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Abstract—Negative correlation learning (NCL) is a neural net-
work ensemble learning algorithm that introduces a correlation
penalty term to the cost function of each individual network so that
each neural network minimizes its mean square error (MSE) to-
gether with the correlation of the ensemble. This paper analyzes
NCL and reveals that the training of NCL (when � �) corre-
sponds to training the entire ensemble as a single learning machine
that only minimizes the MSE without regularization. This analysis
explains the reason why NCL is prone to overfitting the noise in the
training set. This paper also demonstrates that tuning the correla-
tion parameter in NCL by cross validation cannot overcome the
overfitting problem. The paper analyzes this problem and proposes
the regularized negative correlation learning (RNCL) algorithm
which incorporates an additional regularization term for the whole
ensemble. RNCL decomposes the ensemble’s training objectives,
including MSE and regularization, into a set of sub-objectives, and
each sub-objective is implemented by an individual neural net-
work. In this paper, we also provide a Bayesian interpretation for
RNCL and provide an automatic algorithm to optimize regular-
ization parameters based on Bayesian inference. The RNCL for-
mulation is applicable to any nonlinear estimator minimizing the
MSE. The experiments on synthetic as well as real-world data sets
demonstrate that RNCL achieves better performance than NCL,
especially when the noise level is nontrivial in the data set.

Index Terms—Ensembles, negative correlation learning (NCL),
neural network ensembles, neural networks, probabilistic model,
regularization.

I. INTRODUCTION

E NSEMBLES of multiple learning machines, i.e., groups
of learners that work together as committee, have at-

tracted a lot of research interest in the machine learning
community since this method is considered as a good approach
to improve the generalization ability [3]. The term “ensemble”
can be used to describe the paradigm that brings together a
number of learning machines for the same task. This technique
originates from Hansen and Salamons’ work [3], which showed
that the generalization ability of a neural network can be sig-
nificantly improved through ensembling a number of neural
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networks. Because of the simple and effective properties, en-
semble research has become a hot topic in the machine learning
community and has already been successfully applied to many
areas, for example face recognition [4], character recognition
[5], image analysis [6], etc.

Negative correlation learning (NCL) [1], [2] is a specific
neural network ensemble algorithm and it has been applied in
a number of empirical problems, including regression prob-
lems [7] and classification problems [8]. NCL introduces a
correlation penalty term to the cost function of each individual
network so that each neural network minimizes its mean square
error (MSE) together with the correlation of the ensemble.

According to the definition of NCL, it seems that the corre-
lation term in the cost function acts as the regularization term.
However, we observe that the training of NCL with the penalty
coefficient set to 1 corresponds to treating the entire ensemble
as a single estimator and considering only the empirical training
error without regularization.

In this case, NCL only reduces the empirical MSE of the
ensemble while it pays less attention to regularizing the com-
plexity of the ensemble, leading NCL to be prone to overfitting
the noise in the training set. Similarly, setting to a zero or small
positive value corresponds to independently training these esti-
mators without regularization and in this case, NCL is prone to
overfitting as well.

NCL can use the penalty coefficient to explicitly alter the em-
phasis on the individual MSE and correlation portions of the
ensemble and thus alleviate the overfitting problem to some ex-
tent. However, NCL could not totally overcome the overfitting
problem by tuning this parameter without regularization, espe-
cially when dealing with data with nontrivial noise, which will
be evidenced by the empirical work in this paper.

The paper analyzes the overfitting problem of NCL and in
order to solve this problem, this paper proposes regularized neg-
ative correlation learning (RNCL) algorithm which incorporates
an additional regularization term into the ensemble. Then, we
describe that the regularization term for the ensemble can be
decomposed into different parts for each network. In this paper,
we present how the training algorithm of NCL is equivalent
to training a single learning machine when and how
RNCL controls the complexity by adding a regularization term.
The regularization parameter is used to control the tradeoff be-
tween MSE and regularization and this parameter is crucial to
ensemble’s generalization ability.

We provide a Bayesian interpretation for RNCL, and propose
an algorithm for parameter optimization based on Bayesian in-
ference. The RNCL algorithm is a generic ensemble algorithm,
and it is applicable to any nonlinear regression estimator min-
imizing the MSE, for example multilayer perceptrons (MLPs)
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and radial basis function (RBF) neural networks. In this paper,
we give an example using RBF as the base estimators.

The contributions of this paper are as follows. 1) This paper
gives evidence that NCL is prone to overfitting. Although (3),
in which the training of NCL can be seen as training a single es-
timator when , has been noticed before [9], we are the
first to claim that NCL, including and selected by
cross validation, is prone to overfitting and validate this using
extensive empirical experiments. 2) We propose the RNCL al-
gorithm with an additional regularization term and demonstrate
how to decompose the training of ensemble into a set of sub-
tasks. 3) A Bayesian interpretation of RNCL and a parameter
optimization procedure based on Bayesian inference have been
presented to provide the theoretical foundation for RNCL and
optimize the regularization parameter in RNCL, respectively.
This work extends the application of Bayesian inference to en-
semble methods and demonstrates how to decouple the training
and optimization of ensemble into a group of subtasks.

The rest of this paper is organized as follows. After the back-
ground description in Section II, the proposed algorithm is de-
scribed in Section III. Experimental results and discussions are
presented in Section IV. Finally, Section V concludes the paper.

II. BACKGROUND

Ensemble of learning machines [3] is a learning paradigm
where a collection of estimators/classifiers are trained for the
same task. There have been many ensemble methods studied
in the literature. Generally speaking, these ensemble algorithms
can be classified into three categories.

In the first kind of algorithms, each base learner is trained with
a subset of training samples, drawn uniformly at random from
the original training set. The typical algorithms include Bagging
[10] and its variants [11].

The second kind of algorithms introduces weights on the
training points and pays more attention to those training sam-
ples that are misclassified by former classifiers in the training
of next classifier. Adaboosting [12] is a successful algorithm in
this kind of algorithms.

The third kind of ensemble algorithms, different from the pre-
vious work such as Bagging or Adaboosting, emphasizes inter-
action and cooperation among the individual base learners in
the ensemble. It uses a penalty term in the error function to pro-
duce biased individual learners whose errors tend to be nega-
tively correlated. NCL [1], [2] is a representative ensemble al-
gorithm in this category. This paper will focus on this kind of
ensemble learning algorithm.

NCL was first proposed by Liu et al. [1], where NCL and evo-
lutionary learning are combined to automatically design neural
network (NN) ensembles. This algorithm emphasizes the co-
operation and specialization among different individual NNs
during the individual NN design. This provides an opportunity
for different NNs to interact with each other to solve one single
problem.

Islam et al. [13] took a constructive approach to build the
ensemble, starting from a small group of networks with minimal
architecture. The networks are all partially trained using NCL.
To our knowledge, the approach can automatically determine
weights, network topologies, and ensemble membership.

Brown et al. [9] formalized this technique and provided a sta-
tistical interpretation of its success. Furthermore, for estimators
that are linear combinations of other functions, they derive an
upper bound on the penalty coefficient, based on properties of
the Hessian matrix.

Chen et al. [14] proposed to incorporate bootstrap of data,
random feature subspace [11], and evolutionary algorithm with
NCL to automatically design accurate and diverse ensembles.
The idea promotes the diversity within the ensemble and simul-
taneously emphasizes the accuracy and cooperation in the en-
semble.

In [15], Chen and Yao propose the multiobjective regular-
ized negative correlation learning (MRNCL) algorithm which
formulates RNCL algorithm as a multiobjective evolutionary
learning problem. Compared with MRNCL in [15], RNCL ex-
plicitly optimizes the regularization coefficients using Bayesian
inference while MRNCL implicitly optimizes the tradeoff
among the three terms using a multiobjective evolutionary
algorithm. By considering an additional weighting coefficient

of the correlation term, MRNCL sometimes achieves slightly
better performance than RNCL, where is always set to 1.
The advantages of RNCL with Bayesian inference include its
sound theoretical underpinning and computational efficiency in
comparison with MRNCL.

Since this paper applies regularization technique to NCL, we
present some relevant background in the following.

Many recent studies have shown that the generalization
ability of a neural network depends on the balance between the
empirical training error and the complexity of the network. Bad
generalization occurs if the tradeoff is unbalanced. Based on
the observations, weight decay [16] was proposed to control the
complexity of the network. Weight decay adds a penalty term
to the error function. The usual penalty is the sum of squared
weights times a decay constant. In a linear model, this form of
weight decay is equivalent to ridge regression [17]. The weight
decay penalty term causes the weights to converge to smaller
absolute values than they otherwise would. The regularization
term does help the generalization ability of neural network
because large weights can hurt generalization in two different
ways. 1) Excessively large weights leading to hidden units can
cause the output function to be too rough, possibly with near
discontinuities. Excessively large weights leading to output
units can cause wild outputs far beyond the range of the data if
the output activation function is not bounded to the same range
as the data. 2) Large weights can cause excessive variance of
the output [18].

The generalization ability of the network depends crucially
on the decay constant, especially with small training sets. One
approach to choose the decay constant is to train several net-
works with different values of the decay constant and estimate
the generalization error for each network and then choose the
decay constant that minimizes the estimated generalization
error.

Fortunately, there is a superior alternative to estimating the
decay constant: Bayesian inference. Bayesian inference makes
it possible to efficiently estimate decay constants. Compared
with the traditional approach, Bayesian approach is attractive in
being logically consistent, simple, and flexible. The application
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of Bayesian inference to single neural network, introduced by
MacKay as a statistical approach to avoid overfitting [19], was
successful. Then, the Bayesian technique has been successfully
applied to model selection for least squares support vector ma-
chine [20], sparse Bayesian learning, i.e., relevance vector ma-
chine [21] and probabilistic classification vector machine [22],
which is a partial Bayesian algorithm by employing different
truncated Gaussian priors for different classes. Another impor-
tant feature of Bayesian inference is that error bars [19] can be
assigned to network predictions in regression problems and the
probability of prediction [23] can be assigned to classification
results that can avoid making overconfident predictions in re-
gions of sparse data. Bishop [24] has given a comprehensive
review and application of Bayesian methods on single learners.
In this paper, we extend the Bayesian inference from a single
learner to ensemble methods and demonstrate how to decouple
the training and optimization of ensemble into a group of sub-
tasks.

III. REGULARIZED NEGATIVE CORRELATION LEARNING

This section presents NCL and its potential problem of over-
fitting. In order to address the problem, RNCL is proposed. This
section also presents an efficient procedure to optimize regular-
ization parameters by Bayesian inference in RNCL.

A. Negative Correlation Learning

NCL introduces a correlation penalty term to the error func-
tion of each individual network in the ensemble so that all the
networks can be trained interactively on the same training data
set [1].

Given the training set , NCL combines neural
networks to constitute the ensemble

To train network , the cost function for network is defined
by

(1)

where is a weighting parameter on the penalty term

(2)

The first term on the right-hand side of (1) is the empirical
training error of network . The second term is a correla-
tion penalty function. The purpose of minimizing is to neg-
atively correlate each network’s error with errors for the rest of
the ensemble. The parameter controls a tradeoff between the
training error term and the penalty term. With , we would
have an ensemble with each network training independently. If

is increased, more and more emphasis would be placed on
minimizing the penalty.

Based on the individual error function (1), the error function
for the ensemble can be obtained by averaging these individual

network errors . If , the average error of all the indi-
vidual network is obtained as follows:

(3)

From (3), the error function of NCL (when ) is equiv-
alent to training a single estimator instead of training
each individual network separately. It is also observed that NCL
only minimizes the empirical training MSE

but does not regularize the complexity of the ensemble. As
discussed in Section I, the learner that only minimizes MSE is
prone to overfitting the noise.

When is set to zero or a small positive value, the training
of NCL corresponds to independently training these individual
estimators without regularization, and this might lead to over-
fitting as well. Although NCL can use the penalty coefficient to
explicitly alter the emphasis on the individual MSE and correla-
tion portions of the ensemble and thus improve the performance
to some extent. However, NCL could not overcome the over-
fitting problem by only tuning this parameter, especially when
dealing with nontrivial noise data. In Section IV, we give the
empirical evidence that NCL, including and selected
by cross validation, is prone to overfitting.

In order to improve the generalization ability of NCL, in the
next section, we propose RNCL.

B. Regularized Negative Correlation Learning

Following the traditional strategy to avoid overfitting, a regu-
larization term is incorporated into the ensemble error function:

(4)

where is the weight vector of neural
network and is the total number of weights in network .

This regularization term is the weight decay
[16] term for the entire ensemble. In order to train each neural
network with its regularization, we decompose the regulariza-
tion term to parts, each part for a network. The error function
for network can be obtained as follows:

(5)

Comparing this error function with the cost function of NCL
(1), RNCL imposes a regularization term on every individual
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Fig. 1. Regularized negative correlation learning algorithm.

neural network and it optimizes the regularization parameter
instead of the correlation parameter .

RNCL is implemented by scaled conjugate gradient (SCG)
[25] algorithm to fast train neural networks. According to
(5), the minimization of the error function of the ensemble is
achieved by minimizing the error functions of each individual
network. RNCL provides a way to decompose the learning task
of the ensemble with regularization into a number of subtasks
for each individual network. The algorithm can be summarized
in Fig. 1.

C. Bayesian Interpretation and Regularized
Parameter Optimization

This section describes the probabilistic interpretation of
RNCL, the function of the regularization term, and how to
optimize these parameters by Bayesian inference. We separate
this section into two parts: the first part describes the model
specification and the probabilistic interpretation of RNCL; the
second part describes the procedures to optimize the regular-
ization parameters.

1) Bayesian Interpretation of RNCL: Given the training set
, we follow the standard probabilistic formu-

lation and assume that the targets are sampled from the model
with additive noise:

where is an independent sample from some noise process
which is further assumed to be mean-zero Gaussian with vari-
ance .

According to the Bayesian theorem, given the hyperparam-
eters 1 and , the weigh vector

1� , � � �� �� � � �� , is the inverse variance of the Gaussian distribution of
weights for network �.

can be obtained by maximizing the posterior

(6)

where the probability is a normalization factor which
is independent of .

The weight vector of each network is assumed to have
a Gaussian distribution with zero mean and variance . The
prior of the weight vector is obtained as follows:

(7)

where is the total number of weights in network .
The traditional Bayesian methods [19], [24], [26] often use an

isotropic Gaussian prior over weights where the covariance
matrix is an identity matrix multiplied by a parameter, which
means these weights in the learner share the same prior. RNCL
extends this by imposing different regularization parameters for
different networks in the ensemble. The prior of RNCL becomes
a block-isotropic Gaussian prior whose covariance matrix is di-
agonal matrix with different values. That is, each network
has its own different prior.

Since noise follows a Gaussian distribution with zero mean
and variance , the likelihood can be written as

(8)

We omit all constants and normalization factor, and apply
Bayesian rules

(9)
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Taking the negative logarithm, the maximum of the posterior
model parameters is obtained as the solution to the following
optimization problem:

(10)

The posterior can also be written as a Gaussian dis-
tribution (refer to Appendix I for detail)

(11)

where is the Hessian matrix of the cost function and the
subscript indicates the most probable values.

The error function is made up of two terms. The first one
is the sum of the empirical training errors.

The second one is the regularization term,
measuring the amount of square of weights.

Comparing (10) with (4), RNCL is equivalent to maximiza-
tion of the posterior under Bayesian framework. The likelihood

corresponds to the empirical training error term and
the prior over weight vector corresponds to the regular-
ization term. The regularization term penalizes large weights,
causing the weights to converge to smaller absolute values than
they otherwise would.

Based on the above analysis, RNCL is an application of
Bayesian framework in ensemble system. Instead of simul-
taneously optimizing the weigh vector of ensemble, RNCL
manages to train the entire ensemble by decomposing the job
into a set of subtasks, which significantly reduces computa-
tional complexity.

Take an RBF neural network ensemble with linear outputs
as an example. If we treat the ensemble as a single estimator,
the training of the entire ensemble involves inversion of a ma-
trix, whose computational complexity is ,
where ( is the number of weights in network
and is the size of ensemble) is the total number of weights in
ensemble. By decomposing the operation into a set of sub-op-
erations, the computational complexity is reduced to .
Since , the size of ensemble, is often set to be equal or greater
than 25, the reduction of computational complexity is nontrivial.

Although there are two types of parameters: and , the
minimization of only depends on the ratios . These
ratios, controlling the tradeoff between the empirical training
errors and the regularization term, are crucial to the performance
of ensemble. The next section will present a Bayesian approach
to automatically optimize these parameters.

2) Inference of Regularization Parameters: In order to find
the most probable values of and , we need to maximize the
posterior of .

According to Bayesian rule, the posteriors of and are
obtained by

(12)

where flat priors are assumed on the hyperparameters and .
According to (7), (8), and (11), the marginal likelihood2 can be
obtained in the following way [20]:

(13)

By using the Gaussian approximation
and the relation ,

where is the total number of weights in the ensemble

(14)

In order to maximize the probability , negative log-
arithm is applied

where the subscript indicates the most probable values.
Setting the gradient to zero, we can get the most probable

(refer to Appendix II for detail)

(15)

where and the su-
perscript indicates the repetition number of . indicates
the range , and is the eigenvalue
of the Hessian matrix .

The RNCL learning is conducted in an iterative manner. In
each iteration, the ensemble is first trained (step 3 in Fig. 1)
by SCG algorithm with previous regularization parameters ,
followed by the estimation of new most probable values by
(15) (step 4 in Fig. 1), and then we incorporate the new in
the ensemble. The learning algorithm repeats the process (steps
3 and 4 in Fig. 1), until some suitable convergence criteria have
been satisfied.

2The Gaussian approximation has been employed in Equation (11) to calcu-
late the integral ������ ������. Refer to Appendix I for details.
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Fig. 2. Comparison of RNCL and NCL on regression data sets: sinc and Friedman test. In (a) and (b), the wide, dashed, and solid lines are obtained by RNCL,
NCL , and the noise-free function, respectively. In (c) and (d), MSE of RNCL (solid), NCL (circled), and NCL (dashed) on sinc and Friedman test with
different noise levels are shown. A statistical �-test (95% significance level) is conducted to compare RNCL with NCL and the triangles represent those points
where RNCL significantly outperforms NCL . We do not report � values in (c) and (d). Since for each noise level [��� ����� � � � � ���� in (c) and ������� � � � � ��
in (d)], NCL uses cross validation to search a � value and thus there are 31 � values for each data set. (a) Sinc free of noise. (b) Sinc with Gaussian noise (mean
0, variance 0.2). (c) Sinc with different noise levels. (d) Friedman with different noise levels.

Similarly to other methods using Bayesian evidence frame-
work [19], [24], [26], the estimation requires the computa-
tion of the Hessian’s eigenvalues in each iteration. The resulting
computational cost is , where is the total number of
weights in the ensemble. When the eigenvalue is calculated,
the update rule of involves only vector products that can
be evaluated very quickly. In order to reduce the computational
complexity for large ensembles, one can choose to calculate
only the largest eigenvalues using the expectation maximization
approach [27].

IV. EXPERIMENTAL ANALYSIS

In this section, we will present the experimental results of
RNCL. First, we present experimental results of RNCL on two
synthetic regression problems and four synthetic classification
problems in order to understand the behavior of the algorithm.
We also design four experiments (two regression and two classi-
fication problems) with different noise levels to study the char-

acteristics of RNCL and NCL with noise data. Second, we carry
out extensive experiments on eight benchmark regression data
sets and 13 benchmark classification data sets to compare the
performance of RNCL, NCL,3 and Bagging.4

A. Experimental Setup

In the experiments, RBF neural networks (NNs) are used as
the base learners. The number of hidden nodes is randomly
selected but restricted in the range 3–12. The initial centers,

3We have implemented two versions of NCL algorithms. The first NCL
uses � � � and the second algorithm NCL selects the � using cross vali-
dation within the range � � ������� � � � � ��. We notice that � could be a little
greater than 1 [� � ���� � ��, � is the ensemble size] to guarantee the
positive definite of Hessian matrix [9]. Since we use � � �	 in this paper, the
up-bound of � (1.0417) is close to 1 and we will not use the � values which are
greater than 1.

4We have implemented two versions of Bagging algorithms. The first Bag-
ging ensemble consists of 100 RBF networks with regularization, in which the
regularization parameters are randomly selected in the range ������� � � � � ��,
and the second has 100 RBF networks without regularization.
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Fig. 3. First row reports the mean � value obtained in RNCL versus different noise levels on sinc and Friedman data. Results are based on 100 runs. The second
row shows the selection of � () and the performance of RNCL, on sinc (0.2 noise level) and Friedman test (2 noise level).

widths for individual NNs, are randomly selected. The details
of the specification including the derivations of error with re-
spect to centers and widths of an RBF network are presented in
Appendix III.

We employ SCG algorithm to train NCL and RNCL. We use
25 NNs to constitute the ensemble of NCL and RNCL. For Bag-
ging, we employ 100 NNs to constitute the ensemble. The input
attributes of data sets are scaled to mean zero and unit variance
as the preprocessing procedure.

B. Synthetic Data Sets

As the first experiment, we compare RNCL, NCL ,
and NCL on two synthetic regression data sets: sinc and
Friedman test. Fig. 2(a) and (b) shows the output of RNCL
and NCL on sinc function with different noise levels. In the
noise-free case, both RNCL and NCL perfectly approximate
the actual function, though there is a little misfit for NCL
near the tail. When the noise level increases, NCL , though
selects the parameter by cross validation, overfits the noise in
the training set, while RNCL is more robust to noise than NCL;
refer to Fig. 2(b).

In order to explore the behavior of RNCL, NCL , and
NCL with different noise levels, we add mean zero and
different levels of Gaussian noise to sinc and Friedman test

problems. Fig. 2(c) and (d) shows the average results of 100
runs. Since the standard deviations of the targets: sinc and
Friedman test, are different, the range of noise levels is dif-
ferent in Fig. 2(c) and (d).

For sinc data set, when the noise level (variance) is small,
RNCL and NCL perform similarly and their performances
are better than NCL . When the noise level becomes greater,
MSE of RNCL increases slower than that of NCL and
NCL and NCL performs a litter better than .
For Friedman test data set, RNCL outperforms NCL and
NCL all the time and the difference between RNCL and
NCL becomes greater when noise level becomes greater.

We also conduct statistical -test (95% significance level) to
compare RNCL and NCL and record the significant points as
triangles. From both figures, RNCLs significantly outperform
NCL and NCL when noise level becomes high.

In Fig. 3, we have illustrated the mean of regularization pa-
rameters obtained in RNCL versus different noise levels and
the parameter selected by NCL .

The first row in Fig. 3 reports the mean value5 obtained
in RNCL versus different noise levels on sinc and Friedman
data. The results are based on 100 runs. When the noise level

5Since we optimize � for each individual networks in the ensemble, in this
figure, we only show the mean � value.
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Fig. 4. Comparison of RNCL and NCL on four synthetic classification data sets. Two classes are shown as crosses and dots. The separating lines were obtained
by projecting test data over a grid. The wide and thin lines were obtained by RNCL and NCL , respectively. (a) Synth. (b) Overlap. (c) Bumpy. (d) Relevance.

increases, the learner will become complex to fit the data, and
in this situation, large regularization is preferred to control
the complexity in the model. Bayesian parameter selection in
RNCL does reflect this tendency when the noise level increases.

The second row in Fig. 3 reports the selected parameter
in NCL and the performance of RNCL. It is observed that
NCL could not beat RNCL even if it uses the optimal corre-
lation parameter . Figs. 3 and 2 confirm that NCL could not
overcome the overfitting problem by only tuning the param-
eter for regression problems.

In the following, we demonstrate the application of RNCL
on classification problems. First, we apply RNCL and NCL
on four synthetic data in two dimensions in order to illustrate
graphically the decision boundary.

These four data sets are: 1) synth is generated from mixtures
of two Gaussians by [28]; 2) overlap comes from two Gaussian
distributions with equal covariance, and is expected to be sepa-
rated by a linear plane; 3) bumpy comes from two equal Gaus-
sians but being rotated by 90 , quadratic boundaries are re-
quired; 4) relevance is a case where only one dimension of the
data is relevant to separating the data.

In Fig. 4, we present a comparison of RNCL and NCL .
We can observe a similar performance of RNCL and NCL in the
case of relevance. Since the data set is noise free, both RNCL
and NCL successfully separate the two classes. The situation
is a little similar in the case of overlap, and RNCL produces a
smoother boundary than NCL .

We observe that RNCL gives more accurate results in the
other cases. In the cases of synth, RNCL disregards the out-
liers in the training points and produces smooth boundary, while
NCL generates a corner in the decision boundary due to sev-
eral outliers. In the case of bumpy, the noise level is great be-
cause of these overlapping points. NCL does not generalize
very well and produces a little twisty boundary. RNCL gener-
ates a quadratic boundary according to the expectation.

In order to check the behavior of RNCL and NCL on noise
classification problems, we conduct similar noise experiments
as the regression problems. In the experiments, we select two
data sets: synth and Gaussian. Gaussian is a synthetic two-class
2-D data set which is sampled from a mixture of four Gaussians.
Each class is associated with two of the Gaussians so that the
optimal decision boundary is nonlinear.
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Fig. 5. Comparison of RNCL and NCL on two classification data sets. Two classes are shown as crosses and dots. The separating lines were obtained by
projecting test data over a grid. In (a) and (b), the decision boundaries in solid and dark are obtained by RNCL and NCL , respectively. The randomly selected
noise points are marked with a circle. In (c) and (d), classification error of RNCL (solid), NCL (circled), and NCL (dashed) versus noise levels on synth
and Gaussian data sets are shown. The results are based on 100 runs. A statistical �-test (95% significance level) is conducted to compare RNCL with NCL
and the triangles represent those points where RNCL significantly outperforms NCL . We do not report � values in (c) and (d). Since for each noise level
[��� ����� � � � � ���� in (c) and (d)], NCL uses cross validation to search a � value and thus there are 31 � values for each data set. (a) Synth with 20% noise.
(b) Gaussian with 20% noise. (c) Synth with difference noise levels. (d) Gaussian with different noise levels.

To change the noise level, we randomly select different per-
centages of data points and reverse their labels. We run 100
times and report the average results in Fig. 5. Fig. 5(a) and (b)
visualizes the decision boundaries of RNCL and NCL with
20% noise points.

Although the noise level is high, RNCL produces smooth
boundary. NCL does not generalize well. We also plot the
curve [Fig. 5(c) and (d)] of classification error versus noise level
for these two data sets. In these two figures, RNCL is a little
better in the beginning, but as the noise level increases, RNCL
significantly outperforms NCL and NCL .

We also conduct statistical -test (95% significance level) to
compare RNCL and NCL and record the significant points as
triangles. From both figures, RNCL significantly outperforms
NCL and NCL when noise level becomes great.

In Fig. 6, we have illustrated the regularization parameter
obtained in RNCL versus different noise levels and the selected

values by NCL .
The first row in Fig. 6 reports the mean value in by RNCL

versus different noise levels on synth and Gaussian data. The

results are based on 100 runs. Similarly to regression problems,
large regularization parameter is preferred to control the com-
plexity of the model training with large noise data. Bayesian pa-
rameter selection in RNCL does reflect this tendency when the
noise level increases.

The second row in Fig. 6 reports the selected parameter
in NCL and the performance of RNCL. It is observed that
NCL could not beat RNCL even if it uses the optimal corre-
lation parameter. Both Figs. 6 and 5 confirm that NCL could
not overcome the overfitting problem by only tuning the pa-
rameter for classification problems.

The results of RNCL are promising on these regression and
classification problems. Based on the results and analysis, the
regularization term does work in RNCL and improves its ability
against noise, which is especially important in practice since
most of the actual data are contaminated by noise. Section IV-D
will conduct experiments to compare Bayesian inference and
cross-validation search for the regularization parameter in
RNCL. After the analysis with synthetic data sets, the next sec-
tion presents the results for the real-world benchmark problems.
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Fig. 6. First row reports the mean � value in RNCL versus different noise levels using synth and Gaussian data. Results are based on 100 runs. The second row
shows the selected � by NCL and the performance of RNCL (solid dot) on synth (20% noise level) and Gaussian (20% noise level).

C. Benchmark Results

In order to evaluate the performance of RNCL, we test RNCL,
NCL , NCL , Bagging (100 RBF networks with regu-
larization, in which the regularization parameters are randomly
selected in the range ), Bagging (100 RBF
networks without regularization), and RBF 6 on eight re-
gression benchmark problems and 13 classification benchmark
problems. The information on the data sets used for regres-
sion is presented in Table I. The Mexican hat has been used by
Weston et al. [29] in investigating the performance of support
vector machines. Friedman 1 has been used by Breiman [10]
in testing the performance of Bagging. Gabor, multi, and sinc
have been used by Hansen [30] in comparing several ensemble
approaches. Plane has been used by Ridgeway et al. [31] in ex-
ploring the performance of boosted naive Bayesian regressors.
The Boston house data set is obtained from the University of
California at Irvine (UCI, Irvine, CA) machine learning reposi-
tory [32]. In the 100 runs, we randomly select 400 data points for
training set and the rest 106 points are used for testing. The con-
straints on the variables are also shown in Table I, where

6The regularization parameter in single RBF network is optimized by
Bayesian inference.

means a uniform distribution over the interval determined by
and . Note that in our experiments additive Gaussian noise,
except for Boston house data set, is generated on the output of
standard deviation one-third of that of the target .

The classification data set used in this paper has been sum-
marized in Table II. These data sets have been preprocessed and
organized by Rätsch et al.7 These data sets include one synthetic
set (banana) along with 12 other real-world data sets coming
from the UCI [32], DELVE,8 and STATLOG repositories. The
main difference between the original and Rätsch’s data is that
Rätsch converted every problem into binary classes and ran-
domly partitioned every data set into 100 training and testing
folds (splice and image have only 20 folds in Rätsch’s imple-
mentation and we generate additional 80 folds by random sam-
pling to make the experiments consistent). In addition, every in-
stance is normalized dimensionwise to have zero mean and unit
standard deviation.

Table III reports the performance of these algorithms on the
eight benchmark regression data sets. According to the tables,
RNCL performs quite favorably in these data sets. For example,

7http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
8http://www.cs.toronto.edu/~delve/data/datasets.html
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TABLE I
SUMMARY OF REGRESSION DATA SETS

TABLE II
SUMMARY OF CLASSIFICATION DATA SETS

RNCL outperforms the other methods in seven out of eight data
sets, in which four wins are significant against NCL and three
wins are significant against Bagging .

The performance of RNCL, NCL , NCL , Bag-
ging , and Bagging , RBF on classification prob-
lems has been reported in Table IV. Based on the table, RNCL
performs well since RNCL outperforms all the other methods
in nine out of 13 data sets, and comes second in four cases.

According to these results, NCL and NCL achieve
similar outperform as RNCL in these cases: image, ringnorm,
and twonorm, which are both synthetic data with few noise
(see the lower error rate). This observation also validates that
NCL achieves good results when noise is small and RNCL
is more robust to noise than NCL.

From the table, Bagging outperforms Bagging in
most of cases. This empirical results support the statement that
Bagging benefits from combining simple learners to succeed
[10], [33] since regularized networks are simpler than unregu-
larized ones.

We also notice that RBF is not as competitive as other
ensemble methods, though it uses Bayesian inference to opti-
mize the regularization parameter. This also confirms that the
application of Bayesian inference on ensemble systems and the
decomposition of ensemble training into a group of subtasks are
beneficial.

D. Comparison of Bayesian Inference With Cross Validation

In the previous experiments, we notice that RNCL achieves
better generalization than NCL in most cases, especially on
the data sets with nontrivial noise. In this section, we would like
to compare two RNCL versions. The first is RNCL , whose

regularization parameters are optimized by Bayesian inference
and another one is RNCL ,9 whose regularization parameter
is selected by cross validation.

First, we conduct the experiments on two regression and clas-
sification data sets, which have been used in Section IV-B, i.e.,
the sinc function with 0.2 Gaussian noise and Friedman data set
with 2 Gaussian noise for regression problems and synth and
Gaussian with 20% noise for classification problems.

Since it is computationally costly to search several by
cross validation, we employ the single in RNCL (i.e.,

) to facilitate comparison. The experimental re-
sults are illustrated in Fig. 7.

It can be observed from Fig. 7 that the error rate or MSE is re-
duced with the increase of in the beginning but after reaches
the minimum and increases, the error is increased with . The
reason is that the learner might overfit the noise with a small reg-
ularization term in the beginning. When a large is presented,
the system might be over-regularized and thus under-fit the data.
RNCL is able to find the optimal or near optimal values
automatically.

In Table V,10 we compare the performance of RNCL
and RNCL on eight data sets based on the average re-
sults of 100 runs. In RNCL , the search ranges are

for regression problems (the
data has been normalized to unit standard deviation) and

for classification problems, respec-
tively.

Based on this table, we observe that RNCL obtains sim-
ilar performance as RNCL while RNCL costs much less
time than RNCL . Another potential problem with cross-vali-
dation search is that for different problems, the optimal values
are in different ranges. Once an inappropriate search range, ei-
ther too small or too large, is specified, the obtained regular-
ization parameter would not work and we need to respecify the
search range and rerun the cross validation.

Based on Fig. 7 and Table V, the Bayesian inference proposed
in this paper is able to select an appropriate regularization term
according to different problems and thus improve the perfor-
mance of NCL.

9In RNCL , we assume that these networks have the same regularization
parameter (i.e., � � � � �) to reduce the search space of cross validation.

10To be consistent, we add additive Gaussian noise [one-third of standard
deviation of the target ����] to benchmark regression data sets, except Boston
house data set. Since the noise levels of sinc and Friedman in Table V are less
than those in Fig. 7 (0.2 noise level for sinc and 2 noise level for Friedman). The
MSEs in Table V are smaller than those in Fig. 7 for sinc and Friedman data
sets.
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TABLE III
COMPARISON OF RNCL, NCL , NCL , Bagging , Bagging , AND RBF ON EIGHT REGRESSION DATA SETS, BY MSE (STANDARD DEVIATION).

A WIN–LOSS–TIE SUMMARIZATION BASED ON MEAN VALUE AND �-TEST (95% SIGNIFICANCE LEVEL) IS ATTACHED AT THE BOTTOM OF THE TABLE.
THESE RESULTS ARE AVERAGES OF 100 RUNS

TABLE IV
COMPARISON OF RNCL, NCL , NCL , Bagging , Bagging , AND RBF ON 13 BENCHMARK DATA SETS, BY PERCENT ERROR (STANDARD

DEVIATION). A WIN–LOSS–TIE SUMMARIZATION BASED ON MEAN VALUE AND �-TEST (95% SIGNIFICANCE LEVEL) IS ATTACHED

AT THE BOTTOM OF THE TABLE. THESE RESULTS ARE AVERAGES OF 100 RUNS

TABLE V
COMPARISON OF RNCL AND RNCL ON FOUR REGRESSION PROBLEMS AND FOUR CLASSIFICATION PROBLEMS

IN TERMS OF MSE/ERROR RATE AND COMPUTATIONAL TIME

E. Statistical Comparisons Over Multiple Data Sets

In Section IV-D, we have conducted the statistical tests
on single data sets. Statistical tests on multiple data sets for
multiple algorithms are preferred for comparing different al-
gorithms over multiple data sets [34]. In this section, we will
conduct statistical tests over multiple data sets by using the
Friedman test [35] with the corresponding post-hoc tests.

The Friedman test is a nonparametric equivalence of the re-
peated-measures analysis of variance (ANOVA) under the null
hypothesis that all the algorithms are equivalent and so their
ranks should be equal. This paper uses an improved Friedman
test proposed by Iman and Davenport [36].

The Friedman test [35] is carried out to testwhether all the al-
gorithms are equivalent. If the test result rejects the null hypoth-
esis, i.e., these algorithms are not equivalent, we can proceed to
a post-hoc test. The power of the post-hoc test is much greater
when all classifiers are compared with a control classifier and

not among themselves. We do not need to make pairwise com-
parisons when we in fact only test whether a newly proposed
method is better than the existing ones.

Based on this point, we would like to choose the RNCL as the
control classifier to be compared with. Since the baseline classi-
fication RBF algorithms are not comparable to RNCL and other
ensemble algorithms, this section will analyze only three algo-
rithms: NCL , NCL , and Bagging against the control
algorithm RNCL.

The Bonferroni–Dunn test [37] is used as post-hoc tests
when all classifiers are compared to the control classifier. The
performance of pairwise classifiers is significantly different if
the corresponding average ranks11 differ by at least the critical

11We rank these algorithms based on each data set and record the ranking
of each algorithm as 1, 2, and so on. Average ranks are assigned in case
of ties. The average rank of one algorithm is obtained by averaging over
all of data sets. Refer to Table VI for the mean rank of these algorithms.
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Fig. 7. Illustration of RNCL with different � values and the selected � value (dots) by Bayesian inference using four data sets. The error of NCL (square
circle) is shown to facilitate comparison.

TABLE VI
MEAN RANK OF RNCL, NCL , NCL , AND Bagging

TABLE VII
FRIEDMAN TESTS WITH THE CORRESPONDING POST-HOC TESTS,

BONFERRONI–DUNN, TO COMPARE ESTIMATORS AND

CLASSIFIERS FOR MULTIPLE DATA SETS. THE

THRESHOLD IS 0.10 AND � � �����

difference

(16)

where is the number of algorithms, is the number of data
sets, and critical values can be found in [34]. For example,

when , , where the subscript 0.10 is the
threshold value.

Table VI lists the mean rank of these algorithms using
different ensemble training algorithms. Table VII gives the
Friedman test results. Since we employ the same threshold 0.10
for these ensemble training algorithms, the critical differences
are (where and ) and
(where and ) for regression and classification
problems, respectively. Several observations can be made from
our results.

First, for regression problems, the differences between RNCL
versus NCL , and RNCL versus NCL are greater than
the critical difference, so the differences are significant, which
means that the RNCL is significantly better than NCL and
NCL in the current experimental settings. We could not de-
tect any significant difference between Bagging and RNCL.
The correct statistical statement would be that the experimental
data are not sufficient to reach any conclusion regarding the dif-
ference between RNCL and Bagging for regression problems.

Second, for classification problems, RNCL significantly
outperforms NCL and Bagging . Since the difference
between RNCL and NCL is smaller than the critical dif-
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TABLE VIII
RUNNING TIME OF RNCL, NCL , NCL , Bagging , Bagging , AND RBF ON REGRESSION DATA SETS IN SECONDS.

RESULTS ARE AVERAGED OVER 100 RUNS

TABLE IX
RUNNING TIME OF RNCL, NCL , NCL , Bagging , Bagging , AND RBF ON CLASSIFICATION DATA SETS IN SECONDS.

RESULTS ARE AVERAGED OVER 100 RUNS

ference, we cannot draw any conclusion about the difference
between RNCL and NCL for classification problems in our
experimental settings.

There are three major reasons why the RNCL performs better
than others.

1) RNCL inherits the advantages of NCL and encourages
the cooperation among ensemble members to solve one
problem.

2) RNCL regularizes the complexity of the ensemble using an
additional regularization term. The adequate regularization
term controls the model complexity, and thus improves the
model generalization.

3) RNCL incorporates an efficient parameter optimization
procedure based on Bayesian inference. This procedure
not only saves the effort to do cross validation but also
improves the performance.

F. Computational Complexity and Running Time

Based on the algorithm in Fig. 1, RNCL consists of two main
parts: neural network training using NCL and Bayesian param-
eter optimization.

In the first part, for each component neural network, in total
neural networks in the ensemble, one needs to train the net-

work with an amount of epochs. Since the SCG algorithm is
employed in RNCL, the training can be evaluated quickly.

In the second part, the major running time is consumed in
the calculation of Hessian matrix and eigendecomposition of
the Hessian matrix. The calculation of Hessian matrix will cost

, where is the number of training points and is
the total number of weights in the ensemble. As discussed in
Section III-C2, the computational cost for the eigendecomposi-
tion problem is . Therefore, the total computational cost
is . For small sample problems when ,

the cost to calculate the Hessian matrix is similar to the calcula-
tion of eigendecomposition. For moderate to large sample prob-
lems when , the calculation of Hessian matrix costs
more than the eigendecomposition. This calculation becomes
computationally expensive for large ensembles, i.e., large ,
with applications to large sample problems. In order to make the
calculation efficient, a medium or small ensemble is suitable for
large sample applications. To further reduce the computational
complexity of the eigendecomposition, one can choose to cal-
culate only the largest eigenvalues using an expectation–maxi-
mization approach [27].

RNCL is an iterative algorithm to update the regularization
parameters, and in most of time it will converge in less than
eight iterations. Because most of the computation time is con-
sumed in the first part if the Hessian matrix is not so large,
the computation time of RNCL is almost 5–10 times of NCL.
In Tables VIII and IX, we show the average running time of
RNCL and other algorithms over 100 runs. The computational
environment is windows XP with Intel Core 2 Duo 1.66G CPU
and 2-GB RAM. These algorithms including RNCL, NCL ,
NCL , Bagging , Bagging , and RBF are imple-
mented in MATLAB and language. The language is used
to implement RBF network training algorithm.

V. CONCLUSION

This paper analyzes NCL and points out that NCL is prone
to overfitting the noise since NCL does not regularize its
complexity. In the following, the paper analyzes this problem
and proposes the RNCL which incorporates an additional reg-
ularization term into NCL. RNCL decomposes the ensemble’s
training objectives, including MSE and regularization, into a
set of sub-objectives, and each sub-objective is implemented
by a component neural network. RNCL inherits the advantages
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of NCL and its formulation is applicable to any nonlinear re-
gression estimator minimizing the MSE. In this paper, we also
provide the statistical Bayesian interpretation for the RNCL
and propose an automatic procedure to optimize regularization
parameters based on Bayesian inference.

Several experiments have been carried out to evaluate RNCL.
The experiments on two synthetic regression problems and four
synthetic classification problems demonstrate the behavior of
RNCL and NCL. The following experiments on two regres-
sion and two classification problems with different noise levels
demonstrate that RNCL achieves better performance than NCL,
especially when the noise is nontrivial in data sets. Second, we
carry out extensive experiments on eight benchmark regression
and 13 benchmark classification data sets to compare the perfor-
mance of RNCL, NCL , NCL , Bagging , Bagging ,
and RBF . To compare classifiers on multiple data sets, the
Friedman test with the corresponding post-hoc test has been
used to statistically compare these classifiers over multiple data
sets. This paper also analyzes the computational complexity of
RNCL.

In order to validate the efficiency of Bayesian inference, in
Section IV-D, we employ the cross validation to search the reg-
ularization term . The results show that Bayesian inference can
find appropriate regularization parameters according to different
problems and are more efficient than cross validation.

Our results confirm that RNCL has shown an excellent
performance on these data sets. For the NCL , it appears
that only tuning the correlation coefficient cannot overcome
the overfitting problem. The differences between RNCL and
NCL NCL show that adopting regularization term and
optimizing the regularization parameters by Bayesian inference
are beneficial.

The RNCL algorithm is built on the NCL algorithm with the
correlation parameter . In this case, the summation of the
negative correlation term and MSE term becomes the MSE of
ensemble, so the negative correlation term disappears. We retain
the name of RNCL here for consistency and historical reasons
although negative correlation disappears when . Our fu-
ture work will consider including the correlation parameter
within the Bayesian framework and optimizing and the regu-
larization parameter by Bayesian inference.

Although there is a lot of work in using MSE for classifi-
cation problems [20], [38] and RNCL seems to work well for
classification problems according to the empirical results, our
theoretical analysis, including the Bayesian inference, is justi-
fied only for regression problems. More rigorous analysis needs
to be done in the future for classification problems.

Chen et al. [39] demonstrated that the performance of the en-
semble can be improved by selecting a small subset of ensemble
members using a probabilistic ensemble pruning method. It is
one of our future work to incorporate the ensemble selection/
pruning algorithms into RNCL to generate more compact en-
sembles.

In general, we could conclude that the RNCL is an ensemble
learning algorithm that addresses the substantial drawbacks of
NCL. RNCL incorporates an efficient parameter optimization
procedure, not only saving the effort to do cross validation but
also improving the performance. The noise-robustness charac-

teristic of RNCL is especially important when the training data
are contaminated with noise.

APPENDIX I
FURTHER DETAILS OF GAUSSIAN POSTERIOR

Considering the normalization term, the posterior of weigh
vector is described as

In order to obtain the result, the Taylor expansion of
is employed at point

where is the most probable weight vector, is the Hessian
matrix of , and

(17)

where

and the superscript indicates the repetition number of .
We use two notations and

for , where is the ensemble size,
is the number of weighs in ensemble, and

wherein the superscript indicates the repetition number of .
Because is the prior parameter for each network , cor-
responds to each weight in network . In Bayesian inference,
we need to calculate the Hessian matrix of ; the Hessian
matrix , whose dimension is , can be represented by

. This is the reason why
we use the second notation for .

The integral can be computed as

Based on these equations, the exact posterior of is obtained
as follows:
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APPENDIX II
DETAILS OF PARAMETER UPDATES

Since the update rule for can be obtained from the
derivation of

(18)

In order to apply the partial derivation to , we need to apply
partial derivation to .

Since , where is the eigenvalue of

the Hessian matrix and is the number
of weighs in ensemble

where

the superscript indicates the repetition number of , and
indicates the range .

The gradients of toward and are

Setting the gradient to zero, then the optimal and can be
obtained

(19)

(20)

After the most probable and 12 have been obtained
by (19) and (20), the most probable can be easily obtained
by using the relation .

12The equality can be viewed as the Bayesian estimate of the variance
�� � � � ��� � ��� ��� �� �� of the noise. The
term ��� ��� � � � is the effective number of parameters [19], [24],
[26].

In the following, we give a formal approach by reformulating
the optimization problem, i.e., in (18), in , and into a
scalar optimization problem in .

Based on (19) and (20), the following relations can be ob-
tained:

(21)

(22)

Combining both (21) and (22) and the relation
, we obtain the following equations:

(23)

In the following, we reformulate the optimization problem
(18) in and into a scalar optimization problem in

. Therefore, we first replace that optimization problem by
an optimization problem in and by the relation .
Since (23) also holds in the scalar optimization, we search for
the optimum only along this curve in the ( and ) space.

By elimination of from (23), the minimization problem
from is obtained in a straightforward way

where and

Setting , the update rule can be obtained
as follows:

where indicates the range .

APPENDIX III
DETAILS OF RBF NETWORKS

The component network in the ensemble is an RBF network.
The output of RBF network is computed as a linear combination
of basis functions
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where denotes the weight vector in the
output layer and is the vector of basis func-
tions. The Gaussian basis functions are defined as

where and denote the mean and width of the Gaussian,
respectively. The training of RBF network is separated into two
steps. In the first step, the means are initialized with randomly
selected data points from the training set and the variances
are determined as the Euclidean distance between and the
closest . Then, in the second step,
we perform a gradient descent in the regularized error function
(weight decay)

(24)

The derivative of (24) with respect to is

(25)

In order to fine-tune the centers and widths, we simultane-
ously adjust the output weights and the RBF centers and vari-
ances. Taking the derivative of (24) with respect to RBF means

and variances , and we obtain

(26)

with and

(27)

with . These three
derivatives are employed in the minimization of (24) by an SCG
descent.
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[22] H. Chen, P. Tiňo, and X. Yao, “Probabilistic classification vector ma-
chine,” IEEE Trans. Neural Netw., vol. 20, no. 6, pp. 901–914, Jun.
2009.

[23] J. Kwok, “Moderating the outputs of support vector machine classi-
fiers,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1018–1031, Sep.
1999.

[24] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford,
U.K.: Oxford Univ. Press, 1996.

[25] M. F. Møller, “A scaled conjugate gradient algorithm for fast super-
vised learning,” Neural Netw., vol. 6, no. 4, pp. 525–533, 1993.

[26] R. M. Neal, Bayesian Learning for Neural Networks. New York:
Springer-Verlag, 1996, vol. 118.

[27] R. Rosipal and M. Girolami, “An expectation-maximization approach
to nonlinear component analysis,” Neural Comput., vol. 13, no. 3, pp.
505–510, 2001.

[28] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

[29] J. Weston, M. Stitson, A. Gammerman, V. Vovk, and V. Vapnik,
“Experiments with support vector machines,” Royal Holloway Univ.
London, London, U.K., Tech. Rep. CSD-TR-96-19, 1996.

[30] J. Hansen, “Combining predictors: Meta machine learning methods and
bias/variance and ambiguity decompositions,” Ph.D. dissertation, Dept.
Comput. Sci., Univ. Aarhus, Aarhus, Denmark, 2000.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 10:55 from IEEE Xplore.  Restrictions apply. 



CHEN AND YAO: REGULARIZED NEGATIVE CORRELATION LEARNING FOR NEURAL NETWORK ENSEMBLES 1979

[31] G. Ridgeway, D. Madigan, and T. Richardson, “Boosting method-
ology for regression problems,” in Proc. Artif. Intell. Statist., 1999,
pp. 152–161.

[32] A. Asuncion and D. Newman, UCI Machine Learning Reposi-
tory, Univ. California Irvine, Irvine, CA, 2007 [Online]. Available:
http://www.archive.ics.uci.edu/ml

[33] P. Buhlmann and B. Yu, “Analyzing Bagging,” Ann. Statist., vol. 30,
no. 4, pp. 927–961, 2002.
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