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Negative Correlation Learning for Classification Ensembles

Shuo Wang and Huanhuan Chen and Xin Yao

Abstract— This paper proposes a new negative correlation
learning (NCL) algorithm, called AdaBoost.NC, which uses an
ambiguity term derived theoretically for classification ensembles
to introduce diversity explicitly. All existing NCL algorithms,
such as CELS [1] and NCCD [2], and their theoretical back-
grounds were studied in the regression context. We focus
on classification problems in this paper. First, we study the
ambiguity decomposition with the 0-1 error function, which
is different from the one proposed by Krogh et al. [3]. It is
applicable to both binary-class and multi-class problems. Then,
to overcome the identified drawbacks of the existing algorithms,
AdaBoost.NC is proposed by exploiting the ambiguity term
in the decomposition to improve diversity. Comprehensive
experiments are performed on a collection of benchmark data
sets. The results show AdaBoost.NC is a promising algorithm
to solve classification problems, which gives better performance
than the standard AdaBoost and NCCD, and consumes much
less computation time than CELS.

I. INTRODUCTION

Negative correlation learning (NCL) is a successful en-
semble learning technique, since the role of diversity has
been recognized [4] [5]. In addition to the bias and variance
of each individual learner, the generalization error of an
ensemble also depends on the covariance among the individ-
uals. Hence, several NCL algorithms have been proposed to
negatively correlate the errors made by each other explicitly
based on neural networks. Cooperative ensemble learning
system (CELS) proposed by Liu and Yao [1] is a represen-
tative algorithm. It has achieved empirical success in both
regression and classification problems. Unlike Bagging [6]
and Boosting [7], the idea of CELS is to encourage the
individual networks to learn different aspects of a given data
set cooperatively and simultaneously. It emphasizes diversity,
the degree of disagreement, among the individual networks
explicitly by introducing a penalty term that provides the
missing gradient component (variance and covariance terms)
within the ensemble MSE [8].

Although CELS has adequate theoretical support in the
regression context and has been applied to solve classification
problems, a theoretical gap in the classification context
still needs to be filled. An ambiguity term [3] derived for
regression ensembles is used as the penalty in CELS, but
it is difficult to obtain for classification ensembles. Very
recently, Chen [9] gave an ambiguity decomposition for
binary classification problems with the 0-1 error function.
In this paper, we will explain this ambiguity decomposition,
and extend it to multi-class cases.
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In addition to the lack of some theoretical explanations for
classification, CELS suffers some other drawbacks. So far, it
is only applicable to neural networks. Other base learners are
not suitable to its training procedure. The pattern-by-pattern
weight-updating strategy results in very high computation
cost. The training can take a long time before it converges
to the expected error threshold for a very large data set.
To speed up the learning process, another NCL algorithm,
negative correlation learning via correlation-corrected data
(NCCD), was proposed by Chan and Kasabov [2]. The idea is
to incorporate error correlation information into the training
data instead of every network’s error function. It reduces the
updating times of information exchange, and makes parallel
model implementation possible. However, it still requires
that the base learners are capable of processing real-valued
outputs, and our experiments will show that its performance
is very sensitive to the parameter settings, involving a scaling
coefficient A and the update interval.

Considering the above problems, this paper proposes a new
NCL algorithm for classification ensembles, AdaBoost.NC.
As the name suggests, we exploit AdaBoost’s flexibility
to overcome the above disadvantages of the existing NCL
algorithms, and attempt to solve the reported overfitting
problem of AdaBoost by introducing diversity [10] [11].
Similar to AdaBoost, AdaBoost.NC is independent of the
choice of base learners. It builds classifiers sequentially and
samples the data space automatically, which provides us
with a chance to incorporate the information of the current
diversity level explicitly. Low diversity will be penalized by
using the ambiguity term derived in this paper. Different from
AdaBoost, CELS and NCCD, AdaBoost.NC introduces the
error correlation information into the weights of the training
data, when the updating happens, or in other words, after
each classifier is constructed. Thus, information exchange
is much easier and there is no need to modify the original
training examples. The computation time can be shortened
significantly. Only one main parameter, the scaling coeffi-
cient of the penalty term A, needs to be decided. We expect
AdaBoost.NC can produce better accuracy than AdaBoost
and needs shorter computation time than CELS and NCCD.

In this paper, we concentrate on classification problems.
First, we will explain and extend Chen’s ambiguity de-
composition [9]. Then, we will introduce our new NCL
algorithm, AdaBoost.NC, which is tested on both binary-
class and multi-class tasks. The experimental results are quite
positive. It has better generalization performance than the
standard AdaBoost and NCCD in most of the cases, and
gives competitive results with CELS. Its computation time is
significantly shorter than CELS and NCCD, and nearly the
same as the standard AdaBoost.
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The rest of this paper is organized as follows: Section
IT gives some background descriptions about AdaBoost and
existing NCL algorithms. Section III derives the ambiguity
term for classification ensembles and describes AdaBoost.NC
algorithm. Section IV presents the experimental analysis and
comparing results. Finally, section V makes the conclusions.

II. BACKGROUND

Ensemble learning is to construct multiple estimators for
the same learning tasks and then aggregate their predictions
when an unknown example comes. We begin this section by
introducing AdaBoost [7], one of the most popular ensemble
algorithms. Following this, we conclude some recent classifi-
cation ensemble methods briefly. Since the role of diversity of
an ensemble was recognized [4] [5], a few NCL methods and
their theoretical support have been proposed in the regression
context. Then, two representative NCL algorithms, CELS [1]
and NCCD [2], will be introduced.

A. AdaBoost and Classification Ensembles

AdaBoost is a successful ensemble technique in ensemble
learning area, proposed by Freund and Schapire [7]. It
builds base learners sequentially and emphasizes the hardest
examples. It is achieved by a weight updating rule. A set of
weights is maintained over the training data. Misclassified
examples by the previous learner get their weights increased
for the next iteration. Consequently, harder examples possess
larger weights that have higher possibility to be selected for
the current training.

Comprehensive empirical and theoretical studies have
proved AdaBoost can significantly reduce the error of any
weak learner in terms of both bias and variance, and it is
more effective at bias reduction than variance reduction [12].
However, degradation of the generalization performance is
observed in some cases [10] [11]. The weight vectors can
become very skewed, which may lead to undesirable bias
towards some limited groups of data. Freund and Schapire
attribute it to overfitting [13]. They restrict training epoch T’
to keep final hypothesis simple and achieve lower general-
ization error. Some related studies also find that AdaBoost
can produce diverse ensemble at the first few training epochs,
but diversity drops as more classifiers are added in. So, they
suggest that it could be beneficial to stop training progress
early [14].

Other ensemble algorithms, such as Bagging [6], Stack-
ing [15], and Mixtures of Experts [16], and a number of
variations of them, have been proposed to solve binary
classification problems. Recent extension to multi-class prob-
lems includes SAMME [17], GAMBLE [18], and MSmooth-
Boost [19]. Another large group of ensemble algorithms is
to solve class imbalance problems, where a data domain has
skewed class distribution and it causes classification diffi-
culty. Due to the flexibility an ensemble method can have,
many ensemble solutions have appeared by re-balancing the
uneven situation from either the data level or the algorithm
level, for instance, SMOTEBoost [20], EasyEnsemble and

BalanceCascade [21]. In short, ensemble techniques, espe-
cially AdaBoost-related algorithms, have become a popular
tool in machine learning.

B. Negative Correlation Learning: CELS and NCCD

It has been commonly agreed that diversity is a success-
ful factor of ensemble algorithms. Different opinions from
multiple classifiers are expected to reduce the generalization
error. Both Bagging and Boosting try to introduce diversity
in an implicit way. Different from them, NCL encourages
diversity explicitly by adding a correlation penalty term to
each network’s error function. Its theoretical support comes
from the bias-variance-covariance decomposition [5] and am-
biguity decomposition [3] in the regression context. Although
empirical successes have been achieved to solve classification
problems, there is still a lack of convincing proof to link di-
versity and the generalization performance. Various diversity
measures are therefore brought forward [22], and related to
the ensemble margin [23] and overall accuracy under some
assumptions [24]. Brown et al. [25] gave a comprehensive
discussion for both regression and classification cases.

Cooperative ensemble learning system (CELS) [1], pro-
posed by Liu and Yao, is a successful NCL algorithm. CELS
trains and combines individual networks simultaneously,
aiming at the best result for the whole ensemble instead of
every single one. The individuals are forced to learn different
parts of training data. It is achieved by the unsupervised
penalty term p,. It provides the missing gradient components
that correspond to the average variance and covariance terms
within the ensemble MSE [8]. The individuals tend to be
negatively correlated. In more detail, the error function e
for network h; is defined by,

1
et:§(ht—y)2+>\ptat:1w"T7 (1

where y is the expected value of training example x. A is
the scaling coefficient to adjust the strength of the penalty
in range [0, 1], and the ensemble size is 7. The penalty term
p¢ 1s expressed as

pr=(he—H)Y  (hx — H), )
k#t

where H is the final output by combining the decisions
from the individuals.

However, this training mechanism assumes the base learn-
ers are neural networks with back propagation strategy. Be-
sides, the pattern-by-pattern weight updating method makes
its training procedure much slower than other ensemble
techniques, especially when the problem domain or the
feature space is very large. Those hinder this algorithm from
being more widely used.

To overcome the problem of long running time, Chan
and Kasabov [2] proposed another NCL approach, Learning
via Correlation-Corrected Data (NCCD) algorithm. NCCD
embeds penalty values to every training example instead
of the error function. After certain epochs of training,
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the expected outputs of training data are updated, named
correlation-corrected data (C-C data). C-C data will join
the next training period. Thus, NCCD significantly reduces
the network communication caused by the exchange of
correlation information and shortens the training time. C-C
data have new targets yypdaqte Updated by

y—2\H
1—-2X "

where A ranges in [0,0.5). The individuals can be im-
plemented either synchronously or asynchronously. Base
learners are not restricted to back propagation any more, but
the capability of processing data with real-valued outputs
is still necessary. Their experiments showed that NCCD has
comparable generalization performance to CELS, and NCCD
is much simpler and more efficient.

Besides, Chen and Yao proposed a regularized negative
correlation learning algorithm, and made use of Bayesian
inference to infer the explicit regularization parameters for
large noisy data [26]. They formulated the regularized neg-
ative correlation learning as a multi-objective evolutionary
learning problem [27]. A multi-objective evolutionary algo-
rithm is used to search effectively the best trade-off among
these objectives without searching for the combination pa-
rameters to weigh these objectives. Excellent performance
has been obtained in their both implementations.

3)

Yupdate =

III. NEGATIVE CORRELATION LEARNING FOR
CLASSIFICATION ENSEMBLES

In this section, we explore the ambiguity decomposition
for classification ensembles, including both two-class and
multi-class problems. To our best knowledge, it is still an
ambiguous issue in all existing papers, although the one for
regression has been fully discussed. Then, we describe our
NCL algorithm, called AdaBoost.NC.

A. Ambiguity Decomposition

Taking a closer look of the penalty term in CELS, Eq.(2)
can be rearranged as

pi = — (he — H)?, 4

which is in fact the ambiguity term proposed by Krogh and
Vedelsby [3]. Their ambiguity decomposition is achieved for
regression tasks. We follow the notation in the previous sec-
tion. For a single data input, the weighted average quadratic
error of the ensemble is

:Zat(ht* *Zat(ht*H)2. (5)
t t

The second term is referred to as the “ambiguity” (denoted
as “amb” in this paper), the variance of the weighted ensem-
ble around the mean. It measures the disagreement among the
individuals. Thus, CELS is maximizing this ambiguity term
to balance the tradeoff between the accuracy and diversity
directly during training. If a uniform weight is assumed,

1

h=—
amb =

(he — H)?. (6)

=

t=1

The difficulty of such error decomposition for classifica-
tion ensembles leads to various diversity measures and a
number of work about the relationship between diversity and
the overall accuracy [28] [29]. Those measures have been
proved to exhibit strong relationships among themselves and
similar correlation with the overall performance [22]. Very
recently, Chen [9] first proposed an ambiguity decomposition
based on the 0-1 error function for binary classification
problems and introduced an ambiguity term as a diversity
measure. They showed that the ambiguity measure has the
highest correlation with the generalization error. For a data
domain with two class labels {+1,—1} (i.e. positive and
negative classes), their ambiguity term is formulated as [9]

amb =

(7

1 T
= flf;hth (®)

where hy and H € {+1,—1}. Term s measures the
difference between the numbers of positive and negative
votes. Smaller s implies higher diversity degree.

To make it applicable to all classification tasks including
multi-class data domains, we redefine the ambiguity decom-
position with the correct/incorrect decision. The practical
output hy (x) is 1 if x is labeled correctly by h;, and -1
otherwise. It is worth noting that H # sign (Zthl oatht)
any more when majority voting is applied, since there are
more than two classes. If the error function follows the
definition in [9],

error(h):%(l h),he€{h1,...hp,H}, )

then the ambiguity term will be

amb = error(

T
Zaterror (hy) = Z (H—he).

(10)
If the individual classifiers are uniformly weighted, amb
can be re-expressed as

T

1
amb:ﬁZ(H—ht).

t=1

Y

The ambiguity term is related to the difference between the
numbers of correct and incorrect votes. Comparing Eq.(6)
and Eq.(11), they have a similar role in the generalization
error, but an obvious difference exists. amb in regression en-
sembles is an unsupervised term that measures the magnitude
of the difference, whereas amb in classification ensembles
depends on the sign of the term (H — h;) that measures the
difference between an individual and the ensemble.
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To encourage diversity for classification ensembles, a new
NCL algorithm AdaBoost.NC is developed. Analogous to
CELS, the ambiguity term in Eq.(11) is used as the penalty.
However, the distinction between the two ambiguity terms
makes us hesitate about the form of the penalty term, using
amb or |amb|? If we follow the NCL idea strictly, the
original amb should be applied to enlarge the ambiguity
as much as possible and minimize the generalization error;
if considering the meaning of Eq.(6) in CELS, the sign of
amb should be ignored and use the absolute value |amb].
With some preliminary experiments, |amb| actually works
better than amb. The magnitude is thus used to compute the
penalty.

B. AdaBoost.NC

So far, amb for making the classifiers negatively correlated
has been derived for classification ensembles. Now, the
problem is how to use it. To overcome the limitations of
CELS and NCCD, AdaBoost.NC is proposed by utilizing
the nice properties of AdaBoost [7], which can be regarded
as a kind of cost-sensitive Boosting. The current diversity
degree will be the cost, obtained directly from the ensemble.

AdaBoost.NC exchanges correlation information during
the sequential training procedure. After each single classi-
fier is built, the difference among the current classifiers is
measured by the penalty term and combined into the weights
of training examples with the misclassification information
together. Then, they are used to build the next classifier.
The penalty is introduced into the weight-updating rule.
Therefore, both classification errors and the low diversity
degree will be punished by rising weights. Table I presents
the pseudo-code of AdaBoost.NC.

TABLE I
ADABOOST.NC ALGORITHM

Given training data set {(z1,y1),.-.,(@i,Yi), .- (@m,Ym)}
initialize data weights D1 (z;) = 1/m; penalty term py (z;) = 1.

For training epoch t = 1,2,...,T"

Step 1. Train weak classifier k¢ using distribution Dy.

Step 2. Get weak classifier hy: X — Y.

Step 3. Calculate the penalty value for every example z;: pt ().
Step 4. Calculate h¢’s weight o by error and penalty.

Step 5. Update data weights D; and obtain new weights D1
by error and penalty.

Output the final ensemble:
H (z) = argmax 3¢ ax || () = y.

y
(Define ||| to be 1 if 7 holds and 0 otherwise.)

From Table I, we can see that AdaBoost.NC is independent
of the selection of base learning algorithms, because the
weights are maintained separately from the algorithm. There
is no need to modify the training examples themselves
either. Besides, the weight updating happens at the ensemble
level, rather than at the algorithm level or at the data level.
Therefore, the total updating times with diversity information
only depends on the size of the ensemble, which is much

simpler than CELS and NCCD. A lot of training time will be
saved. AdaBoost.NC could be a good way to make negative
correlation learning more flexible and faster.

The updates of oy and D; in step 4 and 5 are decided
by the misclassification error and penalty values with the
information of current diversity degree at the same time. In
the standard AdaBoost [7], the weight updating rule is

Dy (z;) exp (—achy (x;) yi)

Dty (zi) = . (12
b1 (%) 7, (12)
where Z; is the normalization factor and
1 Py = T D xX;
a; = = log 2 Wi=he(zi) ¢ () 7 (13)
2 Zi;yisﬁht(wi) Dy (fz)

in which way the ensemble’s training error can be
bounded.

In AdaBoost.NC, there are two possible ways to introduce
penalty term p; into the rule: inside and outside the expo-
nent [30]. If it is placed inside the exponent, the penalty term
will make a negative effect, which is not our intention. The
correctly classified examples that the classifiers have the least
disagreement on get the largest weight decrease, but in fact
they are supposed to be emphasized. Therefore, we choose
to put p; outside the exponent. AdaBoost.NC defines the
penalty term and weight updating rule as,

pr =1 — |amb|

(pt ()" Dy (1) exp (—aehe () i)
Zy

Dt+1 (Uﬂz) =

A is to control the strength of the penalty term. To bound
the overall training error and minimize Z; [30], the weight
of each classifier in Step 4 is determined by

A
L Digimhi(an) P (i) Dy (24)
o = = log

2 Zivyi#ht(-’ti) (pt (xz)))\ D, (lz)

;o (44

The penalty term considers the magnitude of ambiguity,
and ranges in [1/2, 1]. When |amb| is small, which means the
individuals tend to have the same opinion on one example,
p: will become large and this example is likely to be boosted
in the next round. Simply to say, the misclassified examples
that receive more same votes from individual classifiers get
a larger weight increase; The correctly classified examples
that gain more disagreement opinions get a larger weight
decrease.

IV. EXPERIMENTAL STUDIES

In this section, we compare AdaBoost.NC to some state-
of-art methods, including the standard AdaBoost, CELS
and NCCD. Comprehensive experiments are designed and
discussed on 10 two-class data domains and 4 multi-class
data domains.
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A. Experimental Design

In the experiments, MLP network and C4.5 decision tree
are chosen as the base learners. As mentioned earlier, CELS
and NCCD are designed for and tested on neural networks. It
is necessary to do the comparison by using MLP. Each net-
work is trained by 250 epochs. The updating epoch of NCCD
is set to 20, which is a rough estimate, because the optimal
update interval is problem-dependent. Furthermore, decision
tree is recognized as the “ideal” learner with AdaBoost, since
boosting decision trees improves their accuracy dramatically
and tree-based algorithms come closest to an off-the-shelf
method [31]. From this point, we also examine the perfor-
mance of AdaBoost.NC with C4.5 as the base learner. For
the consideration of running time, every ensemble consists of
9 individual classifiers in this paper, where the odd number
can avoid even voting happening. More discussion about the
ensemble size will be included in our future work.

The scaling coefficient A requires the range [0, 1] in CELS
and [0,0.5) in NCCD. In our experiments, CELS sets A to
{0.25,0.5,1} and NCCD sets A to {0.25,0.4}. Both of them
use “winner-take-all” to combine the outputs as demanded
by the original papers. The range of A in AdaBoost.NC,
however, is not limited, because the penalizing mechanism
decides the performance is not very sensitive to the change
of \. It ranges from 0.25(conservatively) to 12(aggressively)
in our experiments. The best results are chosen for the
comparisons.

TABLE Il
SUMMARY OF CLASSIFICATION DATA SETS.

Name Train | Test | Attributes | Classes
promoter 84 22 57 2
sonar 166 42 60 2
ionosphere 280 71 34 2
house-votes-84 348 87 15 2
crx 489 201 15 2
breast-w 559 140 9 2
pima 614 154 8 2
german 800 200 20 2
hypothyroid 2530 633 25 2
insurance 5822 | 4000 85 2
soybean-large 307 376 35 19
vowel 528 462 10 11
segmentation 1848 462 19 7
satimage 4435 | 2000 36 6

The experiments are conducted on a collection of UCI
classification tasks [32], including 10 two-class data sets
and 4 multi-class data sets. A summary is given in Table
II, ordered by the size of the problems. The last four have
more than two classes. Some data sets are provided with
a test set. For the others, we randomly sample 80% of the
data as the training set. The rest are for the test. A cross-
validation method may be more appropriate for some data
problems, which will be applied in our future work. We reran
each algorithm 10 times on every data set, and averages
computed. Statistical T-test with 95% confidence level is
applied to check the significance of the difference among

those algorithms.

B. Results and Analysis

AdaBoost.NC is compared to the standard AdaBoost,
CELS and NCCD. We output the test error rate and computa-
tion time from each algorithm. AUC values are further exam-
ined on the two-class data sets for AdaBoost.NC algorithm
and the standard AdaBoost. The computation environment is
windows Xp with Intel Core 2 Duo 2.13GHz and 1G RAM.
All the algorithms are implemented in Java. The results are
shown in Tables III - V.

1) Generalization error: Now, we examine the general-
ization error. Table III presents the performance of these
algorithms on the 10 two-class benchmarks. When MLP is
the base learner, AdaBoost.NC always gives better results
than the standard AdaBoost on the 10 data sets, where 5 wins
are significant. Comparing to CELS, AdaBoost.NC produces
better performance on 5 out of 10 data sets, where 2 wins
are significant; CELS wins once significantly and the other
four are ties. Comparing to NCCD, AdaBoost.NC wins on
7 data sets significantly, and the other three are ties. When
C4.5 is applied as the base learner, similar to the results
of MLP, our algorithm gives quite encouraging outputs. It
significantly outperforms the standard AdaBoost in the last
6 data sets with larger sizes, and 4 ties for the others.

In the two-class cases, generally speaking, AdaBoost.NC
is a promising algorithm. It improves the standard AdaBoost
and outperforms NCCD significantly in more than half of
the data sets. NC and CELS are quite competitive. In NC,
the penalty term is introduced into the weight updating rule
outside the exponent, and the penalty is computed by using
1—|ambl. It is analogous to the penalty form of CELS, which
does not depend on the sign of the ambiguity. In addition,
we observe from the experiments that AdaBoost.NC is not
very sensitive to or even benefits from the large A\ values.
In some cases, it achieves the best result when )\ is set to
12. X in CELS and NCCD is bounded in a specific range,
which makes them more sensitive to the parameter setting
than AdaBoost.NC. Especially for NCCD, a slight change
of A and the update interval can make it much worse than
the optimal setting. We conjecture the reason could be NCCD
adjusting the training data directly, which may induce very
inaccurate classifiers. The experimental results of different
parameter settings are not presented in this paper for the
space consideration.

To explain why AdaBoost.NC performs better than the
others, we can understand the algorithm from another point
of view. As we have described in Section III, by applying
AdaBoost.NC strategy, the misclassified examples with low
disagreement level from the ensemble get the largest weight
increase and the correctly classified examples with high
disagreement level get the largest weight decrease. In other
words, the more “difficult” examples within the misclassified
part and the “easier” examples within the correctly classified
part are emphasized. Different from the traditional AdaBoost
that only focuses on the misclassified ones, “easier” examples
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TABLE III
PERFORMANCE OF ADABOOST.NC (ABBR. NC), STANDARD ADABOOST (ABBR. ADA), CELS AND NCCD ON THE TWO-CLASS DATA SETS WITH

MLP AND C4.5 AS BASE LEARNERS. MEAN AND STANDARD VARIATION OF THE TEST ERROR (ABBR. ERR %), AND MEAN COMPUTATION TIME (IN

SECONDS) ARE COMPARED. THE METHOD WITH THE LOWEST TEST ERROR UNDER EACH LEARNING ALGORITHM IS IN BOLDFACE.

Name MLP C4.5
NC Ada CELS NCCD NC Ada
promoter Err 17.727+4.520 | 24.091+4.312 | 12.7274+1.917 15.000+9.103 10.454+4.815 | 10.90946.843
Time 19.6 19.5 1666.4 267.3 0.014 0.01
sonar Err 10.95242.300 | 12.3814+3.214 7.619+1.004 22.857+15.681 21.667+5.318 | 21.190+5.435
Time 43.2 43.1 267.1 271.4 0.212 0.206
ionosphere Err 4.6471+0.950 5.21140.950 4.3661-0.445 4.084+2.523 1.831+0.680 2.25340.984
Time 26.5 26.5 174.6 25.0 0.225 0.205
house-votes-84 Err 2.52840.484 3.218+0.726 3.333+0.363 4.0234+1.817 3.793+1.217 3.5631+1.006
Time 9.9 10.0 72.3 9.8 0.059 0.051
crx Err 15.671+£0.853 | 19.055£1.502 | 16.667+0.586 18.358+1.454 16.069+1.050 | 18.10940.943
Time 12.1 12.0 426.9 69.7 0.111 0.127
breast-w Err 1.071+0.505 1.28640.451 3.214+1.398 33.071428.081 1.357+£0.710 2.14340.588
Time 7.2 7.1 1939.6 298.5 0.035 0.028
pima Err 24.025+1.960 | 25.130+1.437 | 23.246+1.396 | 49.221+17.987 20.649+1.779 | 23.96112.340
Time 7.5 7.4 60.1 8.4 0.20 0.25
german Err 24.900+£1.776 | 26.900+1.744 | 25.250+1.585 31.850+6.200 25.400+1.926 | 27.600+2.389
Time 31.7 31.7 1351.2 209.1 0.21 0.26
hypothyroid Err 2.22740.157 2.27540.260 2.432+40.388 2.79640.372 0.55340.083 0.94840.235
Time 137.7 137.6 957.6 185.0 0.81 1.43
insurance Err 6.45040.177 8.080+0.171 6.2931+0.228 6.407+0.271 6.225+0.079 8.120+0.225
Time 2874.4 2852.7 17930.0 37422 523 52.5
TABLE IV

in our algorithm are selected to help the classification on the
more “difficult” examples.

To make our experiments more convincing, we further
compute the AUC values [33] produced by the standard
AdaBoost and AdaBoost.NC with C4.5 as the base learner
over the 10 two-class data sets. AUC has been showed to
be a statistically consistent and more discriminating measure
than the generalization error [34]. The comparing results are
presented in Table IV. Every case with significant difference
is marked by ‘*’. We can see that AUC is more “strict”
than the test error rate. For the first 9 data sets, the number
of cases, where AdaBoost.NC outperforms the standard
AdaBoost significantly, reduces to three data sets. The other
six are ties. An interesting phenomenon occurs in data set
“insurance”. Although AdaBoost.NC produces a significantly
lower error rate than the standard AdaBoost from Table III,
it has a significantly worse AUC value. We conjecture that
it is related to the very imbalanced class distribution of this
domain. The reason will be investigated as a part of our
future work.

Since the ambiguity decomposition is extended theoreti-
cally to the multi-class tasks in this paper, we also examine
AdaBoost.NC on some multi-class data sets (Table V).
Similar to the two-class cases, it performs better than the
standard AdaBoost, where one is significant in the MLP
settings and three in C4.5. Except the soybean-large data
set, where NCCD beats the other three methods, NC wins
CELS and NCCD significantly on two of them (vowel and
segmentation). Besides, we notice that CELS doesn’t show
any advantage over these data sets. In fact, its ability of
solving multi-class problems hasn’t been fully explored by
previous studies. More experiments need to be done in multi-

AUC COMPARISON OF ADABOOST.NC (ABBR. NC) AND STANDARD
ADABOOST (ABBR. ADA) ON THE TWO-CLASS DATA SETS WITH C4.5 AS
BASE LEARNERS. MEAN AND STANDARD VARIATION ARE PRESENTED.
SIGNIFICANT DIFFERENCE IS MARKED BY “*’.

Name NC Ada Significance
promoter 0.975+£0.019 | 0.951+£0.038
sonar 0.881+0.051 | 0.860+0.072
ionosphere 0.990+£0.010 | 0.99340.009
house-votes-84 | 0.995+0.001 | 0.9860.009
crx 0.90240.011 | 0.879+0.014 *
breast-w 0.99340.003 | 0.99340.003
pima 0.865+0.014 | 0.81940.026 *
german 0.7784+0.022 | 0.73340.025 *
hypothyroid 0.98340.005 | 0.98540.012
insurance 0.61640.012 | 0.634+0.012 *

class cases with different settings, and it is necessary to
compare with other existing multi-class solutions. It is also
interesting to know what kind of data sets our algorithm is
the most effective on.

2) Computation time: According to Tables III and V,
AdaBoost.NC is the winner for the running time among all
the negative correlation learning solutions with no doubt.
It doesn’t bring extra computation cost comparing to the
standard AdaBoost. It is much faster to build a model
than CELS and NCCD. It doesn’t need any complicated
parameter settings, such as update interval, to decide when
to exchange diversity information. Running time is only
decided by the size of an ensemble, which is necessary to
every ensemble algorithm. Because it allows choosing base
learning algorithms freely, the training time can be further
shortened by applying C4.5. Therefore, we conclude that
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TABLE V
PERFORMANCE OF ADABOOST.NC (ABBR. NC), STANDARD ADABOOST (ABBR. ADA), CELS AND NCCD ON THE MULTI-CLASS DATA SETS WITH

MLP AND C4.5 AS BASE LEARNERS. MEAN AND STANDARD VARIATION OF THE TEST ERROR (ABBR. ERR %), AND MEAN COMPUTATION TIME (IN

SECONDS) ARE COMPARED. THE METHOD WITH THE LOWEST TEST ERROR UNDER EACH LEARNING ALGORITHM IS IN BOLDFACE.

Name MLP C4.5

NC Ada CELS NCCD NC Ada

soybean-large Err 10.080+1.124 | 10.6654+1.281 | 10.50540.258 7.9521+0.714 7.553+1.457 8.244+1.795
Time 71.2 68.8 1251.5 226.3 0.17 0.15

vowel Err 44.826+1.834 | 46.147+1.679 | 47.7924+2.456 | 49.329+1.846 51.428+2.217 | 53.030+2.105
Time 23.2 23.1 150.1 45.7 0.40 0.38

segmentation Err 2.57540.387 2.489+0.371 3.46340.478 3.37640.423 2.099+0.323 2.31640.250
Time 107.8 107.8 717.8 374.2 1.3 1.2

satimage Err 9.7351+0.382 10.175+0.408 9.85040.309 9.78540.233 10.315+0.395 | 10.700£0.297
Time 607.4 606.5 3702.5 22254 9.7 9.6

AdaBoost.NC inherits the advantages of NCL methods and
overcomes their problems with low computation cost.

V. CONCLUSIONS

This paper proposes a new NCL algorithm for classifica-
tion ensembles, AdaBoost.NC. It encourages diversity explic-
itly by building classifiers sequentially and introducing the
correlation information into the weights of training examples.
It is more flexible and simpler than other NCL algorithms,
and applicable to both two-class and multi-class problems.
Different from the penalty form in CELS, the ambiguity term
used to measure the current diversity degree in AdaBoost.NC
is derived theoretically for classification ensembles, which
is another main work in this paper. The algorithm can be
regarded as a “cost-sensitive” solution, where the diversity
degree is the “cost”.

AdaBoost.NC shows better generalization ability over ten
two-class and four multi-class tasks comparing to the stan-
dard AdaBoost, CELS and NCCD. After each iteration, the
easier examples are chosen to help the classification over
the more difficult examples. It outperforms the standard
AdaBoost and NCCD in more than half of the cases with a
lower generalization error, and has competitive results with
CELS. Besides, it seems CELS is less effective on multi-class
cases than on two-class ones. As to the computation cost, our
algorithm is much faster than CELS and NCCD, and relaxes
the restriction on using neural network as the base learner.
Therefore, AdaBoost.NC is a promising algorithm.

There are some remaining issues for future discussion. The
ensemble size and the scaling coefficient A are predefined at
the moment. It is useful to know how our algorithm performs
when an ensemble becomes very large or very small, and
discuss the range of A. Another interesting issue is to explore
what kind of problems AdaBoost.NC is more effective on,
and compare with recent classification ensembles by employ-
ing other metrics in addition to the misclassification error.
Finally, more experiments need to be done for multi-class
problems.
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