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Abstract — In this study, an evolving least squares support vector machine (LSSVM) learning 

paradigm with a mixed kernel is proposed to explore stock market trends. In the proposed 

learning paradigm, a genetic algorithm (GA), one of the most popular evolutionary algorithms 

(EAs), is first used to select input features for LSSVM learning, i.e., evolution of input features. 

Then another GA is used for parameters optimization of LSSVM, i.e., evolution of algorithmic 

parameters. Finally, the evolving LSSVM learning paradigm with best feature subset, optimal 

parameters and a mixed kernel is used to predict stock market movement direction in terms of 

historical data series. For illustration and evaluation purposes, three important stock indices, S&P 

500 Index, Dow Jones Industrial Average Index, and New York Stock Exchange Index, are used 

as testing targets. Experimental results obtained reveal that the proposed evolving LSSVM can 

produce some forecasting models that are easier to be interpreted by using a small number of 

predictive features and are more efficient than other parameter optimization methods. 

Furthermore, the produced forecasting model can significantly outperform other forecasting 
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models listed in this study in terms of the hit ratio. These findings imply that the proposed 

evolving LSSVM learning paradigm can be used as a promising approach to stock market 

tendency exploration. 

 

Index Terms — Least squares support vector machine, evolutionary algorithms, feature selection, 

parameter optimization, mixed kernel, genetic algorithm, statistical models, artificial neural 

networks, stock market trend mining 

 

I. INTRODUCTION 

Mining stock market trend or predicting stock price movement direction is regarded as a rather 

challenging task due to its high volatility, irregularity and noisy environment in stock markets. 

Usually, the difficulty in predicting stock price movement direction is attributed to the limitations 

of many conventional linear forecasting models. For example, some researchers found that many 

standard econometric models are unable to produce significantly better predictions than the 

random walk model [1], which has also encouraged academic researchers and business 

practitioners to develop more predictable models. Recent studies reveal that nonlinear models are 

able to simulate the volatile stock markets well and produce better predictive results than 

traditional linear models in stock market tendency exploration [2]. Of various nonlinear models, 

the artificial neural networks (ANNs) are considered as a class of strong alternatives to 

predicting stock price movement direction. As claimed by Grudnitski and Osburn [3], ANNs are 

particularly well suited for finding accurate solutions in an environment characterized by 

complex, noisy, irrelevant or partial information. Furthermore, ANNs have been proved to be a 

class of universal function approximators that can map any nonlinear function without any a 

priori assumption about the data [4]. For these reasons, ANNs have been widely applied to stock 



 3 

market prediction [5]. 

In all neural network applications, multi-layer feedforward neural network (MLFNN) is used 

most frequently for stock market price prediction [1, 6-12]. Besides the MLFNN, other neural 

network types, such as probabilistic neural network (PNN) [13-15] recurrent neural network 

(RNN) [16-17] are also applied to stock market price prediction. Particularly, when predicting 

stock market price, some researchers attempt to hybridize some novel factors into the neural 

network learning process to improve the prediction performance. For example, Kohara et al. [17] 

incorporated prior knowledge into the neural network learning to improve the performance of 

stock market prediction. Tsaih et al. [18] integrated the rule-based technique and ANN to predict 

the S&P 500 stock index future price based on daily data. Similarly, Kim and Han [19] proposed 

a genetic algorithm (GA) approach to discretizing input features and determining connection 

weights for ANN to predict the stock price index. They suggested that their approach reduced the 

dimensionality of the feature space and enhanced the prediction performance. A recent good 

survey about stock market prediction with ANN can refer to Huang et al. [5] for more literature. 

Numerous successful applications have shown that ANN is a very useful tool for stock 

market modeling and forecasting, but some studies have also revealed that ANN often exhibits 

inconsistent results due to the limitations of ANN itself [20]. Furthermore, in some practical 

applications, local minima and overfitting are often encountered in ANN modeling. To overcome 

these shortcomings, support vector machine (SVM) first proposed by Vapnik [21] was 

introduced in the 1990s. Compared with the ANN, the main advantages of the SVM reflect 

two-fold. On the one hand, the SVM is implemented by the structural risk minimization (SRM) 

principle, which searches to minimize an upper bound of generalization error. Thus, the solution 

of the SVM may be a global optimum rather than a local optimum. On the other hand, the SVM 

can minimize the risk of overfitting by choosing the maximal margin hyperplane in feature space 
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[22]. Due to these characteristics, the SVM models are attracting more and more attention. 

Typical examples are Huang et al. [2], Kim [23] and Yu et al. [24]. 

However, a predictive SVM model often suffers from much difficulty in improving 

computational efficiency, optimizing model parameters and selecting relevant input features. 

First of all, the Vapnik’s SVM model requires solving a quadratic programming (QP) problem 

and thus it is very slow when a large-scale practical problem is given. Second, in the SVM 

modeling, some important parameters such as upper bound parameter and kernel parameters are 

not optimized, which may affect the generalization performance of SVM. Third, a predictive 

SVM model also encounters much difficulty in selecting some important features. Furthermore, 

the problem may become more intractable when the model interpretability is important. For 

example, in stock market trend exploration, it is critical for decision-makers to understand the 

key drivers of affecting stock price movement. However, a predictive SVM model that is 

essentially a “black box” is not helpful for developing comprehensive forecasting models [25]. 

In order to provide a good solution to the above problems, this study proposes an evolving 

least squares support vector machine (LSSVM) [26-27] learning paradigm with the best feature 

subset, optimal model parameters and a mixed kernel for stock market trend mining. The main 

reasons for proposing the evolving LSSVM reflect three-fold. First of all, the LSSVM has 

excellent generalization performance and low computational cost [26] relative to the standard 

SVM proposed by Vapnik [21]. Second, some empirical experiments [26-28] also confirmed the 

efficiency of LSSVM. Third, some evolving strategies [29-34] are usually efficient to solve some 

difficult optimization problems. Concretely speaking, the proposed evolving LSSVM learning 

paradigm consists of the following two main components: (1) GA-based feature selection, i.e., 

feature evolution component and (2) GA-based parameter optimization, i.e., parameter evolution 

component. 
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In the feature evolution component, a standard genetic algorithm (GA) [35], the most popular 

type of evolutionary algorithm (EA), is used to select important input features for LSSVM 

learning. In this component, two key goals, forecasting performance (or predictive accuracy) and 

model complexity (or model interpretability) constitute the evaluation fitness function of the GA. 

Note that these two goals are often in conflict. In this study, we try to arrive at a trade-off 

between performance and complexity from the following two aspects. 

On the one hand, we will build a simplified predictive model that integrates LSSVM with a 

GA to improve the prediction performance. In this component, we first utilize GA to identify 

some key variables of affecting stock price movement and then use the selected variables to train 

LSSVM. This can be done by learning linear or possibly nonlinear relationships between the 

given input variables and the dependent variable. Because the original input variables may 

contain some redundant information, reducing some redundant variables may improve the 

prediction performance. 

On the other hand, we enhance the interpretability of the predictive model by reducing the 

data dimensionality using GA. In this component, GA is used to select a subset of original 

features thus simplifying the LSSVM model and increasing the model interpretability. Usually, 

data dimensionality reduction can be done via feature selection. Generally, feature selection 

algorithms such as principal component analysis (PCA) have been often used for this purpose. 

However, in this study, the PCA is not appropriate because our goal is not only to reduce the data 

dimensionality, but also to obtain highly accurate predictive models. But the PCA does not 

consider the relationship between the response variable and other input variables in the process 

of data reduction and thus it is difficult to produce a highly accurate model. Furthermore, the 

resulting principal components from the PCA can be difficult to be interpreted when the 

dimensionality of input variables is huge. On the contrary, the GA has proved to have superior 
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performance to other algorithms for dataset with high dimensionality [36]. In the feature 

evolution process, if we extract as much information as possible from a given data set while 

using the smallest number of features, we can not only save much computational cost, but also 

build a simplified LSSVM model with better generalization. Furthermore, feature selection can 

also significantly improve the comprehensibility of the resulting models. Even a complicated 

model can be more easily understood if constructed from only a few variables. 

In the parameter evolution component, another GA is used to optimize parameters of LSSVM. 

Usually, the LSSVM generalization ability is controlled by kernel type, kernel parameters and 

upper bound parameter. Every kernel type has its advantages and disadvantages and thus a mixed 

kernel [37-38] is introduced into the LSSVM learning paradigm in this study. In this component, 

kernel combination coefficients, kernel parameters and upper bound parameter are also evolved 

and optimized. In this component, the forecasting performance or predictive accuracy is used as 

the evaluation fitness function of the GA. Note that the forecasting performance is the average 

predictive accuracy via k-fold cross validation. 

In sum, the proposed evolving LSSVM learning paradigm makes full use of the desirable 

characteristics of GA and LSSVM models to achieve two principal goals: model interpretability 

and predictive accuracy. The detailed process is as follows. A standard GA is used to select the 

possible combination of features. The input features selected by GA are used to train LSSVM. 

The trained LSSVM is tested on an evaluation set, and a proposed model is evaluated in terms of 

two evaluation criteria: prediction accuracy (which is maximized) and model complexity (which 

is minimized). This process is repeated many times as the algorithm searches for a desirable 

trade-off between predictive accuracy and model complexity. The final results obtained is a 

highly accurate predictive model that uses only a subset of initial features, thus simplifying the 

model and providing some useful information on future data collection work. 
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The main motivation of this study is to propose a new evolving LSSVM learning paradigm 

integrating LSSVM with GA for exploring stock market tendency and to test the predictability of 

the proposed learning paradigm by comparing it with statistical models and neural network 

models. The rest of the study is organized as follows. The next section gives a brief introduction 

of SVM and LSSVM. The new evolving LSSVM learning paradigm is described in Section III in 

detail. In Section IV the research data and comparable forecasting models are presented. The 

experimental results are reported in Section V. Section VI concludes the paper. 

 

 

II. SVM AND LSSVM 

Support vector machine (SVM) is a highly-competitive learning paradigm originally proposed by 

Vapnik [21] in the 1990s. It is based on the structural risk minimization (SRM) principle from 

computational learning theory. The basic idea of SVM is to maximize the margin hyperplane in 

the feature space. Similar to other supervised learning methods, an underlying theme of the SVM 

is to learn from data. Suppose that there is an input space, denoted by X, nRX ∈ , an output 

space, denoted by Y, and a training dataset N
NNii YXyxyxyxD )()},(,),,(,),,{( 11 ×⊆= LL , N is the 

size of the training data. The overall assumption for learning is the existence of a hidden function 

Y=f(X), and learning task is to construct a heuristic function g(X), such that fg →  on the 

prediction of Y. The nature of the output space Y decides the learning type. Y={1, -1} leads to a 

binary classification problem, Y={1, 2,…, M} leads to a multi-class classification problem, and 

nRY ⊆  leads to a regression problem. Here only binary classification problem is discussed. 

As earlier noted, SVM belongs to the type of maximal margin classifier, in which the 

classification problem can be represented as an optimization problem, as shown in Eq. (1). 
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where w is the normal vector of the hyperplane, b is the bias that is a scalar, )(xϕ  is a mapping 

function, iξ  is a tolerable classification error, C is an upper bound parameter controlling the 

trade-off between margin maximization and tolerable classification errors. When C is large, the 

error term will be emphasized. Small C means that the large classification margin is encouraged. 

Vapnik [21] showed how training a SVM for classification leads to a quadratic programming 

(QP) problem with bound constraints and linear equality constraints, as shown in Eq. (2). 
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where iα  is the so-called Lagrange multipliers, which can be obtained in Eq (2), ),( ji xxK  is 

defined as a kernel function with )()(),( j
T

iji xxxxK ϕϕ= . The elegance of using the kernel 

function is that one can deal with feature spaces of arbitrary dimensionality without having to 

compute the map function )(xϕ  explicitly. Any function that satisfies Mercer’s condition [21] 

can be used as the kernel function. Typical examples of the kernel function are the polynomial 

kernel d
j

T
ijipoly xxxxK )1(),( += , radial basis function (RBF) kernel: )exp(),( 22

2
σjijirbf xxxxK −−= , 

and sigmoid kernel )tanh(),( θρ += j
T
ijisig xxxxK , where d, σ, ρ, and θ are kernel parameters. 

From the implementation point of view, training SVM is actually equivalent to solve the linearly 

constrained QP problem. For this purpose, some traditional QP algorithms such as interior point 

algorithms [39] and active set method [40] can be utilized. However, for some large-scale 
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problems, these traditional algorithms are not suitable due to the following reasons. First, these 

algorithms require that the kernel matrix be computed and stored in memory which may need 

extremely large memory for the large size problems. Second, these algorithms involve expensive 

matrix operations such as the Cholesky decomposition of a large submatrix of the kernel matrix. 

Third, for practitioners who would like to develop their own implementation of an SVM 

classifier, coding these algorithms is very difficult [41]. 

Some attempts have been made to develop methods that overcome some or all of these 

problems. Vapnik [42] presented the chunking algorithm to enhance the computational efficiency 

by removing some zero vectors. But this algorithm is only suitable for the case that the number 

of support vectors is small. If the number of support vectors itself is large, the chunking 

algorithm is inappropriate [41].  

Recently Platt suggested a sequential minimal optimization (SMO) algorithm [43] to speedup 

the training of SVM. Generally the SMO is a carefully organized algorithm which has excellent 

computational efficiency. However, due to its way of computing and using a single threshold 

value, it can get into a confused end state and can also become inefficient [41].  

To overcome the above problems, a new technique, least squares SVM (LSSVM) proposed 

by Suykens and Vandewalle [26] is introduced. In LSSVM, the classification problem can be 

formulated as: 
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In order to solve the above optimization problem in Eq. (3), a Lagrangian function can be 

constructed below: 
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where iα are Lagrangian multipliers. Differentiating (4) with w, b, iξ , and iα , we can obtain 
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By simple substitutions, we get the following linear equations. 
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Using the above (N+1) linear equations, we can obtain the solution of LSSVM. Compared 

with the standard SVM [22], the solution of LSSVM can be achieved from a set of linear 

equations instead of a QP problem although there are more efficient SVMs than the standard one. 

In some real-world experiments, the LSSVM has been found with excellent generalization 

performance and low computational cost [26-27]  

It is worth noting that the generalization ability of SVM and LSSVM is controlled by kernel 

types, kernel parameters and upper bound C [37-38]. As previously mentioned, three typical 

kernels, polynomial, RBF and sigmoid kernel, are often used. However, every kernel has its 

advantages and disadvantages and it is therefore hard to say which one is the best in all problems. 

Recent studies [37-38] found that the mixture or hybridization of these kernel functions can 

improve the generalization performance of SVM. In this study, we also use a mixed kernel to 

train LSSVM, which is different from Suykens’ LSSVM [27-28]. The mixed kernel is a convex 

combination of the above three kernels. The convex combination kernel can be written by 
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According to the previous kernel description of SVM, kernel function must satisfy Mercer’s 

Theorem [21]. In the proposed mixed kernel, since Kpoly and Krbf, satisfy Mercer’s Theorem, a 

convex combination of them also satisfy Mercer’s Theorem. Although sigmoid kernel Ksig does 

not always satisfy Mercer’s condition, it is provided since people have historically found it 

useful. Furthermore, practical applications have proved that it is suitable for a kernel. Thus Ksig is 

added into our proposed mixed kernel for LSSVM modeling. 

 

 

III. EVOLVING LSSVM LEARNING PARADIGM 

In this section, the proposed evolving LSSVM learning paradigm is described in detail. First of 

all, a general framework of the evolving LSSVM learning paradigm is presented. Then each 

component of the proposed evolving LSSVM learning paradigm is described in detail.  

A. General Framework of Evolving LSSVM Learning Paradigm 

A great number of empirical experiments demonstrated that the LSSVM is an efficient learning 

algorithm for regression and classification problems [26-27]. However, there are still two main 

problems for LSSVM applications. On the one hand, when the input space dimensions, i.e., input 

features, are rather large, the interpretability of the LSSVM-based predictive model will be poor. 

It is therefore necessary for LSSVM to preprocess the input features. On the other hand, LSSVM 

generalization ability is often controlled by kernel type, kernel parameters and upper bound 

parameter. Although this study uses a mixed kernel function to overcome the influence of kernel 

types, the choice of many parameters, such as convex combination coefficients (λ1, λ2, and λ3), 
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kernel parameters (d, σ, ρ, and θ) and upper bound parameter C, depends in many aspects on the 

art of the researchers. For these two problems, evolutionary algorithm (EA) is used. Particularly, 

for the first problem, a standard genetic algorithm (GA) is used for input feature selection to 

increase the model interpretability and avoid “curse of dimension”. For the second problem, 

another GA is used to optimize the parameters of LSSVM to improve the generalization ability. 

Based upon the two evolutionary procedures, the evolving LSSVM learning paradigm is 

formulated, which is illustrated in Fig. I. 

<Insert Fig. I Here> 

As can be seen from Fig. I, it is easy to find that the evolving LSSVM learning paradigm 

consists of two main components responding to the above two main problems. In the first 

component, GA searches the exponential space of feature variable subsets and passes one subset 

of features to a LSSVM model. The LSSVM extracts predictive information from each subset 

and learns the patterns. Once a LSSVM learns the data patterns, the trained LSSVM is evaluated 

on a hold-out dataset not used for training, and returns the evaluation criteria as a fitness function 

to the GA. In terms of the fitness values, the GA biases its search direction to optimize the 

evaluation objective. This routine continues for a fixed number of generations. Among all the 

evolved models over the generations, we select the best feature subset in terms of fitness function 

values. It is worth noting that in the training and evaluation procedures, the LSSVM only uses 

the selected feature variables. In the second component, GA is used to optimize the eight 

undetermined parameters, λ1, λ2, λ3, d, σ, ρ, θ, and C, as listed above. In this component, the eight 

undetermined parameters are first defined as a chromosome. The fitness of each chromosome is 

determined by the GA fitness function, i.e., predictive performance of LSSVM using the 

chromosome as its parameters. The chromosomes are processed by several evolution procedures, 

i.e., crossover, mutation and selection, to produce the optimal solution. The detailed contents of 
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every component are described in the following subsections. Through the above two 

evolutionary procedures, an evolving LSSVM learning paradigm with best feature subset and 

optimal parameters are produced for generalization purpose. 

It is worth noting that the two evolution components can be combined. That is, the feature 

evolution and parameter evolution can be optimized simultaneously. But in this study two main 

goals, model interpretability and model accuracy, should be tested. Therefore, we use two 

individual evolution components for this purpose. In addition, the sequence of the two evolution 

components can be exchangeable from the theoretic viewpoint. That is, in the evolving LSSVM 

learning paradigm, the parameter optimization procedure can be performed before the feature 

selection procedure. But in practice it is unsuitable for large input feature dimension because it 

will lead to too much computational workload. In this sense, performing feature selection before 

parameter evolution is more rational.  

 

B. GA-based Input Features Evolution 

For many practical problems, the possible input variables may be quite large. Among these input 

variables, there may be some redundancy. Furthermore, too many input features may lead to 

“curse of dimension”. In addition, a large number of input variables will increase the size of 

LSSVM and thus require more training data and longer training times in order to obtain a 

reasonable generalization ability [44]. Therefore input feature reduction should be done with 

feature selection procedure. Generally, feature selection is defined as the process of selecting a 

subset of the original features by eliminating redundant features or some features with little 

information [25]. In the proposed evolving LSSVM learning paradigm, the first task is to select 

important features for LSSVM learning. The main aims of feature selection reflect two-fold. The 

first is to discard some unimportant features with less information and thus reducing the input 
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feature dimensions and improving the model prediction performance. The second is to identify 

some key features of affecting model performance and therefore reducing the model complexity. 

In this study, we use standard GA to extract input feature subset for LSSVM modeling. 

To date, GA, the most popular type of evolutionary algorithm (EA), has become an important 

stochastic optimization method as they often succeed in finding the best optimum in contrast to 

most common optimization algorithms. GA imitates the natural selection process in biological 

evolution with selection, mating reproduction (crossover) and mutation, and the sequence of the 

different operations of a genetic algorithm is shown in the left part of Fig. II. The objects to be 

optimized are represented by a chromosome whereby each object is encoded in a binary string 

called a gene. Thus, a chromosome consists of as many genes as parameters to be optimized [45].  

Interested readers can refer to Goldberg [35] for more details about GA. In the following the 

GA-based feature variable selection is discussed in detail. 

<Insert Fig. II Here> 

First of all, a population, which consists of a given number of chromosomes, is initially 

created by randomly assigning “1” and “0” to all genes. In the case of variable selection, a gene 

contains only a single bit string for the presence and absence of a variable. The top right part of 

Fig. II shows a population of four chromosomes for a three-variable selection problem. In this 

study, the initial population of the GA is randomly generated except of one chromosome, which 

was set to use all variables. The binary string of the chromosomes has the same size as variables 

to select from whereby the presence of a variable is coded as “1” and the absence of a variable as 

“0”. Consequently, the binary string of a gene consists of only one single bit [45]. 

The subsequent work is to evaluate the chromosomes generated by previous operation by a 

so-called fitness function, while the design of the fitness function is a crucial point in GA, which 

determines what a GA should optimize. In order to guide a GA toward more highly fit regions of 
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the search space of chromosomes, one or more fitness values must be assigned to each string. 

Usually, a standard GA is designed for optimization problems with only one objective. Each 

fitness value can be determined by a fitness function that we want to optimize. In this work, the 

fitness value for a string is determined by a LSSVM model. Because our goal is to find a small 

subset of input variables from many candidate variables, the evaluation of the fitness starts with 

the encoding of the chromosomes into LSSVM model whereby “1” indicates that a specific 

variable is selected and “0” that a variable is not selected by the LSSVM model. Note that the 

LSSVM is used here for modeling the relationship between the input variables and the response 

variable. Then the LSSVM models are trained with a training data set and after that, the trained 

LSSVM is tested on a hold-out dataset, and the proposed model is evaluated both on the model 

generalization performance (e.g., hit ratio, which is maximized) and the modeling complexity 

(i.e., number of selected feature variables, which is minimized) of the solution. Finally, these two 

evaluation criteria are combined into one so-called fitness function f and used to evaluate the 

quality of each string. For a classification problem, for example, our fitness function for the GA 

variable selection can use the following form: 

complexityaccuracy EEf α−=                             (8) 

where Eaccuracy is the classification accuracy or hit ratio, representing the model predictive power, 

Ecomplexity is the model complexity, α is a parameter. Parameter α is aimed at adjusting the number 

of variables used by the evolved LSSVM in terms of users’ preference. Usually, a high value of 

the fitness function results in only few variables selected for each LSSVM model whereas a 

small value of fitness function results in more variables being selected. We expect that lower 

complexity will lead to easier interpretability of solutions as well as better generalization. 

From Eq. (8), it is not hard to find that two different goals, model accuracy and model 
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complexity, are combined into one fitness value for candidate solutions. Usually, model accuracy 

of classification problems can be represented by hit ratio with the following form: 

sample evaluation all ofnumber  The
tionclassificacorrect  ofnumber  The

=accuracyE                    (9) 

In Eq. (8), the aim of the first part is to favor feature variable subsets with higher 

discriminative power to classification problems, while the second part is aimed at finding 

parsimonious solutions by minimizing the number of selected features as follows. 

tot

v
complexity N

nE =                                  (10) 

where nv is the number of variables used by the LSSVM models, Ntot is the total number of 

variables. 

After evolving the fitness of the population, the best chromosomes with the highest fitness 

value are selected by means of the roulette wheel. Thereby, the chromosomes are allocated space 

on a roulette wheel proportional to their fitness and thus the fittest chromosomes are more likely 

selected. In the following mating step, offspring chromosomes are created by a crossover 

technique. A so-called one-point crossover technique is employed, which randomly selects a 

crossover point within the chromosome. Then two parent chromosomes are interchanged at this 

point to produce two new offspring. After that, the chromosomes are mutated with a probability 

of 0.005 per gene by randomly changing genes from “0” to “1” and vice versa. The mutation 

prevents the GA from converging too quickly in a small area of the search space. Finally, the 

final generation will be judged. If yes, then the optimized subsets are selected. If no, then the 

evaluation and reproduction steps are repeated until a certain number of generations, a defined 

fitness or a convergence criterion of the population are reached. In the ideal case, all 

chromosomes of the last generation have the same genes representing the optimal solution [45]. 
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C. GA-based Parameters Evolution 

As earlier noted, the LSSVM generalization ability is often affected by kernel types, kernel 

parameters and upper bound parameters. To reduce the effect of kernel types, we use a mixed 

kernel in the LSSVM model, as shown in Eq. (7). As a result it brings three additional 

coefficients, λ1, λ2, and λ3. These three coefficients along with kernel parameters (d, σ, ρ, θ) and 

upper bound parameter C constitute the objects of evolution because the choice of these 

parameters depends heavily on the experience of researchers. Therefore a general representation 

of parameters using in a LSSVM training process are describe as a vector as follows: 

),,,,,,,( 321 Cd θρσλλλ=Θ                           (11) 

To perform parameter search process using GA, the model generalization performance is 

used as fitness function. In order to increase the robustness, k-fold cross validation method is 

used. That is, the average model performance is used as the fitness function. For a regression or 

classification problem, we define the fitness function f by the following steps. 

(1) Randomly split the samples data into Dtraining and Dvalidation using k-fold cross 

validation technique; 

(2) Use Dtraining to train the LSSVM model with the parameters P and obtain a predictor 

or classifier; 

(3) Use the predictor or classifier to predict or classify the samples in Dvalidation; 

(4) Compute the average prediction or classification performance of the k-fold cross 

validation, Ēaccuracy; 

(5) The value of the fitness function f is model generalization performance, it is the 

average value, i.e., f(Θ) = Ēaccuracy. 

Now the goal is to maximize the fitness function f(Θ). Together with the previous parameter 

constraints, we can formulate the following optimization problem: 
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where Θ is a vector representing the LSSVM parameters. The GA is used to solve the above 

optimization problem.  

First of all, the parameter vector ),,,,,,,( 321 Cd θρσλλλ=Θ  of LSSVM is defined as a 

chromosome. Then the fitness of each chromosome is determined by the fitness function: 

average generalization performance of LSSVM using the chromosome as its parameters. The 

chromosomes are processed by evolution steps, i.e., selection, crossover and mutation, as 

illustrated in Fig. II, to produce the optimal solution. The detailed evolutionary procedure can be 

written as following: 

(1) Generate the initial chromosome randomly within the initial range; 

(2) For each chromosome, use fitness function f to calculate the fitness value; 

(3) Perform the basic genetic operations: select parents based on their fitness values, produce 

children from the parents by crossover and mutation. These basic genetic operations are 

similar to the previous description in Section III.B. Replace the current chromosome with 

the children to formulate a new chromosome; 

(4) Repeat the second and third steps until the stop criteria are met. 

(5) Report the best chromosome with the largest fitness value as the optimal solution. This 

best chromosome corresponds to the optimal parameters by GA process. Return these 

parameters. 

In Steps (1) and (3), the initialized and updated chromosomes must be satisfied the 

constraints in Eq. (12). Note that the GA uses the following five stop criteria [46]: 
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(1) When the number of generations reaches the predefined generations; 

(2) After running for an amount of time in seconds equal to the pre-specified time; 

(3) When the fitness value for the best point in the current chromosome is less than or equal 

to the predefined fitness limit; 

(4) If there is no improvement in the fitness function for a sequence of consecutive 

generations of length; 

(5) If there is no improvement in the fitness function during an interval of time in seconds 

equal to the pre-specified value. 

Through the above evolutionary procedures, the evolving LSSVM learning paradigm with a 

mixed kernel, best input features and optimal parameters are produced. For illustration and 

evaluation purpose, the produced evolving LSSVM learning paradigm can be further applied to 

stock market trend mining problems in the following section. 

 

 

IV. RESEARCH DATA AND COMPARABLE MODELS 

In this section, the research data and their input features are first described. Then the comparable 

forecasting models are brief reviewed.  

 

A. Research Data and Input Variables Description 

In this section, three typical stock indices, S&P 500 index, Dow Jones Industrial Average (DJIA) 

index, and New York Stock Exchange (NYSE) index are used to test the effectiveness of the 

proposed evolving LSSVM learning paradigm. The historical data are monthly and are obtained 

from Wharton Research Data Service (WRDS), provided by Wharton School of the University of 

Pennsylvania. The entire data set covers the period from January 1926 to December 2005 with a 
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total of 960 observations. Although the Dow Jones Industrial Average Index started from January 

1896, we only use the data covered from January 1926 to December 2005 for consistency 

purpose. The data sets are divided into two periods: the first period covers January 1926 to 

December 1989 with 768 observations, while the second period is from January 1990 to 

December 2005 with 192 observations. The first period, which is assigned to in-sample 

estimation, is used for network learning, i.e., training set. The second period, which is reserved 

for out-of-sample evaluation, is used for validation, i.e., testing set. Note that this data split is 

only for final validation and testing purpose, which is determined by the later experiments. For 

feature selection and parameter optimization procedure, k-fold cross validation split method is 

used, which will be described later. For space limitation, the original data are not listed in this 

paper, and detailed data can be obtained from the WRDS. 

The main aim of this study is to mine and explore the movement trend of stock index. They 

are categorized as “1” and “-1” in the research data. “1” represents that the next month’s index is 

higher than this month’s index, and “-1” means that the next month’s index is lower than this 

month’s index. In this sense, stock market trend mining is actually a classification problem. 

Therefore we use hit ratio to measure the prediction performance, which is defined as 

∑=
=

N

i iR
N 1

1ratioHit                                (13) 

where Ri = 1 if MOi = AOi; Ri = 0 otherwise. MOi is the model output, and AOi is the actual 

output, N is the number of the testing examples. 

Since we attempt to mine the stock price index movement direction, technical indicators and 

some factors affecting stock market price index are used as input variables. In this study, we 

select 20 technical indicators and 6 fundamental macro variables to make up the initial input 

features, as determined by the review of domain experts and prior studies [2, 23]. The 
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descriptions of initially selected attributes or features are presented in Table I. Note that the data 

of technical indicators can be obtained through computation with corresponding computational 

formula shown in Table I and the data of fundamental macro variables can also be obtained 

directly from the WRDS. 

<Insert Table I Here> 

 

B. Overview of Other Comparable Forecasting Models 

In order to evaluate the forecasting ability of the proposed evolving LSSVM learning paradigm, 

we compare its performance with those of conventional methods, such as statistical and time 

series model as well as typical nonlinear intelligent models: neural network model, standard 

SVM model, individual LSSVM model without GA-based input feature selection, as well as 

individual LSSVM model without GA-based parameter optimization. Typically, we select the 

auto-regressive integrated moving average (ARIMA) model, linear discriminant analysis (LDA) 

model, individual back-propagation neural network (BPNN) model and standard SVM model 

with full feature variables as the benchmarks. For further comparison, individual LSSVM model 

with polynomial kernel (LSSVMpoly), individual LSSVM model with RBF kernel (LSSVMrbf), 

individual LSSVM model with sigmoid kernel (LSSVMsig), individual LSSVM model with a 

mixed kernel (LSSVMmix), individual LSSVM model with GA-based input feature selection only 

(LSSVMgafs) and individual LSSVM model with GA-based parameter optimization (LSSVMgapo) 

are also conducted. We do not compare our proposed learning paradigm to a standard logit 

regression model because a logit regression model is a special case of single BPNN model with 

one hidden node. 

For ARIMA models, only the stock index price P is used. In the ARIMA model [47], the 

future value of a variable is assumed to be a linear function of several past observations and 
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random errors. That is, the underlying process that generates the time series takes the form: 

tt eByB )()( θφ =                                   (14) 

where yt and et are the actual value and random error at time t respectively; B denotes the 

backward shift operator, i.e. Byt = yt-1, B2yt = yt-2 and so on; and p
p BBB φφφ −−−= L11)( , 

q
q BBB θθθ −−−= L11)( , where p, q are integers and often referred to as orders of the model. 

Random errors, et, are assumed to be independently and identically distributed with a mean of 

zero and a constant variance of 2σ , i.e. ),0(~ 2σIIDet . If the dth difference of {yt} is an ARIMA 

process of order p and q, then yt is called an ARIMA (p, d, q) process. Because ARIMA is a time 

series model, the final stock index price movement direction needs to use the following equation 

to calculate with the predicted value:  
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where yt is the actual value in current period t and 1ˆ +ty  is the predicted value in the next period. 

LDA [2] can handle the case in which the within-class frequencies are unequal and its 

performance has been examined on randomly generated test data. This method maximizes the 

ratio of between-class variance to the within-class variance in any particular data set, thereby 

guaranteeing maximal separability. Usually, a LDA model with d-dimension inputs takes the 

following form: 

)sgn()ˆsgn()(
10 ∑ =
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d

i ii xaayxz                       (16) 

where a0 is the intercept, xi are various factors affecting stock price movement, and ai are the 

coefficients of related factors. Each of the ARIMA and LDA models is estimated by in-sample 

data. The model selection process is then followed by using an empirical evaluation, e.g., RMSE, 
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which is based on the out-of-sample data. 

The BPNN model [4] is widely used and produces successful learning and generalization 

results in various research areas. Usually, a BPNN can be trained by the historical data. The 

model parameters (connection weights and node biases) will be adjusted iteratively by a process 

of minimizing the forecasting errors. For prediction purposes, the final computational form of the 

BPNN model can be written as 

))(sgn()ˆsgn()(
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where ja (j = 0, 1, 2, …, q) is a bias on the jth unit, ijw  (i = 1, 2, …, p; j = 1, 2, …, q) is the 

connection weight between layers of the model, xi (i = 1, 2,…, p) are the input variable factors, 

f(•) is the transfer function of the hidden layer, p is the number of input nodes and q is the 

number of hidden nodes. In our study, the BPNN has 26 input nodes because 26 input variables 

are employed. By trial and error, we set the number of training epochs is 500 and heuristically 

determine the number of hidden nodes using the formula (2×nodein±1) where nodein represents 

the number of input nodes. The learning rate is 0.25 and the momentum factor is 0.30. The 

hidden nodes use sigmoid transfer function and the output node uses the linear transfer function. 

For standard SVM model [21] with all input features, the SVM model has also 26 input 

variables, the radial basis function (RBF) is used as the kernel function of SVM. In standard 

SVM model with RBF kernel, there are two parameters, i.e., upper bound C and kernel 

parameter σ, to tune. By trial and error, the kernel parameter σ is 10 and the upper bound C is 70. 

More details about standard SVM, please refer to Vapnik [21]. SVM and LSSVM training code 

are the modification of LIBSVM [48] and LS-SVMlab [49]. 
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V. EXPERIMENT RESULTS 

In this section, we first show how to determine the key determinants of affecting stock price 

movement using the LSSVM guided by GA. Then the parameters evolutionary experiments are 

carried out. Finally, we compare the performance of the proposed evolving LSSVM learning 

paradigm with some comparable forecasting models. 

 

A. Empirical Analysis of GA-based Input Features Evolution 

In order to show the robustness of the GA-based feature selection method and determine which 

features are the key driver of stock index price movement, we use a k-fold cross-validation (CV) 

estimation procedure to perform eight independent experiments for each stock index in terms of 

eight different data partitions. In the k-fold CV estimation procedure, the training data is divided 

into k non-overlapping groups. We train a LSSVM using the first (k-1) groups of training data 

and test the trained LSSVM on the kth group. We repeat this procedure until each of the groups is 

used as a test set once. We then take the average of the performance measurements over the k 

folds. In this experiment, k is set to 5. This is a reasonable compromise considering the 

computational complexity and modeling robustness. Furthermore, an estimate from 5-fold CV is 

likely to be more reliable than an estimate from a common practice only using a single testing set. 

Note that the LSSVM in the experiments uses the mixed kernels. For the S&P 500 index, the 

parameter vector )55.223,56.72,33.36,42.2,95.1,3.0,6.0,1.0(),,,,,,,( 321500& ==Θ CdPS θρσλλλ , 

For the DJIA index, )21.126,03.99,35.82,23.6,78.1,3.0,5.0,2.0(),,,,,,,( 321 ==Θ CdDJIA θρσλλλ , 

for the NYSE index, )52.250,43.78,28.40,98.2,79.1,3.0,6.0,1.0(),,,,,,,( 321 ==Θ CdNYSE θρσλλλ . 

As previously mentioned, we will perform the eight independent experiments for each stock 

index. For this purpose different training data partitions are carried out. In this study, we 

randomly select i%(i = 20, 30, …, 90) training data to perform the feature selection. Here we 
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assume that the LSSVM training with less than 20% training data is inadequate. Each testing 

experiment includes three steps. First of all, we randomly select some input variable using GA 

and pass them to LSSVM. Second, the dataset is randomly separated two parts, training samples 

and validation samples, in terms of i%, respectively. Third, we select i% training data to train 

LSSVM model and then test the trained LSSVM with (100–i)% validation data in terms of 5-fold 

CV procedure. In addition, the crossover rate of GA is 0.8, the mutation rate is 0.005, the 

maximum generation is set to 150, and the number of independent GA runs is also set to 150 in 

each experiment. Accordingly, the selected features using GA-based feature selection procedure 

are shown in Table II. Note that the selected key features are the best feature sets from all the 

experiments, i.e., they are selected by eight independent experiments simultaneously through 

different dataset produced by data partition method. 

<Insert Table II Here> 

As can be seen from Table II, it is easy to see which features are key determinants of stock 

price movement. For each data partition, different predictive features are clearly highlighted. We 

partially attribute this finding to the strong correlation among price movement related features. 

However, note that one feature, monthly trading volume (20), is selected by all data partitions 

and all tested three stock indices. This makes considerable sense because the trading volume is 

significantly related to future stock price movement from this analysis. Therefore the investment 

decision-makers will add more weight to this feature for future predictions. 

With reference to Table II, we also find that the key determinants for different stock indices 

are different except the monthly trading volume. For the S&P 500 index, One-month T-bill (21), 

MACD (11) and one-month excess return (19), can be considered to be some key driver of S&P 

500 stock price movement because they appear many times in eight experiments. For the Dow 

Jones Industrial Average index, industrial production (23) and one-month T-bill (21) can be seen 
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as two important key drivers for Dow Jones Industrial Average index movement. While for the 

New York Stock Exchange index, the consumer price index (22), government consumption (24) 

and private consumption (25) are the key drivers for NYSE index movement direction. The 

reason leading to this difference is that different stock indices include different stock members 

from different industries. For example, S&P 500 is a composite index covering different 

industrial stocks, while Dow Jones Industrial Average index is an important industrial index 

closely related to industrial production. In terms of these key determinants, we can reduce data 

collection and storage requirements and thus reducing labor and data transmission costs. 

Generally, the results obtained are consistent with previous studies, such as Campbell et al. [50] 

and Hiemstra and Jones [51]. 

Through the analysis of these key determinants, we also find that most key determinants of 

affecting stock index movement are some fundamental macro factors, such as one-month T-bill 

(21), consumer price index (22) and industrial production (23). On the contrary, only one 

indicator, monthly trading volume (20) is chosen as the key driver among the 20 technical 

indicators, which implies that the stock index movement usually depends on the change of 

fundamental macro variables. This finding is very meaningful for investors and decision-makers 

because this finding can tell them that investing stock market should depend mostly on the 

fundamental analysis rather than technical analysis. 

At the same time, the GA-based feature selection procedure reduces data dimensions for 

different stock indices. For S&P 500 index, most data partitions choose at most six features 

except one that selects eight features at data partition i = 20% (The main reason may be that too 

less data are used). On average, the GA-based feature selection method selects six features. This 

reduces the data dimensionality by (26-6)/26 ≈ 76.92% for S&P 500 index. For the Dow Jones 

Industrial Average index and New York Stock Exchange index, the GA-based feature selection 
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procedure chooses five features on the average. The amount of data reduction reaches (26-5)/26 

= 80.77%. This indicates that we can reduce data collection, computation and storage costs 

considerably through the GA-based feature selection procedure. 

Although we only select several typical features to predict stock price movement tendency, 

the prediction performance of the model is still promising, as illustrated in Fig. III. Note that the 

value in Fig. III is the average prediction performance over the 5-fold cross validation 

experiments. 

<Insert Fig. III Here> 

As can be seen form Fig. III, several finding can be observed. First of all, before 70%~80% 

partition rate, the prediction performance generally improves with the increase of data partition. 

The main reason is that too less training data (e.g., 20%~30% partition rates) is often insufficient 

for LSSVM learning. Second, when 90% partition rate is used, the predictions show the worse 

performance relative to 80% partition rate. The reason is unknown and it is worth exploring 

further with more experiments. Third, in the three testing cases, the performance of the DJIA 

index is slightly better than the other two indices. The possible reason is that the DJIA index has 

a relatively smaller volatility than other two indices and real reason is worth further exploring in 

the future. In summary, the evolving LSSVM learning paradigm with GA-based feature selection 

is rather robust. The hit ratios of almost all data partition are above 75% except that the data 

partition is set to 20% for NYSE index (74.69%). Furthermore, the variance of five-fold cross 

validation experiments is small at 1%~8%. These findings also imply that the feature evolved 

LSSVM model can effectively predict stock market movement direction.  

 

B. Empirical Analysis of GA-based Parameter Optimization for LSSVM 

As is known to all, different parameters selection often results in different model performance for 
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different practical applications. For the LSSVM model, the generalization performance is often 

affected by kernel parameters and upper bound parameter, as earlier noted. In this study, the 

utilization of the mixed kernel also brings more uncertain parameters. Therefore the LSSVM 

model used in this study has eight parameters, which can be represented as a vector, i.e., 

),,,,,,,( 321 Cd θρσλλλ=Θ . In order to search their optimal combination, a series of data 

experiments are conducted. For saving the computational cost, we only use an LSSVM model for 

each stock index. According to the previous subsection, the LSSVM with 70% partition rate and 

five typical features (8, 11, 20, 21, and 26) is used for S&P 500 index modeling. For Dow Jones 

Industrial Average index, we use the LSSVM with 80% partition rate and four key features (1, 19, 

20, and 23). While for New York Stock Exchange index, the LSSVM with 80% partition rate and 

five important features (11, 16, 20, 22, and 25) is utilized. In addition, the crossover rate of GA is 

0.8, the mutation rate of GA is 0.005 and the maximum generation of GA is 150. Here the 

generation of GA represents the number of independent GA runs. Although we set the number of 

independent GA runs is 150, all of best solutions can be obtained before the iterations arrive the 

number of independent GA runs (i.e., maximum generation). 

According to the above setting, the evolutionary experiments on different parameters 

selections are conducted, the corresponding results are reported in Table III. It is worth noting 

that the parameters reported is the best parameter set from each experiment. 

<Insert Table III Here> 

As can be seen from Table III, some important and interesting conclusions can be found. First 

of all, observing the kernel mixed coefficients, it is easy to find that for the all testing cases the 

proportion of the RBF kernel (i.e., the coefficient of λ2) is the highest. This demonstrates that a 

RBF kernel has good ability to increase the generalization capability. Second, when the 

coefficient of λ1 arrives at 0.5, the prediction performance is the worst of all the three testing 
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cases. This implies that the polynomial kernel cannot dominate the kernel for LSSVM learning 

when complex learning task is assigned. Third, Similar to RBF kernel, the sigmoid kernel can 

also increase the generalization ability of LSSVM or decrease the error rate of LSSVM 

generalization through observing the change of λ3. Fourth, in terms of fitness function value, we 

can roughly estimate the rational range of kernel parameters. For example, for the parameter d, 

the range [1.5, 2.5] seems to generate good generalization performance. Fifth, for the upper 

bound parameter, a value larger than 100 seems to be suitable for practical classification 

applications. Perhaps such a value may give an appropriate emphasis on misclassification rate.  

In addition, an important problem in parameter evolution is computational time complexity. 

It is well known to all that the GA is a class of stochastic search algorithm and it is a 

time-consuming algorithm. Although GA-based input feature evolution has reduce the modeling 

complexity to some extent, but the parameters search is still a time-consuming process. For 

comparison purpose, two commonly used parameter search methods, the grid search (GS) 

algorithm [52] and direct search (DS) algorithm [46, 53] are used.  

In grid search (GS) algorithm, each parameter in the grid is first defined by the grid range. 

Then a unit grid size is evaluated by an objective function f. The point with best f value 

corresponds to the optimal parameter. The grid search may offer some protection against local 

minima but it is not very efficient. The optimal results depend on the initial grid range. Usually a 

large grid range can provide more chance to achieve the optimal solution but it takes more 

computational time. Interested readers can refer to [52] for more details about grid search. 

Direct search (DS) algorithm [46, 53] is a simple and straightforward search method and can 

be applied to many nonlinear optimization problems. Suppose the search space dimension is n, a 

point p in this space can be denoted by (z1, z2, …, zn), the objective function is f, and pattern v is 

a collection of vectors that is used to determine which points to search in terms of a current point, 
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i.e., v = [v1, v2, …, v2n], v1 = [1, 0, …, 0], v2 = [0, 1, …, 0], …, vn = [0, 0, …, 1], vn+1 = [-1, 0, …, 

0], vn+2 = [0, -1, …, 0], …, v2n = [0, 0, …, -1], n
i Rv ∈ , i =1, 2, …, 2n. The points set M = {m1, 

m2, …, m2n} around current point p to be searched are defined by the mesh which multiple the 

pattern vector v by a scalar r, called the mesh size. If there is at least one point in the mesh whose 

objective function value is better than that of the current point p, we replace this old point with 

the new point until the best point is found. For more details, please refer to [46, 53]. 

In this study, the computational time of GA is compared with grid search algorithm and direct 

search algorithm. In our experiments, the initial parameter range is determined by Table III. In 

the grid search method, the unit grid size is 0.5. In the direction search algorithm, the maximum 

iteration is 100. The parameter setting of GA is similar to the above experiment, as shown before 

Table III. The program is run on an IBM T60 Notebook with Pentium IV CPU running at 

1.66GHz with 512MB RAM. All the programs are implemented with Matlab language. The 

experiments of three different parameter search methods used the identical training and testing 

sets with five-fold cross validation. The average classification accuracy of the three methods and 

computational time are shown in Table IV. 

<Insert Table IV Here> 

From Table IV, we can find that for different stock indices, the performance obtained from 

parameter search is similar to some extent. Furthermore, there is no significant difference among 

the three parameter search methods for the average prediction performance according to two-tail 

t-test. However, the computational time of each parameter search algorithm is distinctly different. 

In the three methods, the CPU time of the grid search algorithm is the longest for the three 

testing stock indices, followed by the genetic algorithm. The shortest CPU time is direct search 

methods. Although the computational time of the GA is slightly worse than that of direct search, 
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we only use a standard GA procedure. Perhaps some improved GA procedures (e.g., replacing 

binary encoding with decimal encoding, using self-adaptive cross rates and mutation rates) can 

speedup the computation process, thus making the evolving LSSVM learning paradigm become 

one of the most promising learning techniques. 

In addition, to fully measure the prediction and exploration power of the proposed evolving 

LSSVM learning paradigm, it is required to further compare with other forecasting models, 

which is performed in the following subsection. 

 

C. Comparisons with Other Forecasting Models 

According to the previous experiment design presented in Section IV, each of the comparable 

forecasting models described in the previous section is estimated by in-sample data. The model 

estimation selection process is then followed by an empirical evaluation based on the 

out-of-sample data. At this stage, the prediction performance of the models is measured by hit 

ratio. Similar to the prior experiments, five-fold cross validation experiments are conducted and 

the corresponding results are reported in Table V. Note that the value in bracket is the standard 

deviation of five-fold cross validation experiments. 

<Insert Table V Here> 

As can be see from Table V, the following several findings are observed.  

First of all, the differences between the different models are very significant. For example, 

for the S&P 500 testing case, the hit ratio for the ARIMA model is 55.78%, for the LDA model 

and BPNN model the hit ratios are 61.43% and 67.56%, respectively, and for the standard SVM 

model it is only 72.61%; while for the proposed evolving LSSVM forecasting model, the hit 

ratio reaches 82.66%, which is significantly higher than the individual SVM, BPNN and other 

statistical models, implying that the proposed evolving LSSVM learning has a significant 
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improvement on SVM model in mining and exploring stock market trend. 

Second, by comparing two conventional statistical and time series models (i.e., ARIMA and 

LDA) with the latter nine intelligent mining models (i.e., BPNN, SVM and seven LSSVM 

variants), it is clear that the intelligent mining models consistently outperform the conventional 

statistical models. The main reasons reflect two aspects. On the one hand, the intelligent mining 

models can easily capture the nonlinear patterns in the stock market because they adopt nonlinear 

mapping functions, while the two conventional statistical models are all linear models. On the 

other hand, in the intelligent mining models, more factors may be included. In our study, ARIMA 

only use historical time series. That is, they only use one stock price factor and other technical 

indicators and fundamental macro variables are not considered. 

Third, in the two conventional models, we can find that the performance of the LDA model is 

significantly better than that of the ARIMA model. The possible reason is that the LDA uses 

more factors and increasing the prediction performance. In the BPNN and standard SVM models, 

the SVM is better than the BPNN. The main reason is that the SVM model can overcome some 

shortcomings of BPNN, such as overfitting and local minima and thus increasing the 

generalization performance.  

Fourth, among the four LSSVM with different kernel functions, the LSSVM with mixed 

kernel function shows its predictive capability relative to the other three single kernel functions. 

The main reason is that the mixed kernel absorbs the advantages and overcome some 

disadvantages of each single kernel function because each single kernel function has their own 

advantages and disadvantages. 

Fifth, in the last three evolved LSSVM models, the difference among them is insignificant. 

The main reason is that the input features are evolved and model parameters are optimized. 

However, these evolving LSSVM models consistently perform better than LSSVM models 
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without evolution. Particularly, GA-based input feature selection procedure greatly reduces the 

model input variable and thus increasing model interpretability and effectiveness. This is also the 

main reason why the evolved LSSVM models outperform the LSSVM without evolution. 

Finally, the proposed evolving LSSVM learning paradigm has some comparative advantages 

relative to individual SVM and BPNN. First of all, the evolving LSSVM can overcome some 

shortcomings of BPNN, such as overfitting and local minima. Second, the evolving LSSVM 

used the mixed kernel and thus the LSSVM has stronger generalization ability. Third, the 

parameter optimization procedure via GA can also increase the generalization performance of the 

evolving LSSVM. Fourth, the feature evolution in the evolving LSSVM can easily find some key 

drivers of affecting model performance, and thus increasing the interpretability of LSSVM. 

Furthermore, the evolving LSSVM model with important input features has better generalization 

performance than individual SVM model.  

 

D. Further Discussions 

The above subsection in this section verified the effectiveness of the proposed evolving 

LSSVM learning paradigm. Through hit ratios and their standard deviations, we can judge which 

model is the best and which model is the worst. However, it is unclear what exactly the 

differences between good learning models and bad ones are. For this purpose, we conducted 

McNemar’s test [54] to examine whether the proposed evolving LSSVM learning paradigm 

significantly outperforms the other ten models listed in this study. As a non-parametric test for 

two related samples, it is particularly useful for before-after measurement of the same subjects 

[55]. Taking the second dataset as an example, Table VI shows the results of the McNemar’s test 

for Done Jones Industrial Average Index to statistically compare the performance in respect of 

testing data among the ten models. For space consideration, the results on McNemar’s test for 



 34 

other two practical datasets are omitted here. Actually, we can obtain some similar conclusions 

from the second and third datasets via McNemar’s test. Note that the results listed in Table VI are 

the Chi squared values and p values are in brackets.  

<Insert Table VI Here> 

As shown in Table VI, we can draw the following conclusions: 

(1) The proposed evolving LSSVM learning paradigm outperforms the LSSVM with RBF 

kernel, sigmoidal kernel, polynomial kernel and four single models at 1% statistical significance 

level. At the same time, the proposed evolving LSSVM learning paradigm also performs better 

than the LSSVM with a mixed kernel at 10% significant level. However, the proposed evolving 

LSSVM learning model does not significantly outperform the individual LSSVM model with 

GA-based input feature selection only and individual LSSVM model with GA-based parameter 

optimization only, which imply the effects of the evolution on the performance improvement. 

(2) For the LSSVMgapo and LSSVMgafs models, we can find that these two models can 

significantly outperform almost all the individual models (i.e., individual LSSVMrbf, LSSVMsig, 

LSSVMpoly, SVM, BPNN, LDA, and ARIMA models) at 1% significance level except of single 

LSSVM with a kernel function. This further indicates that the impacts of evolution on model 

performance are significant.  

(3) Similarly, LSSVM with a mixed kernel can significantly outperform the LSSVMpoly, 

standard SVM, single BPNN, LDA and ARIMA, which implies the effects of mix kernel on 

model performance improvement. But it can not conclude that the LSSVMmix can produce more 

prediction results than the LSSVMrbf and LSSVMsig. The main reason is still unknown and it is 

worth exploring further. 

(4) For the LSSVMrbf, LSSVMsig, LSSVMpoly and SVM models, it can outperform the 

individual BPNN, LDA and ARIMA models at 1% or 10% significance level However, the 



 35 

RBFN ensemble model does not outperform the BPNN ensemble model and the individual 

SVMR model at 10% significance level. Similarly, the BPNN ensemble model leads to a similar 

finding. All findings are consistent with results reported in Table V. For the first and third 

datasets, we can draw some similar conclusions when applying to the above procedures. 

 

VI. CONCLUSIONS 

In this study, an evolving LSSVM model integrating LSSVM and evolutionary algorithms (EAs) 

is proposed to predict stock market tendency. In the proposed evolving LSSVM learning 

paradigm, a standard genetic algorithm (GA) is first used to select possible input feature 

combination and optimize parameters of LSSVM and then the evolved LSSVM is used to predict 

the stock market trend. There are two distinct strengths for the evolving LSSVM model: one is 

its ability to build an interpretable prediction model because smaller numbers of features are used. 

The other is its ability to build an optimal prediction model because all model parameters are 

optimized. Particularly, through a series of simulation experiments, we show that the proposed 

evolving LSSVM model not only maximizes the generalization performance but also selects a 

most parsimonious model. These indicate that the proposed evolving LSSVM model can be used 

as a viable alternative solution to stock market trend mining and exploration. 

It is worth noting, however, that the proposed evolving LSSVM learning paradigm could be 

further improved in the future, such as in areas of ensemble learning and ensemble evolution 

with LSSVM. Furthermore, this proposed method can not only work in the stock market mining 

but also work in general classification/regression problems. Future studies will look into these 

important issues. 
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