position and direction of simulated GPR scans. In
Fig. 4(c), we manually remove10 the “statutory record” to the
right of the dotted line, and the result (Fig. 4(c)) shows that
BDF makes an incorrect connection by treating two nearby
manholes as one. However, the BDF with full data sources
can successfully reconstruct the map (Fig. 4(d)). If the statu-
tory records are incomplete, it might lead to connection errors
without sufficient GPR/manhole data in a relatively compli-
cated pipeline layout. However, if there is enough other data
in the incomplete area, it might reduce the connection errors.
This is one of the benefits of using the Bayesian data fusion
algorithm. Spatial noise could lead to either spatial inaccu-
racy (minor) or connection errors (major problems). For spa-
tial inaccuracy, the BDF algorithm can use other data to min-
imise the inaccuracy. The data fusion algorithm can reduce
the number of connection errors arising from spatial noise
(given sufficient data/observations from relatively noise-free
data sources).

Table 2 reports a series of experiments on two real-world
data sets (R1 and R2) and four simulated data sets (S1-
S4). We not only show the BDF on all data sources, i.e.
V+O+L, but also report the performance of BDF without
statutory records (BDF\V), BDF without pipe linearity as-
sumption (BDF \L), BDF without GPR scans (BDF\GPR),
and the performance of JCBB on only GPR/manhole survey
(JCBB(O)). The table only reports the connection errors (not
spatial inaccuracy), e.g. treating two nearby manholes as one,
or missing a connection between two manhole. The connec-
tion errors with respect to V are introduced by adding spatial
noise, e.g. the new record with spatial noise might merge
nearby manholes or nearby parallel pipes.

Table 3 reports the spatial inaccuracy E(x, θ) and the
uncertainty C(x, θ) on these six data sets by using BDF,

10It is not uncommon that real statutory records have missing in-
formation.

2415



20 40 60 80 100

200

400

600

800

1000

1200

1400

1600

1800

2000

(a) Simulated GPR Result

10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

Simulated GPR
Scan Direction

Statutory
Records
if
Missing

(b) Simulated Data Set

10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80
Utility Map without Statutory Records and Manhole Surveys beyond the Right Dot Line

(c) Mapping without statutory
record

10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

(d) Mapping with statutory
record

Figure 4: A simulated data set and results. The black ellipse indicate typical connection errors. The x-axis in (a) is horizontal
distance of one GPR push and y-axis is the two-way travel time of the GPR signal. The axes in (b, c and d) are geometrical
coordinates for the pipe and manholes.

Table 3: The spatial errors and uncertainty of BDF, BDF
without statutory records (BDF\V), BDF without pipe lin-
earity assumption (BDF\L), BDF without GPR (BDF\GPR),
JCBB on only GPR/manhole survey (JCBBO), and statutory
records (V) on two real-world data sets (R1 and R2) and four
simulated data sets (S1-S4). E(x, θ) represents the mean spa-
tial distance (in metres) from the real PoI from the estimated
PoI and the mean difference (in degrees) of real pipe direction
and the estimated direction. C(x, θ) stands for the uncertainty
of these two terms.

spatial error BDF BDF\V BDF\L BDF\GPR JCBB(O) V

E(x, θ)R1 0.3,3.3 0.5,7.2 0.4,4.7 0.7,5.8 0.7,9.4 0.8,6.5

C(x, θ)R1 0.2,3.6 0.3,6.5 0.2,4.5 0.4,4.6 0.3,10.8 1,8

E(x, θ)R2 0.4,2.8 0.4,6.3 0.4,4.1 0.9,5.4 0.8,10.1 0.6,6.1
C(x, θ)R2 0.2,3.8 0.3,7.3 0.3,4.9 0.6,5.9 0.4,12.6 1,8

E(x, θ)S1 0.3,3.1 0.5,7.9 0.3,5.0 0.9,8.6 0.8,10.6 0.7,6.9
C(x, θ)S1 0.2,3.8 0.3,7.1 0.3,4.8 0.5,7.3 0.4,12.2 1,8

E(x, θ)S2 0.3,3.4 0.5,7.9 0.5,5.1 0.9,9.3 0.8,10.7 0.7,7.1
C(x, θ)S2 0.2,3.8 0.3,7.1 0.3,4.8 0.5,7.6 0.4,12.2 1,8

E(x, θ)S3 0.4,3.6 0.8,8.4 0.5,5.3 0.9,10.2 0.9,11.2 0.8,7.2

C(x, θ)S3 0.2,3.8 0.3,7.1 0.3,4.8 0.6,8.9 0.4,12.0 1,8

E(x, θ)S4 0.4,3.8 0.9,8.6 0.5,5.6 1.0,11.1 0.9,11.5 0.8,6.8

C(x, θ)S4 0.2,3.8 0.3,7.1 0.3,4.8 0.5,8.1 0.4,12.1 1,8

BDF without statutory records (BDF\V), BDF without
pipe linearity assumption (BDF \L), BDF without GPR
(BDF\GPR), and JCBB on only GPR/manhole survey
(JCBB(O)).

According to Tables 2 and 3, BDF with full data
sources outperforms other algorithms, while JCBB with only
GPR/manhole survey is the worst algorithm. BDF\V is equal
or inferior to BDF\L, indicating the statutory records usually
contain more information, if presented, than the pipe linearity
assumption. In general it is very unlikely that only using ob-
servations of street furniture (such as manholes) and statutory
records will give good results (some buried utilities may well
have no such street furniture in the surveyed area). Therefore,
BDF\GPR generates inferior performance than BDF with all
data sources. It is also worth noting that although for R2 no
algorithm makes any connection errors, the spatial inaccuracy
reported in Table 3 shows that this is at minimum for the full
BDF algorithm. All these results confirm the benefits of in-

clusion of more data sources and the effectiveness of the BDF
algorithm in utility mapping.

The computation time of the BDF algorithm is reported in
Table 2. The times are recorded on a 2.4Ghz laptop with 4GB
memory on a single core. Clearly the algorithm can operate
in real time as data is gathered (given the push speed of the
GPR).

4.1 Analysis of the AI Subsystem

The overall system includes the operator for GPR machine
with global positioning system (GPS) for location identifica-
tion, a surveyor for manhole locations, a GPR machine, statu-
tory records, and the AI subsystem. The task of the AI sub-
system is to fuse these results together and automatically gen-
erate a buried utility map. The experiments have confirmed
the potential effectiveness of the overall systems including the
AI subsystem.

The AI subsystem is important in the functionality of the
overall system because it provides an automatic and effective
way for on-site work to produce a buried utility map. In cur-
rent practice, the utility map is usually manually produced
in the back office (or possibly in a specially adapted mobile
office) using AutoCAD or similar software. Surveying is ex-
pensive, and any reduction in the time taken will be benefi-
cial. It takes typically takes a three person surveying team
a full day to map 150 linear metres over a typical 10m wide
highway in a non city centre position with no traffic manage-
ment issues or other restrictions. Much of the time is not spent
in physically obtaining the data but rather in processing and
connecting it – exactly the topic of our automated algorithm.

The inclusion of an AI subsystem to the overall system
greatly reduces the effort required (and thus the cost of a sur-
vey). The AI subsystem effectively fuses GPR data, manhole
surveys, statutory records and the linear assumptions of pipes
and has the potential to generate possibly better drawings than
manual production. Although manual production is based on
the same data as the algorithm here, the automated system
has the capacity for greater consistency, and evaluating all
the possibilities, as well as requiring less skilled operators.
Moreover, the AI subsystem not only gives the prediction of
the utility map, but also gives the confidence of the prediction.
Therefore, the performance of the overall system can be fur-
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ther improved by verifying the locations with low confidence
value – i.e. since the system can deliver real-time mapping,
there is the possibility to dynamically direct the operator to
areas which would most improve the confidence level.

It should be noted that the algorithms used to infer the hy-
perbolae in the GPR scans are also AI-based techniques –
thus the overall system combines several AI subsystems as
illustrated in Fig. 2.

5 Conclusion

Previous approaches to produce buried utility pipeline maps
depend on manual drawing and expert advice for GPR scans.
These approaches are costly in terms of time and human
labour. In this paper, we aim to address this problem.

In order to estimate the direction of buried pipes, we em-
ploy a recently proposed algorithm to automatically identify
reflection radar hyperbolae in GPR scan data and thus extract
the hypotheses, i.e. pipe segment positions and direction.

JCBB methods are then employed for an initial connection
to facilitate the deployment of the pipe linearity assumption
in data generation. Local search in the statutory records is
conducted to account for the inaccuracy in these records.

After this data preparation phase, we propose a Bayesian
data fusion algorithm for automatic utility mapping. Three
kinds of data sources, i.e. manhole/GPR surveys, statutory
records and pipe linear assumption, are combined in the BDF
algorithm. The uncertainty of the location and direction of
pipes are both considered in the algorithm.

The proposed algorithm contributes to an important prac-
tical application by largely automating the process of gener-
ating survey utility map combining sensor data, street obser-
vations and expectations from statutory records from all the
asset holders. Given the extent of invasive streetworks in most
countries, this has considerable potential for extensive appli-
cation. It also illustrates an interesting variant of the classical
robot SLAM problem.

At present the system operates off-line as a research pro-
totype, but the goal is on-board operation, giving real-time
mapping, and also the possibility of directing the operator to
take further readings in the area of most uncertainty. Future
work will also consider incorporating other sensors such as
sonar and EM sensors [Royal et al., 2011].
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