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Abstract— The emergence of large sensor networks has facili-
tated the collection of large amounts of real-time data to monitor
and control complex engineering systems. However, in many cases
the collected data may be incomplete or inconsistent, while the
underlying environment may be time-varying or unformulated.
In this paper, we develop an innovative cognitive fault diagnosis
framework that tackles the above challenges. This framework
investigates fault diagnosis in the model space instead of the
signal space. Learning in the model space is implemented by
fitting a series of models using a series of signal segments selected
with a sliding window. By investigating the learning techniques
in the fitted model space, faulty models can be discriminated
from healthy models using a one-class learning algorithm. The
framework enables us to construct a fault library when unknown
faults occur, which can be regarded as cognitive fault isolation.
This paper also theoretically investigates how to measure the
pairwise distance between two models in the model space and
incorporates the model distance into the learning algorithm in
the model space. The results on three benchmark applications
and one simulated model for the Barcelona water distribution
network confirm the effectiveness of the proposed framework.

Index Terms— Cognitive fault diagnosis, fault detection,
learning in the model space, one class learning, reservoir
computing (RC).

I. INTRODUCTION

THE smooth operation of complex engineering systems is
crucial to modern society. To ensure reliability, safety,

and availability of such complex systems, large amounts of
real-time data need to be collected to detect and diagnose faults
as soon as possible. Therefore, designing intelligent real-time
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systems for fault diagnosis has been receiving considerable
attention from both industry and academia.

The fault diagnosis procedure can be investigated in the
following three steps: 1) fault detection, which is aimed at
determining whether a fault has occurred or not; 2) fault
isolation, which aims to determine the type/location of fault;
and 3) fault identification, which estimates the magnitude
or severity of the fault. In some cases, the issues of fault
isolation and fault identification are interwoven, since they
both determine the type of fault that has occurred.

In recent years, there has been a lot of research in the
design and analysis of fault diagnosis schemes for different
dynamic systems (e.g., [1], [2]). A significant part of the
research has focused on linear dynamic systems, where it is
possible to obtain rigorous theoretical results. More recently,
considerable effort has been devoted to the development of
fault diagnosis schemes for nonlinear systems with various
kinds of assumptions and fault scenarios [3]–[5].

These traditional fault diagnosis approaches rely, to a large
degree, on the mathematical model of the “normal” system.
If such a mathematical model is available, then fault diagnosis
can be achieved by comparing actual observations with the
prediction of the model. Most autonomous fault diagnosis
algorithms are based on this methodology. However, for com-
plex engineering systems operating in unformulated or time-
varying environments, such mathematical models may not be
accurate or even unavailable at all. Therefore, it is necessary
to develop cognitive fault diagnosis methods mainly based on
the collected real-time data.

In this paper, we present a novel framework for deal-
ing with fault detection to fault isolation if no or very
limited knowledge is available about the underlying sys-
tem. We do not assume that we know the type, num-
ber, or functional form of the faults in advance. The core
idea is to transform the signal into a higher dimensional
“dynamical feature space” via reservoir computation models
and then represent varying aspects of the signal through
variation in the linear readout models trained in such dynami-
cal feature spaces. In this way, parts of the signal captured in
a sliding window will be represented by the reservoir model
with the readout mapping fitted in that window.

Dynamic reservoirs of reservoir models have been shown
to be “generic” in the sense that they are able to represent a
wide variety of dynamical features of the input-driven signals,
so that, given a task at hand, only the linear readout on top of
reservoir needs to be retrained [6]. Hence in our formulation,
the underlying dynamic reservoir will be the same throughout
the signal—the differences in the signal characteristics at
different times will be captured solely by the linear readout
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models and will be quantified in the function space of readout
models.

We assume that, for some sufficiently long initial period,
the system is in a “normal/healthy” regime so that when a
fault occurs the readout models characterizing the fault will be
sufficiently “distinct” from the normal ones. A variety of nov-
elty/anomaly detection techniques can be used for the purposes
of detection of deviations from the “normal.” In this paper,
we will use the one-class support vector machine (OCS) [7]
methodology in the readout model space. As new faults occur
in time, they will be captured by our incremental fault library
building algorithm operating in the readout model space.

There have been other learning-based approaches on fault
detection and diagnosis, e.g., [8]–[12]. In [10], when a neural
network is expanded or the topology of the network is changed
to accommodate new faults or unexpected dynamics, the
network should be retrained. Later on, Barakat et al. [13]
proposed the use of a self-adaptive growing neural network
for fault diagnosis. They applied wavelet decomposition and
used the variance and Kurtosis of the decomposed signals
as features. In 2009, Yélamos et al. [14] proposed the use
of support vector machines (SVMs) for fault diagnosis in
chemical plants. Recently, Zhang et al. [15] proposed a data-
core-based fuzzy min–max neural network (DCFMN) for
pattern classification. A new fuzzy membership has been
incorporated in the DCFMN to consider the characteristics of
the data and the influence of noise. Barua et al. [16] developed
a hierarchical fault-diagnosis methodology that decomposes
a complex system hierarchically into simpler nodes based
on “prior” knowledge about the systems and faults, deploys
fault-diagnosis algorithms at these nodes, and fuses the results
from different nodes on the basis of a Bayesian-network-based
component dependency model. Crucially, most of the current
learning-based approaches are formulated in the supervised
learning framework, assuming that all fault patterns are known
in advance. This can clearly be unrealistic.

The contributions of this paper are as follows: 1) we propose
a novel learning framework for cognitive fault diagnosis;
2) the framework is based on learning in the model space
(as opposed to the traditional data space) of readout models
operating on the dynamic reservoir feature space representing
parts of signals; and 3) we propose the use of incremental
one-class learning in the readout model space for fault detec-
tion/isolation and dynamic fault library building.

The rest of this paper is organized as follows. Section II
introduces deterministic reservoir computing and the frame-
work of “learning in the model space,” followed by the
incremental one-class learning algorithm for cognitive fault
diagnosis in Section III. The experimental results and analysis
are reported in Section IV. Finally, Section V concludes the
paper and presents some future work.

II. DETERMINISTIC RESERVOIR COMPUTING AND

LEARNING IN THE MODEL SPACE

This section introduces the deterministic reservoir model to
fit multiple-input multiple-output (MIMO) signals. Then, we
introduce the framework of learning in the model space for
fault diagnosis.

A. Deterministic Reservoir Computing

Reservoir computing (RC) [6] is a recent class of state
space models based on a “fixed” randomly constructed state
transition mapping, realized through a so-called reservoir and
a trainable (usually linear) readout mapping from the reservoir.
Popular RC methods include echo state networks (ESNs)
[17], [18], liquid state machines [19], and the backpropagation
decorrelation neural network [20].

In this paper, we will focus on ESNs. ESNs are one of the
simplest yet effective forms of RC. Generally speaking, ESNs
are recurrent neural networks with a nontrainable sparse recur-
rent part (reservoir) and a simple linear readout. Typically, the
reservoir connection weights as well as the input weights are
randomly generated, subject to the “echo state property” [17].

The traditional randomized RC is largely driven by a series
of randomized model building stages, which could be unstable
and hard to understand, especially for fault diagnosis. In this
paper, we propose the use of the deterministic reservoir
algorithm, i.e., a simple cycle topology with regular jumps
(CRJs) [21], to fit the signals for fault diagnosis, since CRJs
can approach any nonlinear mapping with arbitrary accuracy.
Because of the linear training, the CRJ model can be trained
fast and run in real time.

We deliberately use reservoir models (especially CRJ)—
special cases of recurrent neural networks (RNNs)—for sev-
eral reasons.

1) Training of RNNs on time-series segments would
require long segment lengths. Training itself can be
complicated, time consuming, and hampered by local
optima in the error surface [22], [23].

2) Reservoir models have been shown to be competitive
with RNNs on many datasets [23], except for specialized
cases, e.g., linguistic data, where more intricate mem-
ory structures (e.g., periodic orbits for certain inputs)
have to be induced during training through a series of
bifurcations.

3) Reservoir models can be trained extremely fast and
without local optima (training is only required for linear
readouts).

4) The CRJ reservoir architecture has been shown to be
competitive or superior to conventional randomly con-
structed reservoirs while being simple and transpar-
ent [21], [24].

B. Learning in the Model Space

Recently, there is a new trend in the machine learning com-
munity to represent “local” data collections through models
that capture what is thought to be important in the data and
carry out machine learning on those models—this can have the
benefit of more robust and more targeted learning on diverse
data collections [25].

The idea of learning in the model space is to use models
fitted on parts of data as more stable and parsimonious
representations of the data. Learning is then performed directly
in the model space instead of the original data space. Some
aspects of the idea of learning in the model space have
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Fig. 1. Illustration of “learning in the model space” framework. The first
stage is to fit models using the input–output signal, i.e., generate individual
points in the model space. The second stage is to discriminate the faulty
models from healthy models using discriminating learners.

appeared in different forms in the machine learning commu-
nity. For example, using generative kernels for classification
(e.g., the P-kernel [26] or the Fisher kernel [27]) can be
viewed as a form of learning in a model-induced feature
space (see [28], [29]). Recently, Brodersen et al. [25] used a
generative model of brain imaging data to represent functional
magnetic resonance imaging (fMRI) measurements of different
subjects to build an SVM-type learner to classify these subjects
into aphasic patients or healthy controls.

In this paper, we use “learning in the model space” approach
to represent chunks of signals by dynamic models (reservoirs
models with linear readout) and perform learning in the models
space of readouts. The framework is illustrated in Fig. 1.

1) Distance in the Model Space: There are several ways
to generate the model space from the original signal space.
One possible way is to identify parameterized models with
their parameter vectors and work in the parameter space. This,
however, will make the learning highly dependent on the
particular model parameterization used. A more satisfactory
approach is to use parameterization-free notions of distance
or similarities between the models.

In the model space, the m-norm distance between models
f1(x) and f2(x) ( f1, f2 : �N → �O ) is defined as follows:

Lm( f1, f2) =
(∫

C
Dm ( f1(x), f2(x)) dμ(x)

)1/m

where Dm ( f1(x), f2(x)) = ‖ f1(x) − f2(x)‖m is a function
that measures the difference between f1(x) and f2(x), μ(x) is
the probability density function of the input domain x, and C
is the integral range. In this paper, we adopt m = 2 and first
assume that x is uniformly distributed. Of course, nonuniform
μ(x) can be adopted either by using samples generated from
it or by estimating it directly using, e.g., Gaussian mixture
models.

In the following, we demonstrate the application of the
distance definition in the model space for linear readout mod-
els. The readout model can be represented by the following

equation1:
f (x) = Wx + a (1)

where x = [x1, . . . , xN ]T is a state vector or basis function,
N is the number of input variables in the model, W is the
parameters (O × N matrix) in the model, O is the output
dimensionality, and a = [a1, . . . , ao] ∈ �O is the bias vector
of output nodes.

Consider two readouts from the same reservoir

f1(x) = W1x + a1

f2(x) = W2x + a2.

Since the sigmoid activation function is employed in the
domain of the readout, C ∈ [−1, 1]N . Then

L2( f1, f2) =
(∫

C
‖ f1(x) − f2(x)‖2 dx

)1/2

=
(∫

C
‖(W1 − W2)x + (a1 − a2)‖2 dx

)1/2

=
(∫

C
‖Wx‖2 + 2aT Wx + ‖a‖2 dx

)1/2

where W = W1 − W2, and a = a1 − a2.
Note that for any fixed a and W∫

C
aT Wx dx = 0

in the integral range C .
Therefore

L2( f1, f2) =
(∫

C
‖Wx‖2 + ‖a‖2 dx

)1/2

=
(∫

C

O∑
i=1

(
wT

i x
)2 + ‖a‖2 dx

)1/2

=
⎛
⎝2N

3

N∑
j=1

O∑
i=1

w2
i, j + 2N ‖a‖2

⎞
⎠

1/2

(2)

where wT
i is the i th row of W, and wi, j is the (i, j)th element

of W .
Scaling of the squared model distance (L2

2( f1, f2)) by 2−N,
we obtain

1

3

N∑
j=1

O∑
i=1

w2
i, j + ‖a‖2

which differs from the squared Euclidean distance of the
readout parameters

N∑
j=1

O∑
i=1

w2
i, j + ‖a‖2

by the factor 1/3 applied to the differences in the linear part
W of the affine readouts. Hence, more importance is given to
the “offset” than “orientation” of the readout mapping.

1The dynamic reservoir is fixed throughout the time series—the differences
in the signal characteristics at different times will be captured solely by the
linear readout model [see (1)] and will be quantified in the function space
of readout models. The L2 distance between linear readouts operates on the
reservoir state space [−1, 1]N .
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Assume f is the true or the best reservoir readout for the
given data, and consider another readout f1. Consider two
situations (see Fig. 2): 1) f and f1 share the same orientation,
but differ in the offset and 2) f and f1 have the same offset but
differ in the orientation. On the symmetric state space domain
[−1, 1]N , case 1 introduces more bias in predictive/modeling
capabilities of the reservoir model than case 2. In case 1,
the output will be constantly over- (or under-) estimating the
target, while in case 2 the biggest disproportions will occur
only close to the faces of the state space hypercube. This is a
consequence of using the function L2 distance on the readout
model space.

In the above, we assumed that the distribution of x is
uniform in the integral range C . As mentioned before, in case
of nonuniform μ(x), we can either use samples generated from
μ or estimate it analytically using, e.g., a Gaussian mixture
model.

Assume we have m sampled points xi , i = 1, 2, . . . , m
from μ

L2( f1, f2) =
(∫

C
‖ f1(x) − f2(x)‖2 dμ(x)

)1/2

≈
(

1

m

m∑
i=1

‖ f1(xi ) − f2(xi )‖2

)1/2

. (3)

Alternatively, a Gaussian mixture model can be employed
to represent μ

μ(x) =
K∑

i=1

αiμi(x|ηi,�i), and

μi(x|ηi,�i) =
exp

(
− 1

2 (x − ηi )
T �−1

i (x − ηi )
)

(2π)N/2 |�i |1/2

where
∑K

i=1 αi = 1 and N is the dimensionality of x.
Then, the distance L2( f1, f2) can be obtained as follows:

L2( f1, f2)

=
(∫

C
‖ f1(x) − f2(x)‖2 dμ(x)

)1/2

=
(∫

C
‖Wx + a‖2 dμ(x)

)1/2

=
(∫

C
xT W T Wx + 2aT Wx + aT a dμ(x)

)1/2

.

According to [30, p. 42], the first moment of Gaussian
variable t∼N(η,�), and mean of square variable t can be
obtained as follows:

E(t) = η

E(tT W T W t) = trace(W T W�) + ηT W T Wη.

Therefore, the following equations can be obtained:

L2( f1, f2)

=
K∑

i=1

αi

{
trace(W T W�i ) + ηT

i W T Wηi

+2aT Wηi + aT a

}
. (4)
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Fig. 2. (a) f and f1 share the same orientation, but differ in the offset.
(b) f and f1 have the same offset but differ in the orientation.

a) Discussions on features characterizing the data
chunks: In this paper, we have theoretically and empirically
demonstrated how to use the functional distance in the model
space as the representations of data chunks, instead of using
any other types of features characterizing the shape, distrib-
ution, statistics of current data chunks, or directly using the
parameters from the readout models as features.

If the model class that generated the data were known (e.g.,
AR of some fixed order), it would, of course, be advisable
to use that model class to represent successive segments of
the time series. But this is too strong an assumption in many
practical situations. We cannot assume that we know the
model class behind the data. Reservoir computing provides and
studies “nonparametric” models of dynamic data. Reservoir
models have been extensively shown to be able to successfully
process and model time series of a surprisingly wide variety
of types (from deeper memory deterministic chaotic systems
to shorter memory stochastic sequences) [21]. The key idea
is to use a fixed nonlinear high-dimensional nonautonomous
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dynamical system with fading memory as a general temporal
filter, on top of which it is usually sufficient to train a linear
readout mapping. The main point of our paper is that, given the
capability of the reservoir architecture to function as a fixed
general temporal filter, each time-series chunk is naturally rep-
resented by the linear readout from the dynamic filter that fits
that data segment well. Besides the advantage of not having to
specify the model class of the data in advance, we can calculate
function distances between the linear readouts analytically.
Thus “distances” between the data segments are translated
into principled function distances between the corresponding
readout mappings.

Of course, one can choose any set of features to represent
the individual time series segments, if one finds them useful.
The key idea in this paper is the representation of time-series
chunks in a cognitive approach to fault detection through
models that fit the data segments well. Learning is then
transformed to learning in the model space (as opposed to
learning in the original data/signal space). We argue that,
even if we do not know the model class, we can still use
learning in the model space framework by employing reservoir
models as general temporal filters. Learning is then performed
in the space of linear readouts with an appropriate function
distance in that space. Distance between two functions should
be parameter-free, in the sense that it should not depend on
the particular parameterization used. If the models form a
Riemannian manifold, parameterization is just a choice of
local coordinate chart for the Riemannian model manifold
in the function space. As an example, consider the class of
univariate Gaussian distributions. One can parameterize 1-D
Gaussians in many different ways, e.g., using the first two
central moments (mean μ, variance σ 2). But one can use
natural parameterization instead, or use (μ10, σ−10). Whatever
parameterization one uses, the only relevant thing is how the
two Gaussians differ as functions—e.g., in the L2 sense—not
what the Euclidean distance between their parameters. This is
the principal reason why we avoided using ad hoc distance
measures on parameters. Our features for data segments are
not parameters of the corresponding linear readouts but the
linear readouts themselves (as functions).

As for using other features characterizing the shape, dis-
tribution, and statistics of data chunks, of course, any appro-
priate features could be used. However, for calculating robust
statistics-based features, one would need longer time segments,
which is not optimal in the fault detection setting. In this paper,
we use a model-based approach with a fixed reservoir—linear
readouts are models characterizing the data chunks. Such
models only require moderate amounts of data for learning.

III. INCREMENTAL ONE-CLASS LEARNING FOR

COGNITIVE FAULT DIAGNOSIS

In fault diagnosis, it should be determined whether a running
subsystem/component is in a normal operation condition or
a faulty situation is occurring. It is relatively inexpensive
and simple to obtain measurements from a normally working
system (although sampling from all possible normal situations
might still be expensive). In contrast, sampling from faulty

Algorithm 1 Incremental One-Class Learning for Cognitive
Fault Detection
1: Input: multiple input and multiple output

data stream s1, . . . , st , st+1, . . ., where st =
(u1, . . . , uV , y1, . . . , yO)T , V is the number of signal
inputs and O is the number of outputs. The data segment
s1, . . . , st are healthy states of the system; parameters (σ
and ν) of one-class SVMs; window size m.

2: Output: model library lib.
3: for each sliding window (si , . . . , si+m−1), 1 ≤ i ≤ t+1−m

do
4: Fit the deterministic reservoir computing model:
5: drc(si , . . . , si+m−1) → fi

6: end for
7: Calculate the pairwise model distance matrix

L2( fi , f j ), 1 ≤ i, j ≤ t + 1 − m according to (1).
The kernel matrix for one-class SVMs can be calculated
as K = ex p{−σ · L2}.

8: Train a one-class SVM �0 using the existing kernel matrix:
OC S(K, ν) → �0 and add �0 in the model library lib =
{�0}.

9: for sliding window (s j , . . . , s j+m−1), j > t do
10: drc(s j , . . . , s j+m−1) → f j ;
11: if f j belongs to a known fault �k in the lib: i.e., evaluate

the one class learner �k with the data point f j to see
whether f j is within the decision boundary of �k , i.e.,
eval(�k, f j ) = 1. then

12: Incrementally train the one class learner �k with
the new “data point,” i.e., model f j , and empty the
candidate pool;

13: else
14: put f j in the candidate pool;
15: end if
16: if size of candidate pool > 0.5 ∗ m then
17: Train a new one-class learner �k+1 with the candidate

pool
18: Add �k+1 to lib and empty the candidate pool
19: end if
20: end for

situations requires the system to break down in various ways
to obtain faulty measurement examples. The construction of
a fault library will therefore be very expensive, or completely
impractical. In this section, we focus on this challenge and
aim to develop an algorithm that can identify unknown faults
and construct a fault library dynamically, which will facilitate
fault isolation based on this library.

Based on the “learning in the model space” framework
(Fig. 1), one-class learning [7] will be employed in the model
space for fault diagnosis. One-class classification is a special
type of classification algorithm. One-class SVMs are used to
discover a hyperplane that has maximal distance to the origin
in the kernel feature space with the given training examples
falling beyond the hyperplane [7].

Note that the signal characteristics can change at differ-
ent positions of the sliding window. That means that the
underlying measure μ over reservoir activations x can change.
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Consider two readouts fi and f j obtained from two sliding
window positions i and j . If reservoir activations in positions
i and j are considered, we would obtain two distances
Lμi ( fi , f j ) and Lμj ( fi , f j ), respectively.2 The distance fi ,
f j based on the sampling approach is then

L̃2( fi , f j ) = Lμi ( fi , f j ) + Lμj ( fi , f j ). (5)

In this paper, we propose an algorithm that can construct the
fault library online. The idea is to use each one-class learner
to represent each fault/subfault segment by using the “learning
in the model space” approach. In the beginning, a normal
one-class learner �0 will be constructed based on the normal
signal segments. With the sliding window moving forward,
we continually apply �0 to judge whether a fault occurs. If a
fault is coming, we will train a new one-class learner �i for
fault i . Then, we keep monitoring the signal and determine
whether the ongoing signal segment belongs to the normal
state or a known fault. If not, we build a new one-class learner
�i and include it in the model library. This is illustrated in
Algorithm 1, which includes the following major steps.

1) Prepare healthy data by applying deterministic reservoir
model drc to the sliding windows (size m) in the first
t steps, i.e., the healthy dataset { f1, f2, . . . , ft+1−m} is
sequentially induced (Lines 3–6).

2) Calculate the pairwise model distance matrix L2( fi , f j )
according to (1) and the kernel matrix K =
exp {−σ · L2}, and then train a one-class SVM (OCS)
�0 [7]3 using this kernel matrix K to act as the healthy
model referee �0 (Lines 7 and 8).
In one-class SVMs, the Gaussian RBF kernel is
employed with the data distance replaced by the model
distance L2( fi , f j )

Kσ ( fi , f j ) = exp
{−σ · L2( fi , f j )

}
.

3) With the sliding window moving forward, if a new f j

belongs to an existing model �k ,4 evaluate the one-class
learner �k (referee for fault k) at the “point” f j , i.e.,
eval(�k, f j ) = 1, incrementally train the existing one
class SVM �k with this new data point f j , and empty
the candidate pool. Otherwise, put the “point” f j in the
candidate pool (Lines 9–15).

4) If the number of data points in the candidate pool
exceeds half of the window size m, train a new one-
class learner �k+1 (to act as the referee) for fault k + 1
with the data points in the candidate pool and empty the
candidate pool (Lines 16–18).

In the above algorithm, the assumption is that the system
is running normally in the first t steps. Although the window
size m should be relatively large (e.g ., > 200 time steps) to
accurately fit the dynamic models (e.g., deterministic reservoir
computing in this paper), the sliding window is moved forward
by one time step, which reduces fault detection delays.

2The measures μk will be represented by reservoir activation samples at
window position k.

3Implemented by LibSVM: http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.
4If the new point f j is classified to more than one model by one-class

SVMs, count the point in the last model because of sequential correlation.

TABLE I

ALGORITHMS AND PARAMETERS

Algorithm Space Parameters
T2 Signal —

DBscan Model
k Number of neighborhood
ε Neighborhood radius

AP-model Model —
AP-signal Signal —

OCS-
model Model

σ Gaussian kernel parameter
ν Upper bound of outliers

OCS-
signal

Signal
σ Gaussian kernel parameter
ν Upper bound of outliers

ARMAX-
OCS Model

σ Gaussian kernel parameter
ν Upper bound of outliers
m Number of nodes in reservoir (25)
p p Autoregressive terms
q Moving average terms
b Exogenous inputs terms

RC-OCS Model
σ Gaussian kernel parameter
ν Upper bound of outliers
m Number of nodes in reservoir (25)

DRC-OCS
(sampling) Model

σ Gaussian kernel parameter
ν Upper bound of outliers
m Number of nodes in reservoir (25)

DRC-OCS Model
σ Gaussian kernel parameter
ν Upper bound of outliers
m Number of nodes in reservoir (25)

IV. EXPERIMENTAL STUDIES

This section presents experimental results in four fault-
diagnosis scenarios, which include one synthetic nonlinear
autoregressive moving average (NARMA) system with three
different signals; one van der Pol oscillator with three faults
imposed; one benchmark three-tank system with three faults;
and the Barcelona water system with 31 faults. We investigate
fault detectability and fault isolation capability using a number
of approaches.

A. Experimental Settings

In our experiments, to evaluate the “learning in the model
space” framework for fault diagnosis, a number of approaches
have been adopted for comparison. The approaches include
Hotelling’s T -squared statistic test (T2) [31], a density-based
algorithm for discovering clusters in large spatial databases
with noise (DBscan) [32], affinity propagation [33] in the
model space (AP-Model), affinity propagation in the sig-
nal space (AP-Signal), one-class SVMs [7] in the model
space (OCS-Model), one class SVMs in the signal space
(OCS-Signal), autoregressive moving-average model with
exogenous inputs with incremental one-class leaner (ARMAX-
OCS), reservoir computing with incremental one-class leaner
(RC-OCS), deterministic reservoir computing with incremen-
tal one-class leaner (DRC-OCS), and DRC-OCS (sampling)
where the model distance matrix is estimated by sampling
method [3 and (5)]. Table I summarizes all the algorithms
employed in this paper.

The signal space is generated by selecting p consecu-
tive points, i.e., {st , . . . , st+p−1}, where st = (u1, . . . , uV ,
y1, . . . , yO )T , as a training point by rearranging these p points
to one vector. The order p is selected in the range [1, 30].
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Fig. 3. Illustration of three NARMA sequences with different orders
(10, 20, and 30).

In the following four datasets, we generate 3000 time steps
for normal signal and each fault signal, respectively, and
employ a sliding window (size 500) to generate a series of data
segments, which are employed to train deterministic reservoir
model. In each dataset, the first 1000 time steps of the signal
are normal, i.e., the first 500 models are normal with window
size 500.

The parameters of DBscan are optimized by minimizing
the number of discovered classes and the false alarm rates
using the first 500 normal points. The parameters of ARMAX
are selected by minimizing the normalized mean squared
error (NMSE) in the first 1000 time steps. The parameters of
one-class SVMs in OCS-Model, OCS-Signal, ARMAX-OCS,
RC-OCS, and DRC-OCS are optimized by fivefold cross
validation using the first 500 data points.

B. NARMA System

In NARMA, the current output depends on both the input
and the previous output. Generally speaking, it is difficult to
model this system because of high nonlinearity and possibly
long memory. In this paper, we employ three NARMA time
series with orders O = 10, 20, 30 which are given by (6)–(8),
respectively

y(t + 1) = 0.3y(t) + 0.05y(t)
9∑

i=0

y(t − i)

+1.5u(t − 9)u(t) + 0.1 (6)

y(t + 1) = tanh(0.3y(t) + 0.05y(t)
19∑

i=0

y(t − i)

+1.5u(t − 19)u(t) + 0.01) + 0.2 (7)

y(t + 1) = 0.2y(t) + 0.004y(t)
29∑

i=0

y(t − i)

+1.5u(t − 29)u(t) + 0.201 (8)
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Fig. 4. (a) Visualization of the NARMA dataset in the model space and
(b) signal space (p = 30) by multidimensional scaling (MDS).

where y(t) is the system output at time t , u(t) is the system
input at time t (u(t) is an i.i.d stream generated uniformly in
the interval [0, 0.5).

The three sequences are illustrated in Fig. 3. The three
NARMA sequences look quite similar, and it is very difficult
to separate them on the basis of the signal only.

Fig. 4 shows MDS analysis5 of the NARMA dataset in the
model space (top) and in the signal space (bottom). Based on
this figure, it is relatively easy to separate different classes
in the model space, where most of the data points overlap
in the signal space. The figure confirms that the model-based
representation is able to effectively represent the signals. In
Table III, several supervised classification techniques have
been employed to confirm the benefits of using model-space-
based approaches.

C. Van der Pol Oscillator

The Van der Pol oscillator [34] has been a subject of
extensive research, and its discrete-time expressions play an

5MDS aims to preserve the pairwise distance between points, which is
suitable for preserving the model distance for visualization.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II

PARAMETERIZATIONS OF FAULTS. MFD STANDS FOR MAXIMUM FLOW/DEMAND

ID Faulty element Type Magnitude ID Faulty element Type Magnitude
1 iOrioles 1 −25% 17 iStaClmCervello 3 0.01%
2 iOrioles 2 −25% 18 iStaClmCervello 4 0.5%
3 iOrioles 2 −10% 19 iStaClmCervello 5 -
4 iOrioles 3 0.001% 20 iStaClmCervello 6 4
5 iOrioles 3 0.1% 21 iCesalpina1 1 10%
6 iOrioles 4 10% 22 iCesalpina1 2 -15%
7 iOrioles 4 1% 23 iCesalpina1 3 0.01%
8 iOrioles 5 - 24 iCesalpina1 4 0.75%
9 iOrioles 6 2 25 iCesalpina1 5 -

10 c175LOR 1 −20% 26 iCesalpina1 6 0.75
11 c175LOR 2 −15% 27 c263CES 1 30%
12 c175LOR 3 0.01% 28 c263CES 2 −15%
13 c175LOR 4 1% 29 c263CES 3 0.025%
14 c175LOR 5 - 30 c263CES 4 0.5%
15 iStaClmCervello 1 −15% 31 c263CES 5 -
16 iStaClmCervello 2 −7.5%

Details & Parameter Type Details & Parameter
1 Additive offset (%MFD) 4 Additive drift (%MFD)
2 Additive incipient offset (%MFD) 5 Abrupt freezing (-)
3 Noise (variance %MFD) 6 Multiplicative offset (divided by)

TABLE III

COMPARISONS OF MODEL-SPACE-BASED APPROACH AND SIGNAL-BASED

APPROACH USING SUPERVISED LEARNING TECHNIQUES

Algorithm NARMA Van der Pol Three-Tank Water
Model Signal Model Signal Model Signal Model Signal

CART 0.00(0.00) 0.33∗(0.01) 0.07(0.01) 0.11∗(0.01) 0.01(0.00) 0.02∗(0.00) 0.06(0.01) 0.11∗(0.00)
SVMs 0.00(0.00) 0.07∗(0.01) 0.05(0.01) 0.07∗(0.01) 0.00(0.00) 0.00(0.00) 0.06(0.00) 0.14∗(0.00)
OCS 0.04(0.01) 0.32∗(0.01) 0.15(0.01) 0.27 ∗(0.01) 0.02(0.01) 0.10∗(0.01) 0.09(0.01) 0.23∗(0.00)

Bagging 0.00(0.00) 0.24∗(0.01) 0.01(0.00) 0.07∗(0.00) 0.00(0.00) 0.01∗(0.01) 0.04(0.01) 0.08∗(0.01)
Boosting 0.00(0.00) 0.33∗(0.01) 0.15(0.01) 0.22∗(0.01) 0.01(0.00) 0.04∗(0.00) 0.07(0.01) 0.16∗(0.00)

The reported results are based on ten runs of fivefold cross validation. An ∗ means that the difference between model and signal representations
are statistically significant. The boldface indicates better performance in either model or signal space for each algorithm on each data set.

important role in the numerical investigations. A discrete-time
Van der Pol oscillator can be obtained as

y1(k) = y2
t + y1(k − 1)

y2(k) = y2(k − 1) + y2(k − 1)(1 − y1(k − 1)2)
t

−y1(k − 1)
t + ε

where ε is Gaussian white noise with variance 0.01.
Three faults are imposed to the van der Pol oscillator by

adding 0.75 sin(y1(k − 1))
t , 0.75 tanh(y1(k − 1))
t and
0.75 cos

(
y1(k − 1)2

)
to y2(k). The van der Pol oscillator and

the three faults are illustrated in Fig. 5.

D. Three-Tank System

The well-known three-tank problem [3] in Fig. 6 is pre-
sented to illustrate the effectiveness of the proposed algorithm.
The cross section of these tanks is Ai = 1m2, and there is a
cross section A p = 0.1m2 at the end of each tank. The outflow
rate is c j , i, j = 1, . . . , 3. The level of each tank is denoted
by xi (0 ≤ xi ≤ 10, i = 1, . . . , 3).

The input flows by two pumps are denoted by ui with
the restrictions 0 ≤ ui ≤ 1m3/s, i = 1, 2. In this paper,
the inflows are set as u1(k) = 0.2 cos(0.3kTs) + 0.3 and

u2(k) = 0.25 cos(0.5kTs) + 0.3, respectively, and the initial
levels in the tanks are 8, 6.5, and 5 m. In the model, three
faults are introduced as follows.

1) Actuator fault in pump 1: the pump is partially or fully
shut down.

2) Leakage in tank 3: there is a leak through a circular hole
with unknown radius 0 < ρ3 < 1 in the tank bottom.

3) Actuator fault in pump 2: same as fault 1 but related to
pump number 2.

Fig. 7 illustrates the water levels of three tanks in normal
and three faulty situations.

E. Barcelona Water Distribution Network

The next application is the Barcelona Water Distribution
Network (BWDN) [35]. BWDN supplies water to approxi-
mately 3 million consumers, distributed in 23 municipalities
in a 424 km2 area. Water can be drawn from both surface and
underground sources. From these sources, water is supplied
to 218 demand sectors through about 4645 km of pipelines.
The complete transport network has been modeled using 63
storage tanks, 3 surface and 6 underground sources, 79 pumps,
50 valves, 18 nodes, and 88 demands.
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Fig. 5. Illustration of Van der Pol oscillator and three different faults.
(a) y1(k) and (b) y2(k).

A detailed model of the BWDN has been developed using
MATLAB/Simulink [35], which has been calibrated and val-
idated using real data, which was contributed by our EU
project partner, Prof. Joseba Quevedo, Universitat Politècnica
de Catalunya, who has been working with Barcelona water
supplying company Agbar (http://www.agbar.es/es/home.html)
for more than ten years. Agbar has been using this software
to compare the results with the actual reading from the sensor
networks for fault diagnosis in their water system.

In this software, we can manipulate and inject different
faults into the system. Studied faults are introduced in the
two subsystems of the network shown in Fig. 8. In the two
subsystems, we introduce 31 faults, which are detailed in
Table II. These faults include actuator faults, actuator sensor
faults, demand (input) sensor faults, and tanks (output) sensor
faults. Four examples of faulty signals are illustrated in Fig. 9.

As there are two subsystems, two deterministic reservoir
computing models, each with 25 nodes in the reservoir, have
been employed in the proposed framework.

Fig. 6. Three-tank system [3].

F. Comparisons and Evaluations

This section will first report the comparisons of several
supervised algorithms applied in the model space and signal
space, respectively, and then evaluate those algorithms listed
in Table I in terms of fault detectability and fault isolation
ability.

In this section, we perform the statistical t-test for paired
algorithms, e.g., classification and regression trees (CART)
in the model space versus in the signal space in Table III,
T2 versus DRC-OCS in Table IV, and DBscan versus DRC-
OCS in Table V on each single dataset. We have carried out
statistical tests on the metrics used in this paper including
the error rate (Table III); fault detection rate (FDR) and false
alarm rate (FAR) (Table IV); precision, recall, and specificity
(Table V). The threshold of the statistical t-tests is set to 0.05.

In above section, the model space and signal space have
been illustrated by the MDS algorithm. However, because of
the high dimensionality, the visualizations might not reveal the
real relationship of these data points in the high-dimensional
space. In order to compare the model-space- and signal-
space-based approaches, Table III reports the comparisons
of the representations of model space and signal space
using a number of supervised learning algorithms, including
CART, SVMs, OCS, Bagging (100 trees), and Adaboosting
(100 trees).

In the signal space approach, the order p will be selected
in the range [1, 30] by a fivefold cross validation approach.
The parameters of SVMs and one-class SVMs are optimized
by fivefold cross validation.

Since the default setting of MATLAB is to optimize the
CART algorithm,6 we follow the default setting in MATLAB

for CART. Bagging and Adaboosting are ensemble algorithms
with decision trees (CARTs) as based learners (CARTs have
been optimized by MATLAB). They have only one parameter7

to specify, i.e., the number of trees in the ensembles. We use
a popular choice (100 decision trees) in this comparisons.

The reported results in Table III are based on ten runs
of fivefold cross validation. In Table III, model space

6In MATLAB, the function “classregtree”, the default is to compute the full
tree and the optimal sequence of pruned subtrees.

7Different variants of Bagging and Adaboosting may require more parame-
ters.
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Fig. 7. Illustration of levels in the three tanks in the three-tank system and three different faults (a) tank 1, (b) tank 2, and (c) tank 3.

TABLE IV

COMPARISONS OF SEVERAL ALGORITHMS IN TERMS OF FAULT DETECTION ABILITY, I.E.,

FAULT DETECTION RATE (FDR) AND FALSE ALARM RATE (FAR)

NARMA Van der Pol Three-Tank Barcelona Water

Algorithm FDR FAR FDR FAR FDR FAR FDR FAR

T2 0.9072∗ 0.1000∗ 0.3009∗ 0.0998∗ 0.2311∗ 0.0999∗ 0.2316∗ 0.1384∗
DBscan 1∗ 0.0917∗ 0.9146∗ 0.2317∗ 0.8958∗ 0.0683∗ 0.7981∗ 0.1368∗

OCS-model 1∗ 0.1102∗ 0.9310∗ 0.0509∗ 0.8521∗ 0.1082∗ 0.9313∗ 0.2683∗
OCS-signal 0.7042∗ 0.2097∗ 0.7686∗ 0.2104∗ 0.7521∗ 0.2082∗ 0.4920∗ 0.3796∗
AP-model 1∗ 0 1.0000∗ 0.3405∗ 0.8407∗ 0.1128∗ 0.9014∗ 0.2678∗
AP-signal 1∗ 0.5427∗ 1.0000∗ 0.7405∗ 0.7155∗ 0.2387∗ 0.8879∗ 0.2458∗

ARMAX-OCS 0.9882∗ 0.0517∗ 0.8727∗ 0 0.9776∗ 0 0.7369∗ 0.1588∗
RC-OCS 0.9747∗ 0.0558∗ 0.9762∗ 0.0158∗ 0.8387∗ 0 0.8271∗ 0.1079∗

DRC-OCS(Sampling) 0.9789∗ 0 0.9804 0 0.9926 0 0.9327∗ 0.0817∗
DRC-OCS 0.9921 0 0.9818 0 0.9919 0 0.9762 0.0473

An ∗ means that the difference between drc-ocs and other algorithms is statistically significant in terms of fdr and far. The boldface indicates the best
performance among these algorithms for each dataset in terms of fdr and far.

TABLE V

COMPARISONS OF SEVERAL ALGORITHMS IN TERMS OF FAULT ISOLATION ABILITY

NARMA (3 classes) Van der Pol (4 classes)

Algorithm Classes Precision Recall Specificity Classes Precision Recall Specificity

DBscan 4 0.6690∗ 0.7650∗ 0.8825∗ 10 0.7629∗ 0.6842∗ 0.8018∗
AP-Model 271 0.9699∗ 0.9698∗ 0.9899∗ 367 0.8778∗ 0.8757∗ 0.9585∗

ARMAX-OCS 5 0.9354∗ 0.9229∗ 0.9615∗ 2 0.4309∗ 0.4880∗ 0.7868∗
RC-OCS 3 0.9637∗ 0.9615∗ 0.9808∗ 6 0.9606∗ 0.9583∗ 0.9861

DRC-OCS(Sampling) 3 0.9683∗ 0.9692∗ 0.9914 5 0.9617∗ 0.9726 0.9819∗
DRC-OCS 3 0.9861 0.9858 0.9929 5 0.9736 0.9731 0.9910

Three-tank (4 classes) Barcelona Water (32 classes)

Algorithm Classes Precision Recall Specificity Classes Precision Recall Specificity

DBscan 14 0.8742∗ 0.7561∗ 0.9253∗ 61 0.8019∗ 0.7326∗ 0.8654∗
AP-Model 272 0.9713∗ 0.9704∗ 0.9901∗ 654 0.9366∗ 0.9428∗ 0.9751∗

ARMAX-OCS 5 0.9914∗ 0.9923 0.9984 57 0.7826∗ 0.7419∗ 0.8237∗
RC-OCS 9 0.9182∗ 0.8788∗ 0.9596∗ 44 0.8913∗ 0.8942∗ 0.9263∗

DRC-OCS(Sampling) 7 0.9940 0.9949∗ 0.9988 39 0.9219∗ 0.9310∗ 0.9513∗
DRC-OCS 10 0.9931 0.9931 0.9977 48 0.9538 0.9640 0.9871

An ∗ means that the difference between drc-ocs and other algorithms is statistically significant in terms of precision, recall, and specificity for the four datasets.
The boldface indicates the best performance among these comparable algorithms for each dataset in terms of precision, recall, and specificity, respectively.

representation usually achieves a lower error rate. In some
cases, e.g., CART/SVMs in NARMA and SVM/Bagging in
the three-tank system, model space representation can even

achieve 100% accuracy. These results are consistent with those
MDS visualizations, and confirm the benefits of using model
space rather than signal space in fault diagnosis.
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Fig. 9. Examples of faulty signals.

The reason for showing Table III in this paper is to confirm
the benefits of the model space representation over the signal
space representation in fault diagnosis. Therefore, we employ
five supervised algorithms to demonstrate their separability
in both model and signal spaces. In our algorithm, we did
not use the supervised algorithms listed in Table III for fault
diagnosis.8 In other words, the objective here is not to compare
the algorithms in terms of which is the best, but to show the
differences between using the model space and signal space
representations.

In fault diagnosis, the first step is to discriminate faults
from normal situations. Table IV reports fault detection results

8One-class SVMs are not considered supervised learning algorithms as they
are trained on examples from a single class only (no labels). They are used
as “anomaly detectors” in our proposed cognitive fault diagnosis approach.

using a number of algorithms listed in Table I. The para-
meters related to DBscan, one-class SVM, and ARMAX
are optimized by fivefold cross validation in the normal
period. In this table, the FDR and FAR are employed as two
metrics.

According to Table IV, model space-based algorithms, such
as DRC-OCS and RC-OCS, are superior to other algorithms.
Since a deterministic reservoir is more stable than a random
reservoir and there is no model assumption in DRC,9 DRC-
OCS is better than RC-OCS and ARMAX-OCS.

Although the sampling method of DRC-OCS could poten-
tially obtain better estimates when the readout parameters
are nonuniform, it would require dense sampling points,
i.e., a large window size m in this case, with increased
computational cost. However, due to real-time requirements
and computational restrictions, the window size should be
restricted for prompt response to faults. Hence, DRC-OCS
(sampling) is often inferior to DRC-OCS.

The statistical-test-based algorithm T2 acts as a base line
algorithm and usually has a lower FDR and a fair FAR.
DBscan and affinity propagation (AP) are clustering-based
algorithms. As these clustering algorithms do not make use
of the information that the first t steps are normal, these
algorithms did not perform well in the four applications.

In a time-varying environment, there may be unanticipated
fault scenarios that would not have been encountered before.
In this paper, we propose a dynamic fault library construction
framework and its application on fault isolation. These results
are reported in Table V.

In Table V, we first report the true number of classes and the
discovered classes (i.e., number of faults plus normal class)
using a number of algorithms for each dataset.10 Then, we
report the fault isolation performance of these algorithms in
terms of precision, recall, and specificity.

Since the number of discovered faults does not equal to
the true number of faults, we compare each true cluster
i and these discovered clusters and merge those clusters
by maximizing the overlap with i to a pseudo-cluster
̃i . The performance metrics are obtained by comparing
 and ̃.

Based on Table V, DRC-OCS usually outperforms other
algorithms under these three metrics. AP-model performs well
on the isolation stage, but often generates too many subfaults
in the library, e.g., 270 subfaults versus two faults.

In the three “learning in the model space” approaches,
i.e., DRC-OCS, RC-OCS, and ARMAX-OCS, DRC-OCS is
the best and ARMAX-OCS is the most inferior one as it
requires the model order selection for different applications.
Without prior information for complex applications, it is usu-
ally difficult to select the model order. With limited sampling
points due to real-time requirement, the sampling method of
DRC-OCS is often inferior to DRC-OCS, though it often
outperforms other approaches.

9ARMAX model assumes the model order and ARMAX-OCS might not
perform well on signals with incorrect model assumption.

10Because of the assumption that the types of faults are unknown in advance,
these compared algorithms always discover more faults than true number of
faults by decomposing each true fault to a number of small fault segments.
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Based on the results presented in Tables III, IV, and V, the
proposed approach DRC-OCS achieves the best results and
these results also confirmed that “learning in the model space”
is an effective framework for fault diagnosis.

V. CONCLUSION

In this paper, an effective cognitive fault diagnosis frame-
work was proposed to tackle the challenges in complex
engineering systems in time-varying or unformulated envi-
ronments. Instead of investigating the fault diagnosis in the
signal space, this paper introduced “learning in the model
space” framework which represents the MIMO data as a series
of models fitted using a sliding window. By investigating
the characteristic of these fitted models using a learning
approach in the model space, one can identify and isolate faults
effectively, and construct a fault library dynamically.

This paper applied the deterministic reservoir models to fit
the MIMO data, since reservoir models are generic to fit a wide
variety of dynamical features of the input-driven signals, and
the deterministic reservoir models further simplify the model
structure and thus improve the fitting performance.

To rigorously investigate these fitted models for fault diag-
nosis, this paper demonstrated the application of the distance
definition in the model space for linear readout models. The
model distance differs from the squared Euclidean distance
of the readout parameters, indicating that more importance is
given to the “offset” than “orientation” of the readout mapping.
We also presented the estimated forms of model distance by
using either sampling methods or a Gaussian mixture model
when the domain of readout parameters is nonuniform.

By replacing the data distance matrix with the model dis-
tance matrix, one-class SVMs are able to “learn” in the model
space to identify normal/abnormal models. To accommodate
unknown faults, the algorithm “incremental one-class learning
in the model space” was proposed to identify and isolate faults,
and simultaneously construct the fault library.

To evaluate this proposed framework with other related
fault diagnosis approaches, three benchmark systems and one
simulated software for Barcelona water system have been
employed. The results confirmed both the benefits of repre-
senting MIMO data in the model space and the effectiveness
of “learning in model space” framework.

“Learning in the model space” is an effective framework
for complex data representation and fault diagnosis.11 Instead
of using reservoir models and one-class SVMs as fitting and
discriminating models, respectively, there should be other
effective opinions or combinations for various application
systems, which comprise our future work.
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11Although model-space-based approaches can be robust and effective for
fault types occurring over a period of time, it might be ineffective for very
short term and minor faults, where signal-based approaches can be more
effective.
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[6] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Comput. Sci. Rev., vol. 3, no. 3,
pp. 127–149, Aug. 2009.

[7] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson,
“Estimating the support of a high-dimensional distribution,” Neural
Comput., vol. 13, no. 7, pp. 1443–1471, Jul. 2001.

[8] A. Vemuri and M. Polycarpou, “Neural-network-based robust fault
diagnosis in robotic systems,” IEEE Trans. Neural Netw., vol. 8, no. 6,
pp. 1410–1420, Nov. 1997.

[9] V. Palade and C. Bocaniala, Computational Intelligence in Fault Diag-
nosis. New York, NY, USA: Springer Publishing Company, Inc., 2010.

[10] V. Venkatasubramanian, R. Rengaswamy, S. Kavuri, and K. Yin,
“A review of process fault detection and diagnosis: Part III: Process
history based methods,” Comput. Chem. Eng., vol. 27, no. 3,
pp. 327–346, Mar. 2003.

[11] P. Kankar, S. Sharma, and S. Harsha, “Fault diagnosis of ball bearings
using machine learning methods,” Expert Syst. Appl., vol. 38, no. 3,
pp. 1876–1886, Mar. 2011.

[12] M. Seera, C. P. Lim, D. Ishak, and H. Singh, “Fault detection and
diagnosis of induction motors using motor current signature analysis
and a hybrid FMM-CART model,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 23, no. 1, pp. 97–108, Jan. 2012.

[13] M. Barakat, F. Druaux, D. Lefebvre, M. Khalil, and O. Mustapha,
“Self adaptive growing neural network classifier for faults detection and
diagnosis,” Neurocomputing, vol. 74, no. 18, pp. 3865–3876, Nov. 2011.

[14] I. Yélamos, G. Escudero, M. Graells, and L. Puigjaner, “Performance
assessment of a novel fault diagnosis system based on support vector
machines,” Comput. Chem. Eng., vol. 33, no. 1, pp. 244–255, Jan. 2009.

[15] H. Zhang, J. Liu, D. Ma, and Z. Wang, “Data-core-based fuzzy min–max
neural network for pattern classification,” IEEE Trans. Neural Netw.,
vol. 22, no. 12, pp. 2339–2352, Dec. 2011.

[16] A. Barua and K. Khorasani, “Hierarchical fault diagnosis and health
monitoring in satellites formation flight,” IEEE Trans. Syst., Man,
Cybern., Part C, Appl. Rev., vol. 41, no. 2, pp. 223–239, Mar. 2011.

[17] H. Jaeger, “The ‘echo state’ approach to analysing and training recurrent
neural networks,” German Nat. Res. Center Inf. Technol., St. Augustin,
Canada, Tech. Rep. GMD-148, 2001.

[18] D. Li, M. Han, and J. Wang, “Chaotic time series prediction based on
a novel robust echo state network,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 23, no. 5, pp. 787–799, May 2012.

[19] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Comput., vol. 14, no. 11, pp. 2531–2560,
Nov. 2002.

[20] J. J. Steil, “Backpropagation-decorrelation: Online recurrent learning
with O(N) complexity,” in Proc. IEEE Int. Joint Conf. Neural Netw.,
vol. 2. Jul. 2004, pp. 843–848.

[21] A. Rodan and P. Tiňo, “Simple deterministically constructed cycle
reservoirs with regular jumps,” Neural Comput., vol. 24, no. 7,
pp. 1822–1852, Jul. 2012.

[22] K. Doya, “Recurrent networks: Supervised learning,” in The Handbook
of Brain Theory and Neural Networks. Cambridge, MA, USA: MIT
Press, 1995, pp. 796–800.

[23] H. Jaeger, “Tutorial on training recurrent neural networks,” German Nat.
Res. Inst. Comput. Sci., Berlin, Germany, Tech. Rep. GMD-159, 2002.
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