
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 1

Efficient Probabilistic Classification Vector Machine
with Incremental Basis Function Selection

Huanhuan Chen, Member, IEEE, Peter Tiňo, and Xin Yao, Fellow, IEEE

Abstract—Probabilistic classification vector machine (PCVM)
[5] is a sparse learning approach aiming to address the stability
problems of relevance vector machine (RVM) for classification
problems. Since PCVM is based on the Expectation Maximization
(EM) algorithm, it suffers from sensitivity to initialization,
convergence to local minima, and the limitation of Bayesian
estimation making only point estimates. Another disadvantage
is that PCVM was not efficient for large data sets. To address
these problems, this paper proposes an efficient probabilistic
classification vector machine (EPCVM) by sequentially adding
or deleting basis functions according to the marginal likelihood
maximization for efficient training. Due to the truncated prior
used in EPCVM, two approximation techniques, i.e. Laplace
approximation and expectation propagation, have been used
to implement EPCVM to obtain full Bayesian solutions. We
have verified Laplace approximation and expectation propaga-
tion with a hybrid Monte Carlo approach. The generalization
performance and computational effectiveness of EPCVM are
extensively evaluated. Theoretical discussions using Rademacher
complexity reveal the relationship between the sparsity and the
generalization bound of EPCVM.

Index Terms—Bayesian Classification, Efficient Probabilistic
Classification Model, Incremental Learning, Laplace Approxi-
mation, Expectation Propagation, Support Vector Machine.

I. INTRODUCTION AND BACKGROUND

Support vector machine (SVM) [37] and kernel methods
are among the most popular learning methods in the machine
learning community. Although SVM performs well for a broad
range of practical applications, and is widely regarded as the
state-of-the-art approach, it suffers from several disadvantages
[35], including the non-probabilistic, hard binary decisions,
and the number of support vectors grows linearly with the
size of the training set, which increases the computational
complexity when the problem becomes large.

Relevance Vector Machine (RVM) is a probabilistic learning
method that tries to tackle these problems of SVM. RVM intro-
duces a zero-mean Gaussian prior over every weight wi and
makes use of Bayesian Automatic Relevance Determination
(ARD) framework [24] to obtain a sparse solution. In RVM, all
basis functions are included in the model and those irrelevant
basis functions will be deleted step by step based on evidence
maximization. The necessary training and optimization of
the marginal likelihood function is typically much slower.
Later on, a highly accelerated RVM [36] has been proposed

Huanhuan Chen is with the USTC-Birmingham Joint Research Institute in
Intelligent Computation and Its Applications (UBRI), School of Computer
Science and Technology, University of Science and Technology of China
(USTC), Hefei, 230027, China. Huanhuan Chen, Peter Tino and Xin Yao are
with The Centre of Excellence for Research in Computational Intelligence
and Applications (CERCIA), School of Computer Science, University of
Birmingham, Birmingham B15 2TT, United Kingdom, email: {H.Chen,
P.Tino, X.Yao}@cs.bham.ac.uk.

by optimizing the marginal likelihood function to enable an
efficient sequential addition and deletion of candidate basis
functions.

However, Chen et al. [5] pointed out that RVM is not robust
to kernel parameters due to the inappropriate formulation
that adopts zero-mean Gaussian prior over weights for both
positive and negative classes in classification problems, hence
some training points that belong to positive class (yi = +1)
may have negative weights and vice versa. Chen et al. [5]
demonstrated that RVM is unstable with respect to kernel
parameters and might lead to sub-optimal solutions evidenced
by empirical and theoretical results.

Probabilistic classification vector machine (PCVM) [5] in-
troduced the non-negative, left-truncated Gaussian prior for
positive training points (yi = +1) and the non-positive,
right-truncated Gaussian prior for negative training points
(yi = −1). A closed form Expectation Maximization (EM)
was used to get a maximum a posteriori (MAP) estimation of
parameters in PCVM. However, there are several limitations
for the EM implementation. First, EM algorithm is sensitive to
initializations and may converge to a local minimum, which
will degrade the generalization ability, especially when the
investigated problems become large where there are more
local minima existing. Second, the EM algorithm can only
obtain a MAP estimation of parameters. The MAP estimation
is a limit of Bayes estimators under the 0-1 loss functions,
but generally not a Bayes estimator per se. Third, EM based
PCVM begins by including all basis functions and then
pruning those irrelevant basis functions iteratively. Therefore,
the algorithm is not appropriate for large data sets due to the
computational/memory cost.

In order to address these problems, in this paper we improve
PCVM in the following two directions:

• We construct an efficient probabilistic classification vec-
tor machine (EPCVM) and approximate the posterior
by Laplace approximation (EPCVMLap) and expectation
propagation [26] (EPCVMEP). By using the two integral
approximation techniques, the solution is fully Bayesian,
which automatically tackles the first two disadvantages
of the EM algorithm. The accuracy of EPCVMLap and
EPCVMEP has been verified by Markov Chain Monte
Carlo (MCMC) algorithm.

• We have improved the PCVM algorithm using marginal
likelihood maximization. By incrementally maximizing
marginal likelihood, EPCVM can sequentially include
basis functions into the models iteratively. This makes
EPCVMLap computationally more efficient.

The contributions of this paper can be summarized as
follows:

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 2

• Unlike SVM, the proposed algorithms, are probabilistic
models, producing the probabilistic outputs for new test
points.

• Compared with the original PCVM, the two proposed
methods, EPCVMLap and EPCVMEP , based on the
integral approximation, are not only more stable with re-
spect to initialization, but also yield better generalization
performance (on the variety of data sets used).

• By incrementally maximizing marginal likelihood, the
methods introduced in this paper reduce the computa-
tional complexity of PCVM.

• Due to the sparseness-inducing prior, the model sparsity
helps to control model complexity and reduce the com-
putational complexity in the test stage.

In sparse classification algorithms, the model is typically
regularized by some prior belief about the weights that pro-
mote their sparsity. Besides Gaussian prior, Laplace prior that
leads to an L1-penalty, analogous to the LASSO penalty for
regression [34], is another popular choice. Joint classifier and
feature optimization (JCFO) [21] was one of these algorithms
using Laplace prior. JCFO was able to optimize the clas-
sifier and select the proper feature subsets simultaneously.
To promote sparseness, sparse probit classification algorithm
[15] adopted the hierarchical prior, i.e. the Jeffreys prior, over
the Laplace prior, whose main advantage was able to control
the degree of sparseness without prior parameters. However,
both JCFO and sparse probit classification were based on
expectation maximization algorithm, and they might suffer
from the disadvantages, i.e., sensitivity to initialization and
convergence to local minima. The above two algorithms are
based on the specification of sparseness inducing prior to the
weight vectors in parametric models. The sparse model has
emerged in ensemble approaches as well. For example, Sun
and Yao [33] proposed a sparse learning algorithm through
gradient boosting for learning large kernel problems. However,
this approach does not produce probabilistic outputs as it
employed a greedy forward selection criterion by simply
choosing the basis vector with the largest absolute value in
the current residual.

Besides the parametric Bayesian models using prior to im-
pose sparseness, there are a number of sparse non-parametric
Bayesian models, e.g. sparse online Gaussian processes (GP)
[10] and the accelerated version: informative vector machine
(IVM) [22]. Sparse online Gaussian processes combines a
Bayesian online algorithm with a sequential construction of
a relevant subsample of the data that fully specifies the pre-
diction of the GP model. IVM accelerated the spare GP model
by approximating a Gaussian process using forward selection
with criteria based on information-theoretic principles.

The rest of this paper is organized as follows. Section II
proposes the two EPCVM implementations, followed by the
comparisons of MCMC, Laplace approximation and expecta-
tion propagation in Section III. The experimental results and
analysis are reported in Section IV. Section V provides the
theoretical discussions on sparsity and generalization. Finally,
Section VI concludes the paper and presents future work.

II. EFFICIENT PROBABILISTIC CLASSIFICATION VECTOR
MACHINE

In this section, we will present the model specification
for EPCVM in Section II-A, then the prior over weight
vectors will be discussed in Section II-B. Section II-C presents
Laplace approximation based EPCVMLap algorithm, and Sec-
tion II-D details the expectation propagation based EPCVMEP

algorithm.

A. Model Formulation

Consider binary classification and a data set of input-target
training pairs D = {xi, yi}Ni=1, where yi ∈ {−1,+1}. In
order to transfer linear outputs to probabilistic outputs, a
link function should be chosen to allow a smooth transition
between two classes. The EM implementation of PCVM [5]
used probit link function, i.e.

ψ(a) =

∫ a

−∞
N(t|0, 1)dt,

where ψ(a) is the Gaussian cumulative distribution. In order
to be consistent, the probit link function is employed in this
paper as well.

Derivations of Laplace approximation become easier when
sigmoid link function is used. In this paper, we employ a
popular approximation [2] by making use of the similarity
between the logistic sigmoid function and the probit link
function [3] (pages 218-220), i.e.

σ(λa) =
1

1 + e−λa
≈ ψ(a),

where λ =
√
8/π. The scaling factor λ is chosen to ensure

that the probit function and the logistic sigmoid function have
the same slope at the origin.

After incorporating the link function, the EPCVM model
becomes:

p(y = 1|x,w) = ψ(x;w) = ψ

(
N∑
i=0

yiwiϕi(x,xi)

)
. (1)

where yi ∈ {−1,+1} is the label, y0 and ϕ0(x,x0) are set
to 1 for convenience. We use yi in Equation (1) to make sure
wi is non-negative. In the following, we denote yiϕi(x) by
ϕyi(x), i.e. Equation (1) will be represented as follows:

p(y = 1|x,w) = ψ

(
N∑
i=0

wiϕyi(x,xi)

)
.

In Equation (1), we use ϕ(·) instead of K(·) to indicate that
basis functions in EPCVM do not need to satisfy Mercer’s
condition1.

B. Truncated Prior over Weights

Based on the PCVM formulation [5], a truncated Gaussian
prior [8] is introduced for each weight wi and a zero-mean

1It must be a continuous symmetric kernel of a positive integral operator,
which can be relaxed slightly to include conditionally positive kernels [31].

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 3

−20 −15 −10 −5 0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Approximation
Indicator function

Fig. 1. Comparisons of indicator function and its differentiable approximation
ξβ (β = 3).

Gaussian prior is adopted for the bias w0. The priors are
assumed to be mutually independent.

p(w|α) =
N∏
i=1

p(wi|αi) =
N∏
i=1

Nt(wi|0, α−1
i),

p(w0|α0) = N(w0|0, α−1
0),

where α0 is the inverse variance, Nt(wi|0, α−1
i) is a non-

negative, left-truncated Gaussian, and αi is the inverse vari-
ance. This is formalized in Equation (2):

p(wi|αi) =

{
2N(wi|0, α−1

i) if wi ≥ 0
0 otherwise

= 2N(wi|0, α−1
i) · δ(wi). (2)

where δ(·) is the indicator function 1x≥0(x).

C. Laplace Approximation for EPCVM

In EPCVM, the prior is given as

p(w|α) = N(w0|0, α−1
0)

N∏
i=1

2N(wi|0, α−1
i) · δ(wi)

We follow convention and generalize the model by applying
the logistic sigmoid link function, and adopting the Bernoulli
distribution for p(t|w), the likelihood is written as follows:

p(t | w) =
N∏

n=1

σtn
n [1− σn]

1−tn ,

where σn = σ
(
λ
∑N

i=0 wiϕyi(xn)
)

and we assume y0 = 1

to facilitate the representation, t = [t1, · · · , tN]T is a vector
of targets, tn = yn+1

2 ∈ {0, 1} is the probabilistic target.
According to Bayes’ theorem, the posterior distribution of

weights w can be obtained with the current values of α as
follows:

p(w|t) = p(t|w)p(w|α)
p(t|α)

.

After incorporating the truncated Gaussian prior, the integral
in Bayesian inference is intractable. In order to obtain the
posterior, Laplace approximation will be employed to approx-
imate the posterior. Laplace approximation is a deterministic
approximation algorithm using a Gaussian to represent a given
probability.

The most probable weight setting under the posterior, MAP
estimate of w, wMAP can be obtained by maximizing the log
of p(w|t) with respect to the parameters w:

Q = log {p(t|w)p(w|α)} − log p(t|α)

=
N∑

n=1

[tn log σn + (1− tn) log(1− σn)]−
1

2

N∑
i=0

αiw
2
i

+

N∑
i=1

log δ(wi)− const.

As the indicator function δ(·) is not differentiable, a sigmoid
link function with β = 3 is employed to replace it, i.e.
approximate δ(wi) by ξβ(wi) = σ(βwi) (see Figure 1), the
gradient is

∂Q

∂w
= λΦT (t− σ)−Aw + k,

where σ = [σ1, · · · , σN]T , σn = σ
(
λ
∑N

i=0 wiϕyi(xn)
)

,
A = diag(α0, α1, · · · , αN) is the (N+1)×(N+1) diagonal
matrix, k = [0, β(1− σ(βw1)), · · · , β(1− σ(βwN))]T is the
N + 1 vector.

Setting the gradient to zero and we obtain

wMAP=A−1
(
λΦT (t− σ) + k

)
. (3)

The Hessian can be explicitly computed as follows:

∂2Q

∂w2
= −(ΦTBΦ+A+D),

where B = diag(b1, · · · , bN) and D are diagonal matrices,
where bi = λ2σn(1 − σn) and D = diag(0, d1, · · · , dN) =
diag(0, σ(βw1)(1 − σ(βw1))β

2, · · · , σ(βwN)(1 −
σ(βwN))β2), respectively.

Hence, the posterior covariance is

ΣMAP = (ΦTBΦ+A+D)−1. (4)

The novelty of the derivation in this section is to incorporate
the indicator function, i.e. k and D in Equations (3) and (4), to
prevent the weight from negative values, i.e. complying with
truncated prior.

D. Expectation Propagation for EPCVM

Expectation propagation (EP) [26] is a deterministic frame-
work to approximate Bayesian inference. It employs a family
of exponential functions to minimize the KL-divergence be-
tween the exact term and the approximation term, and then EP
combines these approximations analytically to obtain a Gaus-
sian posterior. EP has been employed in various domains, such
as Bayesian ensemble pruning [4], and multitask learning [30].
For a specific problem, such as EPCVM in this paper, plenty
of derivations should be performed aiming to minimizing the
KL-divergence between the exact term and the approximation
term.

In EPCVMEP , the likelihood for the weight vector w can
be written as

p(y|x,w) =
N∏

n=1

p(yn|xn,w) =
N∏

n=1

ψ

(
yn

N∑
i=0

wiϕyi(xn)

)
.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 4

By incorporating the prior with likelihood, the posterior of
weight vectors w is calculated as

p(w|x,y, α) ∝ p(w|α)
N∏

n=1

p(yn|xn,w)

= N(w0|0, α−1
0)

N∏
i=1

2N(wi|0, α−1
i) ·

N∏
i=1

δ(wi)
N∏

n=1

p(yn|xn,w).

In EP, we need to approximate both the likelihood
term p(yn|xn,w) = ψ

(
yn
∑N

i=0 wiϕyi(xn)
)

and
δ(wi) term. Denote the exact terms gn(w) =
p(yn|xn,w) and ti(w) = δ(wi) = δ(wTei) (where
ei = (0, · · · , 1, 0, · · · , 0)T is the standard basis to obtain
the weight wi (wi = wTei)) and the approximate terms
by g̃n(w) = sn exp

(
− 1

2vn
(ynw

TΦ(xn)−mn)
2
)

=

sn exp(− 1
2vn

(wTΦn − mn)
2), where Φ(xn) =

[ϕy1(xn), · · · , ϕyN
(xn)]

T and to simplify notation, ynΦ(xn)
is written as Φn, and t̃i(w) = si exp(− 1

2vi
(wT ei − mi)

2).
The EP for PCVM is described in the following.

1) Initialization the prior term: q(w) = p(w|α). Also
initialize the approximating terms to 1: g̃n = 1 and
t̃i = 1: m = 0, v = ∞ and s = 1.

2) Until both g̃n and t̃i converge: Loop n = 1, . . . , N , and
i = 1, . . . , N ;

a) Remove the approximation term g̃n from the pos-
terior q(w) to obtain the leave-one-out posterior
q\n(w): N(m

\n
w ,V

\n
w).

V\n
w = Vw +

(VwΦn)(VwΦn)
T

vn − ΦT
nVwΦn

, (5)

m\n
w = mw + (V\n

w Φn)v
−1
n (ΦT

nmw −mn). (6)

b) Combine q\n(w) and the exact term gn(w) to
get p̂(w) ∝ q\n(w)gn(w) and minimize the KL-
divergence between p̂(w) and new posterior q(w).

Zn =

∫
w

q\n(w)gn(w)dw = ψ(zn)

= ψ

 (m
\n
w)TΦn√

ΦT
nV

\n
w Φn + 1

 .

and

mw = m\n
w +V\n

w

∂ logZn

∂m
\n
w

= m\n
w +V\n

w Φnρn

Vw = V\n
w +V\n

w

 ∂ logZn

∂m
\n
w

(
∂ logZn

∂m
\n
w

)T
−2∂ logZn

∂V
\n
w

V\n
w

= V\n
w + (V\n

w Φn)
ρn(Φ

T
nmw + ρn)

ΦT
nV

\n
w Φn + 1

(V\n
w Φn)

T ,

where

ρn =
1√

ΦT
nV

\n
w Φn + 1

N(zn; 0, 1)

ψ(zn)
.

c) Update the approximation term g̃n = Zn
q(w)

q\n(w)
,

vn, mn and sn are obtained as follows:

vn = ΦT
nV

\n
w Φn

(
1

ρn(ΦT
nmw + ρn)

− 1

)
+

1

ρn(ΦT
nmw + ρn)

,

mn = (m\n
w)TΦn + (vn +ΦT

nV
\n
w Φn)ρn,

sn = ψ(zn)

√
ΦT

nV
\n
w Φnv

−1
n + 1 ·

exp

(
1

2

ΦT
nV

\n
w Φn + 1

ΦT
nmw + ρn

ρn

)
.

d) Remove the approximation term t̃i from the pos-
terior q(w) to obtain the leave-one-out posterior
q\i(w): N(m

\i
w ,V

\i
w). Refer to the equations (5)

and (6).
e) Combine q\i(w) and the exact term ti(w) to get

p̂(w) = q\i(w)ti(w)∫
q\i(w)ti(w)dw

and minimize the KL-
divergence KL(p̂(w)||q(w)) between p̂(w) and
new posterior q(w) subject to the constraint that
q(w) is a Gaussian distribution. Zeroing the gra-
dient with respect to m

\i
w and V

\i
w gives the

conditions [26],

Eq(w)[w] = Ep̂(w)[w],

Eq(w)[w
Tw] = Ep̂(w)[w

Tw].

This is the reason why the algorithm is named as
expectation propagation.

Zi =

∫
w

q\i(w)ti(w)dw

=

∫
w

q\i(w)δ(wTei)dw =ψ(zi)

where

zi =
(m

\i
w)Tei√

eTi V
\i
wei

,

and
∂ logZi

∂m
\i
w

=
N(zi)

ψ(zi)

ei√
eTi V

\i
wei

= gi

∂ logZi

∂V
\i
w

= −1

2
ρi
(m

\i
w)Tei

eTi V
\i
wei

eie
T
i = Gi,

where
ρi =

N(zi)

ψ(zi)

1√
eTi V

\i
wei

.

Based on the theory of expectation propagation
[26],

mw = m\i
w +V\i

w

∂ logZi

∂m
\i
w

= m\i
w +V\i

wρiei,

Vw = V\i
w +V\i

w(gig
T
i − 2Gi)V

\i
w

= V\i
w + (V\i

wei)

(
ρie

T
i mw

eTi V
\i
wei

)
(V\i

wei)
T ,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 5

f) Update the approximation term t̃i = Zi
q(w)
q\i(w)

:

vi = eTi Viei = eTi V
\i
wei

(
1

ρieTi mw
− 1

)
.

mi = (m\i
w)Tei + (vi + eTi V

\i
wei)ρi,

si = ψ(zi)

√
eTi V

\i
weiv

−1
i + 1 exp

(
1

2

eTi V
\i
wei

eTi mw
ρi

)
.

Output: The approximated posterior of the weight vector
w

p(w|x,y, α) ≈ q(w) = N(mw,Vw).

Based on the algorithm, EP approximates each term as
a Gaussian distribution, leading to the situation that the
likelihood of every training point has similar forms as a
regression likelihood term. The likelihood of each data point
in EPCVMEP can be obtained as

p(m|w,x) = (2π)−N |Λ|−1/2 exp

(
− 1

2 (w
TΦ−mt)

TΛ−1·
(wTΦ−mt)

)
,

where mt = (m1, · · · ,mN) denotes the target point vector,
Λ = diag(v1, . . . , vN), where vn represents the variance
of the noise for the training point n. EP actually maps
a classification problem into a regression problem where
(mn,vn) defines the virtual observation data point with mean
mn and variance vn. Note that we can compute analytically the
posterior distribution of the weights. The posterior distribution
of the weight vector is thus given by:

p(w|x,m, α) =
p(m|w,x)p(w|α)

p(m|α,x)

=
exp

(
−1

2 (w −mw)TVw(w −mw)
)

(2π)N |Vw|1/2
,

where the posterior covariance and mean are:

Vw = (A+ΦΛ−1ΦT)−1, (7)
mw = VwΦΛ−1mt. (8)

where A = diag(α0, · · · , αN).
1) Leave-one-out Estimation: A nice property of EP is

that it can easily obtain an estimate of the leave-one-out
error. In each iteration, EP computes the parameters of the
approximate leave-one-out posterior q\n(w) (step 2(a)) that
does not depend on the nth data point. So we can use the
mean m

\n
w to approximate a classifier trained on the other

(N − 1) data points. Thus an estimate of the leave-one-out
error can be obtained as

errloo =
1

N

N∑
n=1

δ(−yn(m\n
w)TΦ(xn)). (9)

In practice, the estimation of leave-one-out error will be
employed for model selection. The model with the smallest
leave-one-out error will be selected instead of the one in the
last iteration.

E. Hyperparameter Optimization for EPCVM

Originally, we optimized PCVM by the top-down approach
[5]. It includes all basis functions in the beginning, and
then prunes irrelevant basis functions when the corresponding
α′
ns tending to infinity. However, the top-down approach will

typically consume a lot of computational resources, especially
in the beginning of the training. In order to make the algorithm
more computationally efficient, we propose to use the con-
structive approach based on marginal likelihood maximization
to include basis functions step by step starting from an empty
model. This is different from the greedy forward selection
criterion such as MAX-RES [33] that simply chooses the basis
vector with the largest absolute value in the current residual.

The previous sections present the training algorithm of
EPCVMLap and EPCVMEP with fixed hyperparameter α. In
order to sequentially update α for a practical algorithm, we
can maximize the type-II marginal likelihood p(D|α). The
fast algorithm to optimize the type-II marginal likelihood is
to decompose p(D|α) into two parts, one part denoted by
p(D|α\i), that does not depend on αi and another that does,
i.e.,

p(D|α) = p(D|α\i) + l(αi), (10)

where l(αi) is a function that depends on αi.
The updating rule for αi can be obtained with the derivation

of marginal likelihood [13]. The procedure leads to a practical
algorithm for optimizing the hyperparameters that has signif-
icant speed advantages.

III. LAPLACE APPROXIMATION, EXPECTATION
PROPAGATION AND MARKOV CHAIN MONTE CARLO

Laplace approximation and expectation propagation can be
viewed as integral approximation techniques. As the truncated
Gaussian prior is used in this paper, the exact posterior
distribution is unknown. In this section, we employ Markov
Chain Monte Carlo (MCMC) method to sample from the
exact posterior distribution for the comparison with Laplace
approximation and expectation propagation.

MCMC methods [1] are a class of algorithms for sampling
from probability distributions based on constructing a Markov
chain that has the desired distribution as its equilibrium
distribution. MCMC may be too slow for many practical
applications, but has the advantage that it becomes exact in the
‘limit’ of long runs. Thus, MCMC can provide a standard way
to measure the accuracy of integral approximation methods,
such as Laplace approximation and expectation propagation
used in this paper. One popular MCMC algorithm, Metropolis
algorithm [1] is sensitive to step size. The sampling result
is slow and might exhibit a random-walk behavior with a
small step size, whereas the result is inefficient due to a high
rejection rate with a large step size.

This paper uses one powerful MCMC algorithm, hybrid
Monte Carlo (HMC) algorithm [12] as it incorporates the gra-
dient of the log probability with respect to the state variables
into sampling process, which is able to make large changes to
the system while keeping the rejection probability small.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 6

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CPU Time (seconds)

G
en

er
al

iz
at

io
n

E
rr

or

Posterior Mean

Laplace
EP
HMC

(a) Synth

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

CPU Time (seconds)

G
en

er
al

iz
at

io
n

E
rr

or

Posterior Mean

Laplace
EP
HMC

(b) Heart

Fig. 2. The comparisons of Laplace approximation, expectation propagation
and hybrid monte carlo (200,0000 sampling points) in terms of generalization
error and CPU time.

In our experiments, two data sets, synth2 and heart [27],
have been employed in the investigation. In Figure 2, we
illustrate the comparisons of the three algorithms, i.e. Laplace,
EP and HMC (200,000 sampling points), in terms of the
generalization and the computational time. To compare the
three algorithms, we do not optimize the hyperparameters
in this figure3. The same random initialization is given to
the three algorithms. According to Figure 2, Laplace, EP
and HMC achieve similar performance. Due to the sampling
mechanics, HMC converges slower than Laplace and EP, and
in Synth data, the solution of HMC is unstable compared to
Laplace and EP. The Laplace uses the least time and HMC
has consumed the most time.

In the following experiments, we report the experimental
results by incorporating the three algorithms with the hyperpa-
rameter optimization by maximizing the marginal likelihood.

2http://www.stats.ox.ac.uk/pub/PRNN/
3The following experiments will report the three algorithms with the

hyperparameter optimization by maximizing the marginal likelihood, see Table
I.

TABLE I
COMPARISONS OF MCMC, EP AND LAPLACE APPROXIMATION ON FOUR

DATA SETS.

Methods Cancer Diabetics
error AUC #vec CPUTime error AUC #vec CPUTime

MCMC 26.61 71.94 12 669.1s 23.17 82.86 23 764.1s
EP 26.65 72.53 9 3.2s 23.18 82.89 17 357.2s

Laplace 26.71 72.03 16 0.2s 23.11 83.12 22 1.1s
Methods Heart Thyroid

error AUC #vec CPUTime error AUC #vec CPUTime
MCMC 16.37 90.67 16 707.4s 4.94 98.71 22 913.1s

EP 16.65 90.91 13 254.7s 5.16 98.63 10 61.2s
Laplace 16.65 90.83 15 0.3s 5.02 98.87 21 0.2s

In HMC, the posterior mean and covariance matrix are esti-
mated using the sampling points. The same hyperparameter
optimization procedures described in Section II-E are em-
ployed in HMC. The four data sets, including Cancer, Diabet-
ics, Heart and Thyroid, from UCI machine learning repository
are employed to show the difference between HMC, Laplace
approximation and expectation propagation. The summary of
these data sets can be referred in Table II. The resulting model
and the classification performance are shown in Table I.

From the table, Laplace approximation, expectation propa-
gation and MCMC achieve similar performances in terms of
both generalization error and model size. Of course, Laplace
approximation is much less time consuming than HMC.

Both figures and table indicate that Laplace approximation
and EP approximate the posterior well with truncated Gaussian
priors for the two classification problems. It also demonstrates
that Laplace approximation is more efficient than EP and HMC
in the current experimental settings. In the following section,
we will conduct extensive experiments to compare Laplace
approximation, EP and other algorithms.

IV. EXPERIMENTAL STUDIES

First, we present experimental results of EPCVM, RVM and
SVM on two synthetic data sets in order to understand the
behaviors of these algorithms. Second, we carry out extensive
experiments on 13 benchmark data sets using the error rate
(ERR) and the area under the curve of receiver operating
characteristic (AUC). Then, we present detailed statistical tests
over multiple data sets for multiple classifiers. Finally, the
algorithmic complexity of EPCVM and its application to a
relatively large data set have been reported.

A. Synthetic Data Sets

In the first experiment, we compare EPCVMLap, SVM [37]
and RVM [35] on two synthetic data sets. In order to facilitate
further reference, each data set will be named according to its
characteristics. Spiral can only be separated by highly non-
linear decision boundaries. Overlap comes from two Gaussian
distributions with equal covariance, and is expected to be sep-
arated by a linear plane. This experiment employs a Gaussian
RBF kernel as the basis function.

The parameters of SVM including the regularization param-
eter C and the kernel parameter θ are selected by grid search

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 7

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Spiral: SVM

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Spiral: RVM

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Spiral: EPCVM

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

(d) Overlap: SVM

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

(e) Overlap: RVM

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

(f) Overlap: EPCVM

Fig. 3. Comparison of classification of synthetic data sets using a RBF kernel.
Two classes are shown as dots and crosses. The separating lines are obtained
by projecting test data over a grid. Kernel and regularization parameters for
SVM, RVM and EPCVM are obtained by 10-fold cross validation

with 10-fold cross validation4. The kernel parameters θ of
EPCVMLap and RVM are selected by 10-fold cross validation.

In Figures 3 we present the decision boundaries of three
algorithms. We observe a similar performance of EPCVMLap

and SVM in the case of Spiral. RVM cannot obtain the
correct decision boundary due to the highly non-linear data
set. The failure indicates that the prior of RVM produces
excessive sparseness in the outer part of data, leading the
boundary biasing towards outer circle and hence producing
errors. EPCVMLap produces “nearly linear” decision bound-
ary in Overlap and RVM gives analogously curving decision
boundary, whereas SVM gives a more curved boundary. We
also notice that SVM uses the largest number of support
vectors and RVM uses the smallest number of support vectors.
EPCVMLap seems to have reasonable vectors to achieve the
tradeoff between model size and performance.

The results of EPCVMLap are promising on the two syn-
thetic data sets. EPCVMLap not only handles the data sets
with a predominating linear decision boundary, e.g. Overlap,
but also be applied to the highly non-linear data sets, e.g.
Spiral.

4The ranges of cross validation search for SVM are C ∈ {1, 3, · · · , 100}
and θ ∈ {0.1, 0.3, · · · , 10} (The data has been normalized to unit standard
deviation.) in both synthetic data sets and benchmark data sets. The same
search range θ ∈ {0.1, 0.3, · · · , 10} has been used for EPCVM and RVM
in both synthetic data sets and benchmark data sets.

TABLE II
SUMMARY OF 13 BENCHMARK DATA SETS.

Data No. Train No. Test Positive % Negative % Dim
Abalone 2089 2088 50.18% 49.82% 8
Banana 2650 2650 44.83% 55.17% 2
Cancer 132 131 29.28% 70.72% 9

Diabetics 384 384 34.90% 65.10% 8
German 500 500 30.00% 70.00% 20
Heart 135 135 44.44% 55.56% 13
Image 1043 1043 56.95% 43.05% 18

Ringnorm 3700 3700 49.51% 50.49% 20
Splice 1496 1495 44.93% 55.07% 60

Thyroid 108 107 30.23% 69.77% 5
Titanic 1101 1100 58.33% 41.67% 3

Twonorm 3700 3700 50.04% 49.96% 20
Waveform 2500 2500 32.94% 67.06% 21

B. Benchmark Data Sets

In order to evaluate the performance of EPCVMLap and
EPCVMEP , we compare different algorithms on 13 well
known benchmark problems. These data sets include one
synthetic set (banana) along with 12 other real-world data sets
from UCI [27] and DELVE5. The characteristics of the data set
are summarized in Table II. We follow Rätsch’s methodology
[29] and convert every problem into binary classes, and
randomly partition every data set into 100 training and test-
ing instances. In addition, every instance is input-normalized
dimension-wise to have zero mean and unit standard deviation.

These compared algorithms are: EM based PCVM
(PCVMEM) [5], Laplace approximation based EPCVM
(EPCVMLap) and expectation propagation based EPCVM
(EPCVMEP), SVM [37], relevance vector machine (RVM)
[35] and sparse multinomial logistic regression (SMLR) [20].
The methodology to optimize the parameters of these models
will be presented below.

In order to compare with some baseline methods, we
also examine the performance of linear/quadratic discrimi-
nant analysis (LDA/QDA) and k Nearest Neighbor (kNN),
where the number of nearest neighbors k is selected by the
parameter selection methodology (where k is selected from
{1, 2, · · · , 20}). The error rate (ERR) and the area under the
curve of receiver operating characteristic (AUC) are used for
evaluation of these algorithms.

The procedure of parameter optimization follows Rätsch’s
methodology [29], which trains the algorithm with each can-
didate parameter on the first five training partitions of a given
data set and selects the model parameters to be the median
over those five estimates.

In the case of SVM, we train SVM with a parametrical grid
with different combinations of the kernel parameter θ and the
regularization parameter C, on the first five realizations of
the training data and then select the median of the resulting
parameters.

The same methodology is applied to PCVMEM ,
EPCVMLap, EPCVMEP , RVM, SMLR and kNN. The only
difference among them is that they need to optimize different
parameters. For PCVMEM , EPCVMLap, EPCVMEP , RVM
and SMLR, we need to optimize the kernel width parameter

5http://www.cs.toronto.edu/˜delve/data/datasets.html

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 8

TABLE III
COMPARISON OF kNN, LDA, QDA, SVM, RVM, SMLR AND PCVMEM , EPCVMLap AND EPCVMEP ON 13 BENCHMARK DATA SETS, BY % ERROR

AND AUC. THESE RESULTS ARE THE AVERAGE OF 100 RUNS ON THE DATA SETS. “-” MEANS THE COVARIANCE MATRIX OF TRAINING DATA IS NOT
POSITIVE DEFINITE AND QDA CANNOT OBTAIN THE RESULTS. BOLDFACE VALUES INDICATE THE BEST PERFORMANCE IN EACH DATA SET.

ERR Abalone Banana Cancer Diabetics German Heart Image Ringnorm Splice Thyroid Titanic Twonorm Waveform
kNN 21.87 26.07 27.15 25.70 26.64 16.52 4.17 27.17 23.35 5.25 24.40 2.64 9.87
LDA 22.25 24.24 33.59 24.74 28.65 16.92 17.24 23.22 16.13 13.40 22.19 2.38 17.04
QDA 24.33 26.36 32.71 26.79 - 20.52 17.59 1.84 13.17 7.01 22.54 2.35 13.14
SVM 21.19 9.72 27.31 23.50 29.87 16.15 5.63 1.67 10.41 4.57 21.18 2.42 8.86
RVM 20.95 9.76 28.37 24.86 25.85 18.90 5.25 1.65 12.10 5.49 22.14 2.51 9.27

SMLR 20.98 9.74 27.39 23.39 25.06 19.52 5.89 1.68 11.41 5.25 21.18 2.32 9.21
EM 22.14 9.88 27.08 23.35 23.96 16.76 5.22 1.67 12.05 4.91 22.16 2.36 10.23
EP 21.16 9.60 26.65 23.18 23.85 16.65 5.16 1.66 11.27 5.16 21.02 2.31 9.16

Laplace 20.42 9.62 26.71 23.11 24.09 16.65 5.18 1.52 11.30 5.02 20.83 2.31 9.13
AUC Abalone Banana Cancer Diabetics German Heart Image Ringnorm Splice Thyroid Titanic Twonorm Waveform
kNN 78.15 68.61 59.33 68.30 63.02 82.90 95.55 72.57 78.17 92.63 68.18 97.36 89.66
LDA 77.74 74.53 64.01 74.07 71.05 82.67 81.49 76.71 84.13 78.77 70.69 97.72 87.15
QDA 75.64 71.74 62.63 71.35 - 79.30 82.40 98.56 86.27 89.96 70.97 97.65 88.97
SVM 86.41 96.83 68.23 82.94 63.72 90.28 98.77 99.84 95.94 99.05 75.18 99.74 97.08
RVM 87.53 97.06 67.69 81.90 76.37 88.16 98.96 99.78 93.54 98.12 72.36 98.94 96.60

SMLR 88.23 96.89 70.89 81.85 77.58 87.16 99.03 99.75 95.37 98.36 74.80 99.71 97.30
EM 85.90 97.18 71.87 82.86 79.95 89.17 98.91 99.72 94.13 99.17 75.57 99.74 95.98
EP 87.52 97.64 72.53 82.89 79.87 90.91 99.16 99.86 95.88 98.63 77.87 99.77 97.14

Laplace 87.66 97.56 72.03 83.12 78.02 90.83 98.96 99.91 95.79 98.87 77.89 99.77 97.17

θ. For kNN, the number of nearest neighbors is selected by
this methodology as well.

To select the best initialization point for PCVMEM , we train
PCVMEM with different initializations (8 initializations in this
paper) over the first five training folds of each data set. Then
we choose the best initialization point6.

Table III reports the performance of these algorithms on
the 13 benchmark data sets with ERR and AUC. According
to this table, the performance of EPCVMLap and EPCVMEP

is similar. They outperform PCVMEM in terms of accuracy
and AUC. EPCVMLap wins 11 times over the metrics ERR
and AUC, respectively, of them seven and four wins for ERR
and AUC are significant, respectively.

In comparisons with other algorithms, EPCVMLap and
EPCVMEP perform very well in terms of two different
metrics. For example, under the ERR metric it is observed
that they outperforms all other methods in eight out of thirteen
data sets, and comes second in three cases. They perform very
well under the AUC metric, with the first place in eight cases
and the second in the remaining four. Even when they fail
under ERR metric on one of the data sets, e.g., Image, it can
still win under the AUC metric. Although the RVM uses the
Bayesian ARD framework, it seems that adopting the same
prior for different classes leads to sub-optimal results.

The experimental results for SVM and SMLR are also
enlightening. In most cases, the SVM and SMLR are worse
than or comparable to the corresponding EPCVMLap and
EPCVMEP . The baseline algorithms, kNN and LDA/QDA,
only perform well on one data set. In all other cases, they fail
to compete with the EPCVM and SVM, especially under the
AUC metric.

Another interesting point is that EPCVM approaches

6With 8 initializations on first five training folds, we obtain an array of
parameters of dimensions 8×5 where the rows are the initializations and the
columns are the folds. For each column, we select the results that give the
smallest test error, so that the array reduces from 40 to only 5 elements. Then
we select the median over those parameters.

achieve better performance by employing only a few of the
data points, which has been illustrated by Table IV. In the
three PCVM implementations, EPCVMEP tends to produce
small models whereas EPCVMLap often has larger models
than EPCVMEM and EPCVMEP . According to Table IV, the
number of support vectors for SVM grows almost linearly with
the number of training points, while RVM consistently uses
much fewer data points. EPCVMLap employs more vectors
than the RVM but much less than SVM. This observation goes
in accordance with the formulation. In RVM, the weights could
reach zero from both sides because of the symmetrical zero-
mean Gaussian, whereas the weights in EPCVM could only
converge to zero from positive side because of the truncated
Gaussian prior7.

It is worth noting that the three PCVM algorithms have bet-
ter performance than the RVM according to Table III. SMLR
uses more vectors than three PCVM algorithms and RVM as
it employed a cyclic component-wise update procedure [20],
i.e., updating the weights even when they are deleted from the
model, with a probability that is decreased with the number of
iterations. This will be prone to include more basis functions
into the model.

C. Statistical Comparisons on Single and Multiple Data Sets

In order to compare EPCVMLap with other algorithms in a
statistical context, we perform the statistical test for paired
classifiers, e.g. EPCVMLap vs. SVM and EPCVMLap vs.
RVM, on each single data set. We will carry out statistical tests
on these two metrics and provide the win-loss-tie summary for
these metrics. The threshold of the statistical t tests is set to
be 0.05.

Table V gives the win-loss-tie summary of t-test based on 13
benchmark data sets. The significance tests show that under the

7The mean of truncated Gaussian prior is
√

2
παi

, which is not zero as
normal Gaussian prior used in RVM.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 9

TABLE IV
COMPARISON OF SVM, RVM, SMLR AND PCVMEM , EPCVMLap AND EPCVMEP ON 13 BENCHMARK DATA SETS, BY HOW MANY VECTORS AND

STANDARD DEVIATION. THESE RESULTS ARE THE AVERAGE OF 100 RUNS ON THE DATA SETS.

Vectors No. Train SVM RVM SMLR EM EP Laplace
Abalone 2089 1221.8±19.2 194.6±31.6 988.9±47.0 371.9±33.1 95.6±14.8 250.6±23.0
Banana 2650 606.6±19.5 264.6±37.6 1881.7±85.3 291.2±38.5 112.6±26.8 327.2±39.0
Cancer 132 117.4±12.1 11.2±2.5 72.8±6.4 12.4±2.6 8.3±2.1 15.9±4.0

Diabetics 384 380.1±2.6 16.3±5.0 205.3±17.4 17.6±5.1 16.3±3.1 21.5±4.8
German 500 478.4±4.3 32.9±8.6 193.8±13.1 26.8±7.1 31.7±8.1 63.3±9.2
Heart 135 127.3±3.6 12.1±2.4 25.7±5.0 6.2±2.1 11.7±4.1 14.8±2.3
Image 1043 728.8±11.5 24.3±3.2 511.8±13.9 158.3±21.7 181.2±16.9 200.3±12.7

Ringnorm 3700 3169±31.4 1728.8±27.7 1563.5±26.8 1421.8±23.8 1213.2±16.7 1849.3±14.4
Splice 1496 1496.0±0.0 167.2±86.3 504.3±25.1 153.2±29.3 118.9±16.3 275.9±15.9

Thyroid 108 54.7±3.6 30.8±21.9 43.7±4.6 8.3±2.1 9.7±2.3 20.4±4.7
Titanic 1101 489.5±17.2 61.4±21.1 826.5±57.3 137.8±31.4 116.9±9.9 121.1±11.8

Twonorm 3700 3216.0±6.9 769.2±29.3 2245.1±66.4 967.5±56.7 874.1±28.1 1018.6±32.3
Waveform 2500 2116.0±39.7 237.5±39.0 1180.5±46.3 837.5±41.2 281.6±32.5 538.2±42.7

TABLE V
STATISTICAL T TEST FOR 13 DATA SETS. FOR EACH METRIC, THE FIRST

LINE IS THE WIN-LOSS-TIE SUMMARY OF THE ALGORITHM AGAINST THE
EPCVMLap BASED ON THE MEAN VALUE. THE SECOND ROW GIVES THE

STATISTICAL SIGNIFICANCE WIN-LOSS-TIE SUMMARY BASED ON 13
BENCHMARK DATA SETS.

Data Sets kNN LDA QDA SVM RVM SMLR EM EP
ERR Mean 2-11-0 0-13-0 0-12-0 4-9-0 0-13-0 0-13-0 2-11-0 4-7-2
Significant 1-9-3 0-11-2 0-11-1 3-4-6 0-9-4 0-5-8 0-7-6 2-2-9
AUC Mean 0-13-0 0-13-0 0-12-0 2-11-0 0-12-1 3-10-0 2-11-0 5-7-1
Significant 0-13-0 0-13-0 0-12-0 0-5-8 0-10-3 1-5-7 1-4-8 2-0-11

TABLE VI
THE MEAN RANK OF THESE ALGORITHMS UNDER ERR AND AUC.

Rank SVM RVM SMLR EM EP Laplace
ERR 3.46 4.85 4.42 4.19 2.15 1.92
AUC 3.88 4.96 4.08 3.88 2.12 2.08

two metrics: a) PCVMEM never significantly win EPCVMLap

under ERR and it wins once and loses four times under AUC.
EPCVMEP performs similar as EPCVMLap under ERR: it
wins twice and loses twice under ERR, and it slightly outper-
forms EPCVMLap under AUC by winning twice and never
loses. b) The differences between RVM and the EPCVMLap

are greater: RVM never wins under ERR and AUC. c) SVM
wins three time and lose four times under ERR, and never
wins under AUC. d) The experimental results also reveal that
these baseline algorithms under-perform significantly against
other algorithms.

In order to compare multiple algorithms based on multiple
data sets, it is a common approach to count the number of
times an algorithm performs better, worse or equal to the
others. However, this method might not be reliable since it
puts an arbitrary threshold of 0.05 or 0.10 on what counts
and what does not for each data set [11]. Statistical tests
on multiple data sets for multiple algorithms are preferred
for comparing different algorithms over multiple data sets. In
order to conduct statistical tests over multiple data sets, we
perform the Friedman test [16] with the corresponding post-
hoc tests. The Friedman test is a non-parametric equivalent of
the repeated-measures analysis of variance (ANOVA) under
the null hypothesis that all the algorithms are equivalent and
so their ranks should be equal. This paper uses an improved
Friedman test proposed by Iman and Davenport [17]. The

TABLE VII
FRIEDMAN TESTS WITH THE CORRESPONDING POST-HOC TESTS,

BONFERRONI-DUNN, TO COMPARE CLASSIFIERS FOR MULTIPLE DATA
SETS. THE THRESHOLD IS 0.10, AND q0.10 = 2.326.

Metrics Friedman test CD0.10 SVM RVM SMLR EM EP
ERR 0.00 1.71 1.54 2.92 2.50 2.27 0.23
AUC 0.00 1.71 1.81 2.88 2.00 1.81 0.04

statistical test over multiple data sets has been used widely
to evaluate the performance of classifiers e.g. [6], [7], [23],
[32].

The Friedman test is carried out to test whether all the
algorithms are equivalent. If the test result rejects the null
hypothesis, i.e. these algorithms are equivalent, we can pro-
ceed to a post-hoc test. The power of the post-hoc test is
much greater when all classifiers are compared with a control
classifier and not among themselves. We do not need to make
pairwise comparisons when we in fact only test whether a
newly proposed method is better than the existing ones.

Based on this point, we would like to choose the
EPCVMLap as the control classifier to be compared with.
Since the baseline classification algorithms are not compa-
rable to SVM, RVM, SMLR, PCVMEM , EPCVMEP and
EPCVMLap, this section will analyze only six algorithms:
SVM, RVM and SMLR, PCVMEM and EPCVMEP against
the control classifier EPCVMLap.

The Bonferroni-Dunn test [11] is used as post-hoc tests
when all classifiers are compared to the control classifier. The
performance of pairwise classifiers is significantly different if
the corresponding average ranks8 differ by at least the critical
difference (CD)

CD = qα

√
j(j + 1)

6T
, (11)

where j is the number of algorithms, T is the number of data
sets and critical values qα can be found in [11]. For example,
when j = 6, q0.10 = 2.326, where the subscript 0.10 is the
threshold value.

8We rank these algorithms based on the metric on each data set and record
the ranking of each algorithm as 1, 2 and so on. Average ranks are assigned
in case of ties. The average rank of one algorithm is obtained by averaging
over all of data sets. Please refer to Table VI for the mean rank of these
algorithms under different metrics.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 10

Table VI lists the mean rank of these algorithms under the
two metrics: ERR and AUC. Table VII gives the Friedman test
results. Since we employ the same threshold 0.10 for all three
metrics, the critical difference CD = 1.71, where j = 6 and
T = 13, is the same for these metrics. Several observations
can be made from our results.

First, under the ERR metric, the differences between
EPCVMLap and RVM, SMLR, PCVMEM , are greater than
the critical difference, so the differences are significant, which
means the EPCVMLap is significantly better than RVM,
SMLR and PCVMEM in this case. We could not detect any
significant differences between SVM and EPCVMEP . The
correct statistical statement would be that the experimental
data are not sufficient to reach any conclusion regarding the
difference between EPCVMLap and SVM/EPCVMEP .

Second, EPCVMLap significantly outperforms all other al-
gorithms under the AUC metric except EPCVMEP . Since the
AUC metric requires relative accurate scores to discriminate
positive and negative instances [14], EPCVMLap succeeds by
generating the probabilistic outputs. Another reason is that
AUC is insensitive to the class skew/distribution [14] and
some data sets used in this paper are imbalanced. In this way,
EPCVMLap and EPCVMEP perform well on these unbal-
anced data sets by considering different priors for different
classes and thus have better scores under the AUC metric.
SMLR generates point estimation based MAP, therefore it does
not perform very well on AUC metric.

There are two major reasons why the two implementations
of EPCVM, i.e. EPCVMLap and EPCVMEP , perform better
than others.

1) The robustness and sparseness are generated by the trun-
cated Gaussian priors. These priors control the model
complexity by including appropriate sparseness, and
thus improve the model generalization.

2) As AUC prefers probabilistic outputs than hard decisions
and it is insensitive to class unbalance, EPCVMLap and
EPCVMEP provide probabilistic outputs to assess the
uncertainty for the predictions and perform well on these
unbalanced data sets, which explain why EPCVMLap

and EPCVMEP are good under the AUC metric. Al-
though the RVM also provides probabilistic outputs, it
adopts Gaussian prior for training points belonging to
both classes over weights and thus leads to inferior
results.

D. Computational Complexity

The computational complexity and memory storage for
PCVMEM is O(N3) and O(N2), respective, where N is the
number of training points. The PCVMEM model will initially
include all, i.e. N , basis functions in the beginning and reduce
the model size gradually. This will leads to longer training
times and larger memory usage. In addition, to address the
common problems of EM, including sensitivity to initializa-
tions and convergence to local minima, the usual approach is
to run the algorithm multiple times from different initialization
points and choose the best one based on validation data, which
will even increase the computational requirement in practice.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2000

4000

6000

8000

10000

12000

number of trainning points

C
P

U
 T

im
e

(s
)

EPCVM
SVMlight
SMLR
RVM

(a) CPU time on Adult Data Set

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.15

0.152

0.154

0.156

0.158

0.16

0.162

0.164

0.166

0.168

0.17

number of trainning points

E
rr

 r
at

e
(%

)

EPCVM
SVMlight
SMLR
RVM

(b) Error Rate on Adult Data Set

Fig. 4. Comparison of CPU time and the error rate of EPCVMLap, SVM,
SMLR and RVM on Adult data set.

In EPCVMLap, the update rules of w and b involve inver-
sion of a matrix. The Cholesky decomposition is used in the
practical implementation of the inversion to avoid numerical
instability, which has the computational complexity O(M3)
and memory storage O(M2), where M is the number of
non-zero basis functions and M << N . In EPCVMLap,
we will start when M = 1, and include basis functions
step by step, i.e. increase M . As reported in Table IV, the
final EPCVMLap model usually has a small number of basis
functions, i.e. a small M . This procedure will dramatically
reduce the computational complexity.

Classical SVM algorithms has a time complexity of O(N3),
where N is the number of training points, but the computa-
tional complexity of SVM can be reduced to approximately
O(N2.1) for sequential minimal optimization (SMO) like al-
gorithms [28], which breaks the large quadratic programming
(QP) problem into a series of smallest possible QP problems.

The training algorithm of SVMlight has been optimized
in many aspects [19], and it is even faster than the popular
SMO algorithm for training SVM. The time complexity of
each iteration in SVMlight is O(NDL), where D is the
number of input features (input dimensionality) and L is a
(regularization) parameter to control the number of rows of
the Hessian to be computed in each iteration. The empirical

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 11

TABLE VIII
CPU TIME OF THE EPCVMLap AND EPCVMEP , PCVMEM , SMLR, SVM, RVM, LDA, QDA, kNN ON 13 DATA SETS IN SECONDS. RESULTS ARE

AVERAGED OVER 100 RUNS.

Time(s) Abalone Banana Cancer Diabetics German Heart Image Ringnorm Splice Thyroid Titanic Twonorm Waveform
Laplace 29.36 22.11 0.23 1.06 3.04 0.28 18.59 147.76 43.03 0.21 1.92 49.37 33.57

EP 1004.90 1688.82 3.15 357.16 614.02 254.65 212.58 2127.43 384.75 61.18 33.10 1651.04 1481.51
EM 96.38 247.13 1.01 4.34 9.71 0.47 26.17 489.36 93.52 0.66 43.18 507.64 331.97

SVM 7.52 2.14 0.14 0.25 0.50 0.16 1.67 32.25 2.43 0.17 0.75 39.36 9.17
RVM 106.47 297.03 1.01 5.18 10.61 0.20 18.64 503.79 98.45 0.48 44.37 532.76 371.89

SMLR 68.83 51.76 0.27 1.79 4.84 0.19 10.96 156.14 25.51 0.50 3.00 196.55 108.01
LDA 0.08 0.01 0.06 0.00 0.00 0.06 0.00 0.02 0.16 0.00 0.00 0.03 0.00
QDA 0.09 0.01 0.00 0.06 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.05
kNN 0.13 0.21 0.00 0.00 0.06 0.00 0.09 0.86 0.27 0.00 0.06 0.56 0.73

time complexity of SVMlight is O(N1.7∼2.0) [19], hence it is
faster than EPCVMLap.

The computational complexity of EPCVMEP is O(NM3),
which is the highest in the three implementations of PCVM.
The long time consumed by EPCVMEP has been confirmed
by Table VIII. In this paper, the aim to develop EPCVMEP is
to confirm the effectiveness of EPCVMLap, and to compare
the approximation accuracy of Laplace approximation. Since
the computational complexity of EPCVMEP is higher, it
is applicable for relatively small problems in the practical
situations with the benefits to obtain compact models with
fewer basis functions and the estimation of leave-one-out error
in the training.

Table VIII shows the average CPU time of EPCVMLap,
EPCVMEP , PCVMEM , SMLR, SVM, RVM, LDA, QDA,
kNN on 13 data sets in seconds. Results are averaged over
100 runs. Note that in Table VIII, we do not record the cross
validation time for parameter optimization in these algorithms.

To further study the computational effectiveness of
EPCVMLap

9, SVM, SMLR and RVM, a relatively large data
set, Adult from UCI machine learning repository, has been
employed.

In Figure 4, the CPU time and the error rate of these
algorithms on Adult data have been reported. As SVMlight
[19] has been used to implement SVM, in which sequential
minimal optimization algorithm (SMO) and the optimization
for large problems have been implemented. This is the rea-
son why SVMlight is the fastest algorithm. EPCVMLap is
programmed in Matlab and there is still room to improve its
computational complexity by using C.

RVM and SMLR do not scale well with increased data
points. SMLR employed a cyclic component-wise update
procedure [20] and it will consider the weights even when
they are deleted from the model. Therefore, the computation
time becomes higher.

Figure 4 confirmed the computational effectiveness and the
performance of EPCVMLap, as it scales well with the number
of training points without compromising the performance.

The computational environment is Windows 7 with Intel
Xeon QuadCore 3.10GHz CPU and 8GB RAM. The source
codes of RVM and SMLR are obtained from Tipping’s web-

9The computational complexity of EPCVMEP is much higher than
EPCVMLap, SVM, SMLR and RVM. Therefore, we do not report the
performance of EPCVMEP on the Adult data set.

site10, and Princeton’s multi-voxel pattern analysis toolbox11,
respectively. EPCVMLap and EPCVMEP are implemented in
MATLAB.

V. SPARSITY AND GENERALIZATION

In this section we use Rademacher complexity [25] to
investigate the relationship between the generalization bound
for EPCVM and model sparsity.

Rademacher complexity quantifies “complexity” of function
classes. Let F be a class of real-valued functions defined on
X . The empirical Rademacher complexity of a functional class
F on a data set D = {(x1, y1), · · · , (xN , yN)} is defined as

R̂N (F,D) =
2

N
Eς

[
sup
f∈F

∣∣∣∣∣
N∑
i=1

ςif(xi)

∣∣∣∣∣
]

where ς = (ς1, ς2, · · · , ςN) is a vector random variable with
elements independent binary random Rademacher variables
such that P (ςi = +1) = P (ςi = −1) = 1/2 for all ςi.

Assume that there is a distribution P (x, y) that generates the
data items (i.e. P (x, y) represents the environment producing
the data). The data set D = {(x1, y1), · · · , (xN , yN)} is
generated i.i.d. form from P (x, y), i.e. D is generated from
the product distribution G(D), G = PN . The Rademacher
complexity of F is then

RN (F) = EG(D)

[
R̂N (F,D)

]
. (12)

Rademacher complexity can be used to formulate general-
ization bound, as illustrated by the following theorem.

Theorem 1: [20], [25] Given a dataset D =
{(x1, y1), · · · , (xN , yN)}, for posterior distribution q(w)
over the parameters w (see section II-D), let

f(x, q) = Eq(w)[sign(w
Tϕ(x))].

For s > 0, let R(s)
emp be the empirical loss defined as

R(s)
emp[f,D] =

1

N

N∑
n=1

ls(ynf(xn, q)),

where the loss function12 ls(a) = min(1,max(0, 1−a/s)) is
(1/s)-Lipschitz. Consider arbitrary scalars ρ > 0, r > 0. Then,

10http://www.miketipping.com/
11http://code.google.com/p/princeton-mvpa-toolbox/
12For wrong classifications (a < 0), the loss is equal to 1. For correct

classifications, s plays the role of the classification margin - even if the
classification is correct (a > 0), if a is bellow s, a linearly scaled penalty
1− a/s is still applied. The loss is zero only for a ≥ s.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 12

for ϑ ∈ (0, 1), with probability at least 1 − ϑ over draws of
training sets from G, the following bound for generalization
error holds:

P (yf(x, q) < 0) ≤ R(s)
emp[f,D] +

2

s

√
2ρ̃(q)

N

+

√
ln logr

rρ̃(q)
ρ + 1

2 ln
1
ϑ

N
, (13)

and
ρ̃(q) = r ·max(KL(q||p), ρ), (14)

where KL(q||p)13 is the Kullback-Leibler divergence from the
posterior q to the prior p over parameters w.

Note that the prior is integral part of our model, its hyper-
parameter α is modified during training. The Bayesian predic-
tions of our model are based on the posterior over the weights
that is in turn obtained from the optimized prior α. In this sec-
tion we will denote the initial and optimized hyperparameter
by α0 = (α0,1, α0,2, · · · , α0,N) and α = (α1, α2, · · · , αM),
respectively. Based on the theorem, the generalization bound
of EPCVM is related to the empirical loss and KL(q||p).
Given the same empirical loss, the generalization bound is
tight provided KL(q||p) is small. In the following, we will
investigate the term KL(q||p).

A. Kullback-Leibler Divergence from Posterior to Prior

0
1

2
3

4
5

0

5

10
0

5

10

15

20

25

30

αi

w
i

K
L

D
iv

er
ge

nc
e

Fig. 5. An illustration of KL divergence between truncated posterior and
truncated Gaussian prior.

The Kullback–Leibler (KL) divergence is a non-symmetric
measure of the difference between two probability distri-
butions. In this paper, posterior over weights is obtained
through Laplace approximation q̃(w). This posterior, q̃(w),
is a multivariate Gaussian with unbounded support. However,
the prior is truncated to positive quadrant. The probability
mass of q̃ in the positive quadrant is A0 =

∫∞
0
q̃(w)dw.

Provided A0 is sufficiently high, we can approximate q̃ by
its renormalized version with support in the positive quadrant,
q(w) = q̃(w)/A0.

13known as Bayesian surprise [18]

The KL divergence from q(w) to prior p(w|α0) can be
calculated as

KL(q(w) ∥ p(w|α0)) =

∫ ∞

0

q̃(w)

A0
ln
q̃(w)

A0
dw

−
∫ ∞

0

q̃(w)

A0
ln p(w|α0)dw

=
1

A0

∫ ∞

0

q̃(w) ln
q̃(w)

p(w|α0)
dw

− lnA0.

In this paper, we follow [20] and adopt the independence
assumption on the posterior. Then (see Appendix A.5 of [9]),

DKL = KL(q(w) ∥ p(w|α0)) (15)

=
∑

i,wi ̸=0


1
2

[
α0,i

αi
− 1 + ln

(
αi

α0,i

)
+ α0,iw

2
i

]
+

(2παi)
−1/2(α0,i+αi)wi

erfcx
(
−wi

√
αi/2

)
− ln

(
erfc

(
−wiαi

2

))
 ,

where erfcx(a) = ea
2

erfc(a).
Since

A0,i =

∫ ∞

0

q̃(wi)dwi =
1

2
erfc

(
−wi

√
αi

2

)
,

DKL can be rewritten as follows:

DKL =
∑

i,wi ̸=0


1
2

[
α0,i

αi
− 1 + ln

(
αi

α0,i

)
+ α0,iw

2
i

]
+

(2παi)
−1/2(α0,i+αi)wi

2 exp(αiw2
i /2)

A−1
0,i − ln (A0,i)

+ ln

(
erfc

(
−wi

√
αi/2

)
2·erfc(−wiαi/2)

)
 .

To show the characteristics of the KL divergence, in Figure
5 we illustrate the contributions of individual terms by fixing
the initial hyperparameter priors to α0,i = 0.5 (the value
used in our experiments). Two observations can be made:
First, DKL is much more sensitive to weight values wi

than to the optimized hyperparameters αi. Second, DKL is
minimized for vanishing weights wi. As discussed above,
for comparable empirical errors, smaller DKL is desirable.
Therefore, employing truncated Gaussian priors in EPCVM to
encourage sparsity by regularizing the weights to be smaller
may have beneficial effects on the generalization, provided
enough positive weights are preserved to ensure sufficient
flexibility of the model.

Based on equations (13) and (15), the generalization bound
of the EPCVM is a function of both the empirical loss term and
the sparsity, represented by minimizing DKL. According to
Equation (14), trying to push DKL to very small values beyond
ρ is not desirable. Therefore, adequate sparsity is preferred in
EPCVM, which matches our intuition regarding the nature of
the generalization bound: If EPCVM chooses a non-sparse
solution, the bounds might be loose; in contrast, if EPCVM
chooses a proper sparse solution that can balance the empirical
loss and the KL divergence DKL, the bounds might be tight.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 13

VI. CONCLUSION

In this paper, an efficient and effective probabilistic algo-
rithm, EPCVM, was proposed for classification problems to
improve a previous expectation maximization based PCVM
algorithm [5]. The proposed algorithm addresses several previ-
ous limitations, including sensitivity to initializations, conver-
gence to local minima, the solution being a point maximum-
a-posterior (MAP) estimation, and unsuitability for large data
sets.

The major improvements over PCVMEM are two folds.
First, by employing Laplace approximation and expectation
propagation, the solutions of EPCVM are fully Bayesian,
which automatically tackle disadvantages of the EM algorithm,
e.g., sensitivity to initializations, convergence to local minima,
and the solution being a point MAP estimation. The accuracy
of Laplace approximation and expectation propagation has
been verified by Markov Chain Monte Carlo (MCMC) experi-
ments, which give encouraging results. Second, by maximizing
marginal likelihood, EPCVMLap can sequentially include ba-
sis functions in the learned model step by step. This makes
EPCVMlap computationally more efficient.

Our extensive empirical study confirms that EPCVM per-
forms very well on the benchmark data sets under two metrics,
especially under AUC. The difference between EPCVM and
RVM shows that adopting truncated priors for different classes
is beneficial. The difference between EPCVMLap and PCVM
shows that adopting Laplace approximation and sequential
marginal likelihood maximization is beneficial in terms of
generalization and computational efficiency. With higher com-
putational complexity, EPCVMEP is applicable to relatively
small problems with the benefits of more compact models with
fewer basis functions and the estimation of leave-one-out error
in the training.

From our results, we can conclude that the EPCVMLap is a
sparse learning algorithm that addresses drawbacks of SVM,
RVM and PCVMEM without degrading the generalization
performance. The number of basis functions in EPCVMLap

does not grow linearly with the number of training points,
it is less and thus leads to simpler and easier-to-understand
models. The theoretical analysis on generalization bounds us-
ing Rademacher complexity also supports the benefits of using
truncated Gaussian prior to encourage sparsity in EPCVM.
Future work for this study is to further increase the efficien-
cies of EPCVM and to extend the algorithm to multi-class
classification problems.

ACKNOWLEDGMENT

This work is supported by the European Union Seventh
Framework Programme under grant agreement No. INSFO-
ICT-270428 on “Making Sense of Nonsense (iSense)”. HC
was supported by the National Natural Science Foundation
of China under Grants 61203292, 61311130140 and the One
Thousand Young Talents Program. PT was also supported from
the Biotechnology and Biological Sciences Research Council
grant [H012508/1]. XY was supported by a Royal Society
Wolfson Research Merit Award.

REFERENCES

[1] C. Andrieu, N. Freitas, A. Doucet, and M. Jordan, “An introduction to
MCMC for machine learning,” Machine Learning, vol. 50, no. 1–2, pp.
5–43, 2003.

[2] D. Barber and C. Bishop, “Ensemble learning for multi-layer networks,”
in Advances in Neural Information Processing Systems, vol. 10, 1998,
pp. 395–401.

[3] C. Bishop, Pattern recognition and machine learning. Springer, 2006.
[4] H. Chen, P. Tino, and X. Yao, “Predictive ensemble pruning by ex-

pectation propagations,” IEEE Transactions on Knowledge and Data
Engineering, vol. 21, pp. 999–1013, 2009.

[5] ——, “Probabilistic classification vector machines,” IEEE Transactions
on Neural Networks, vol. 20, pp. 901–914, 2009.

[6] H. Chen and X. Yao, “Regularized negative correlation learning for
neural network ensembles,” IEEE Transactions on Neural Networks,
vol. 20, pp. 1962–1979, 2009.

[7] ——, “Multi-objective neural network ensembles based on regularized
negative correlation learning,” IEEE Transactions on Knowledge and
Data Engineering, vol. 22, pp. 1738–1751, 2010.

[8] H. Chen, P. Tino, and X. Yao, “A probabilistic ensemble pruning
algorithm,” in Proceedings of the Sixth IEEE International Conference
on Data Mining - Workshops (ICDMW’06), 2006, pp. 878–882.

[9] R. Choudrey, “Variational methods for bayesian independent component
analysis,” Ph.D. dissertation, University of Oxford, 2002.

[10] L. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural
Computation, vol. 14, no. 3, pp. 641–668, 2002.

[11] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine learning research, vol. 7, pp. 1–30, 2006.

[12] S. Duane, A. Kennedy, B. Pendleton, and D. Roweth, “Hybrid monte
carlo,” Physics letters B, vol. 195, no. 2, pp. 216–222, 1987.

[13] A. Faul and M. Tipping, “Analysis of sparse bayesian learning,” in
Advances in Neural Information Processing Systems 14, 2002, pp. 383–
389.

[14] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, 2006.

[15] M. Figueiredo, “Adaptive sparseness for supervised learning,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1050–
1159, 2003.

[16] M. Friedman, “Comparison of alternative tests of significance for the
problem of m rankings,” Annals of Mathematical Statistics, vol. 11, pp.
86–92, 1940.

[17] R. Iman and J. Davenport, “Approximations of the critical region of the
friedman statistic,” Communications in Statistics, pp. 571–595, 1980.

[18] L. Itti and P. Baldi, “Bayesian surprise attracts human attention,” in
Advances in Neural Information Processing Systems, 2006, pp. 547–
554.

[19] T. Joachims, “Making large-scale SVM learning practical,” in Advances
in Kernel Methods - Support Vector Learning, B. Schölkopf, C. Burges,
and A. Smola, Eds., 1999, pp. 169–184.

[20] B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink, “Sparse
multinomial logistic regression: Fast algorithms and generalization
bounds,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 27, pp. 957–968, 2005.

[21] B. Krishnapuram, A. Harternink, L. Carin, and M. Figueiredo, “A
bayesian approach to joint feature selection and classifier design,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 9, pp. 1105–1111, 2004.

[22] J. Langford, “Tutorial on practical prediction theory for classification,”
Journal of Machine Learning Research, vol. 6, no. 1, p. 273, 2006.

[23] N. Li, Y. Yu, and Z.-H. Zhou, “Diversity regularized ensemble pruning,”
in Proceedings of the 23rd European Conference on Machine Learning
(ECML’12), 2012, pp. 330–345.

[24] D. MacKay, “The evidence framework applied to classification net-
works,” Neural Computation, vol. 4, no. 3, pp. 720–736, 1992.

[25] R. Meir and T. Zhang, “Generalization error bounds for bayesian mixture
algorithms,” Journal of Machine Learning Research, vol. 4, pp. 839–860,
2003.

[26] T. Minka, “Expectation propagation for approximate bayesian infer-
ence,” in Proceedings of the 17th Conference in Uncertainty in Artificial
Intelligence (UAI’01), San Francisco, CA, USA, 2001, pp. 362–369.

[27] D. Newman, S. Hettich, C. Blake, and C. Merz, “UCI repository of
machine learning databases,” 1998, http://archive.ics.uci.edu/ml/.

[28] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods, B. Schölkopf,
C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA, USA: MIT
Press, 1999, pp. 185–208.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, XX 2013 14

[29] G. Rätsch, T. Onoda, and K. Müller, “Soft margins for adaboost,”
Machine Learning, vol. 42, no. 3, pp. 287–320, 2001.

[30] G. Skolidis and G. Sanguinetti, “Bayesian multitask classification
with gaussian process priors,” IEEE Transactions on Neural Networks,
vol. 22, no. 12, pp. 2011–2021, 2011.

[31] A. J. Smola, B. Schölkopf, and K.-R. Müller, “The connection between
regularization operators and support vector kernels,” Neural Networks,
vol. 11, pp. 637–649, 1998.

[32] R. G. F. Soares, H. Chen, and X. Yao, “Semi-supervised classification
with cluster regularisation,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 23, pp. 1779–1792, 2012.

[33] P. Sun and X. Yao, “Sparse approximation through boosting for learning
large scale kernel machines,” IEEE Transactions on Neural Networks,
vol. 21, pp. 883–894, 2010.

[34] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society, vol. 58, no. 1, pp. 267–288, 1996.

[35] M. Tipping, “Sparse bayesian learning and the relevance vector ma-
chine,” Journal of Machine Learning Research, vol. 1, pp. 211–244,
2001.

[36] M. Tipping and A. Faul, “Fast marginal likelihood maximisation for
sparse bayesian models,” in Proceedings of the Ninth International
Workshop on Artificial Intelligence and Statistics, 2003, pp. 1–8.

[37] V. N. Vapnik, Statistical Learning Theory. Wiley-Interscience, 1998.

Huanhuan Chen (M’09) received the B.Sc. de-
gree from the University of Science and Technol-
ogy of China, Hefei, China, in 2004, and Ph.D.
degree, sponsored by Dorothy Hodgkin Postgrad-
uate Award (DHPA), in computer science at the
University of Birmingham, Birmingham, UK, in
2008. His PhD thesis “Diversity and Regularization
in Neural Network Ensembles” has received 2011
IEEE Computational Intelligence Society Outstand-
ing PhD Dissertation award (the only winner) and
2009 CPHC/British Computer Society Distinguished

Dissertations Award (the runner up).
His work “Probabilistic Classification Vector Machines” on Bayesian

machine learning published in IEEE Transactions on Neural Networks, has
been awarded as IEEE Transactions On Neural Networks Outstanding Paper
Award (bestowed in 2011, and only one paper in 2009 receive this award).
His research interests include machine learning, data mining and evolutionary
computation.

Peter Tiňo (M.Sc. Slovak University of Technol-
ogy, Ph.D. Slovak Academy of Sciences) was a
Fulbright Fellow with the NEC Research Institute,
Princeton, NJ, USA, and a Post-Doctoral Fellow
with the Austrian Research Institute for AI, Vienna,
Austria, and with Aston University, Birmingham,
U.K. Since 2003, he has been with the School
of Computer Science, University of Birmingham,
Edgbaston, Birmingham, U.K., where he is currently
a Reader in complex and adaptive systems. His
current research interests include dynamical systems,

machine learning, probabilistic modeling of structured data, evolutionary
computation, and fractal analysis. Peter was a recipient of the Fulbright
Fellowship in 1994, the U.K.CHong-Kong Fellowship for Excellence in 2008,
three Outstanding Paper of the Year Awards from the IEEE Transactions on
Neural Networks in 1998 and 2011 and the IEEE Transactions on Evolutionary
Computation in 2010, and the Best Paper Award at ICANN 2002. He serves
on the editorial boards of several journals.

Xin Yao (F’03) is a Chair (Professor) of Computer
Science and the Director of CERCIA (the Centre
of Excellence for Research in Computational Intelli-
gence and Applications), University of Birmingham,
UK. He is an IEEE Fellow and a Distinguished Lec-
turer of IEEE Computational Intelligence Society
(CIS). His work won the 2001 IEEE Donald G. Fink
Prize Paper Award, 2010 IEEE Transactions on Evo-
lutionary Computation Outstanding Paper Award,
2010 BT Gordon Radley Award for Best Author
of Innovation (Finalist), 2011 IEEE Transactions on

Neural Networks Outstanding Paper Award, and many other best paper awards
at conferences. He won the prestigious Royal Society Wolfson Research Merit
Award in 2012 and was selected to receive the 2013 IEEE CIS Evolutionary
Computation Pioneer Award. He was the Editor-in-Chief (2003-08) of IEEE
Transactions on Evolutionary Computation. He has been invited to give more
than 70 keynote/plenary speeches at international conferences. His major
research interests include evolutionary computation and ensemble learning.
He has more than 400 refereed publications in international journals and
conferences.

