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Abstract

This paper proposes a probabilistic conic mixture model

based on a classification expectation maximization algorithm

and applies this algorithm to Ground Penetrating Radar

(GPR) spatial data interpretation. Previous work tackling

this problem using Hough transform or neural networks

for identifying GPR hyperbolae are unsuitable for on-site

applications owing to their computational demands and the

difficulties of getting sufficient appropriate training data for

neural network based approaches. By incorporating a swift

conic fitting algorithm into the probabilistic mixture model,

the proposed algorithm can identify the hyperbolae in GPR

data in real time and further calculate the depth and the size

of the buried utility pipes. The number of the hyperbolae

can be determined by conducting model selection using a

Bayesian information criterion. The experimental results on

both the synthetic/simulated and real GPR data show the

effectiveness of this algorithm.

1 Introduction

The fitting of primitive models to image data is a basic
task in pattern recognition and spatial data mining
and also is an important technique for many industrial
applications. There are several conic fitting algorithms
in the literature [4, 12, 19, 18].

However, most of these algorithms can only iden-
tify one conic in each image data and most are
sensitive to outliers. An online example of one
conic fitting algorithm is published at the follow-
ing address http://homepages.inf.ed.ac.uk/rbf/
CVonline/LOCAL_COPIES/PILU1/demo.html. It is easy
to verify that it suffers from the above two shortcom-
ings. However, we also note that this algorithm runs in
real-time, even implemented as Java Applet.

To address these two problems and to ensure a
fast run time, this paper extends this algorithm using
a probabilistic conic mixture model and applies the
proposed algorithm to an important application area,
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Ground Penetrating Radar (GPR) data interpretation.
Ground Penetrating Radar has been widely used

as a non-destructive tool for the investigation of the
shallow subsurface, and is particularly useful in the
detection and mapping of subsurface utilities and other
solid objects [9]. However, GPR displays are not easily
interpreted and only experts can extract significant
information from GPR images to make a reliable report
after the inspection.

The patterns appearing in the B-scans [5] of GPR
data have shapes determined by the propagation of
short pulses into a medium with certain electrical prop-
erties. Typically, we can observe hyperbolic curves
or linear segments in the GPR image: The first are
due to objects with cross-section size of the order of
the radar pulse wavelength; the second stem from pla-
nar interfaces between layers with different electrical
impedances.

As GPR is becoming more and more popular as
a shallow subsurface mapping tool, the volume of raw
data that need to be analyzed and interpreted is causing
more of a challenge. There is a growing demand for
automated subsurface mapping techniques that are both
robust and rapid. This paper provides such a system.

The current tools that have been developed to aid in
GPR data interpretation are generally computationally
expensive, such as Hough Transform [16] or neural
network based algorithms [3], and inadequate for on-
site applications.

By extending a swift conic fitting algorithm in this
mixture model, the proposed algorithm can be operated
in real time. Other benefits of the proposed algorithm
include relative robustness to noise compared with the
previous conic algorithms and automatic determination
of the number of hyperbolae by a Bayesian information
criterion.

The remaining part of this paper is organized as
follows. Section 2 will present some relevant works and
the algorithm description is described in Section 3. The
experimental results are reported in Section 4. Finally,
conclusions are drawn in Section 5.



2 Background

In the literature, there are several published works deal-
ing with the automatic detection of patterns associated
with buried objects in GPR data. These algorithms
can be grouped into three main categories: 1) Hough
transform based methods, 2) machine learning based
methods and 3) clustering based algorithms.

Hough transform [16] is a feature extraction tech-
nique used in image analysis to find imperfect instances
of objects within a certain class of shapes by a voting
procedure in a parameter space. The classical Hough
transform was concerned with the identification of lines
in the image, but later the Hough transform has been
extended to identifying positions of arbitrary shapes,
most commonly circles or ellipses. Hough transform
based methods can identify the four parameters related
to the hyperbola, which facilitates subsequent estima-
tion of the pipe size and depth of the buried assets
[23, 6]. However, this method often needs to run hun-
dreds of Hough transforms with different combinations
of hyperbola parameters (a, b) to search the best fit hy-
perbola shape and this usually cannot be deployed in
real-time applications. Another problem with this kind
of algorithm is how to specify a suitable threshold for
the number of votes to determine the number of hyper-
bolae in the image.

There is some work that uses machine learning
methods to estimate the size and the depth of the
buried pipes. However, with different mediums, soil
types, materials of the pipes, the reflected patterns in
GPR data are different. In the real-world setting, it is
very difficult to acquire the training data for different
settings. For example, Pasolli et al. only use simulated
data to train the neural networks [17] and this method
greatly limits the practical applications.

Some work has been done to use a clustering ap-
proach to identify the hyperbolae. In [8], the authors
applied a wavelet-based procedure to reduce noise and
to enhance signatures in GPR images and then used a
fuzzy clustering approach to identify hyperbolae. How-
ever, this kind of method will not reveal the hyperbola
parameters (a, b) and cannot estimate these parameters
related to the buried assets using the geometric model.

In order to address the above problems, this paper
proposes a probabilistic hyperbola mixture model. In
this model, the feature noise around the hyperbolae and
the background noise are both considered. The model
is based on a classification expectation maximization
(CEM) algorithm [7]. Since it is fast, the algorithm can
be deployed in real-time applications.

This algorithm can also be trivially extended to
identification of other conic mixtures, such as ellipses
and parabolas, thus extending the applicability of the
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Figure 1: The GPR Geometric Model

proposed algorithm to many data interpretation scenar-
ios.

3 Probabilistic Conic Mixture Model

In this section, we will present some related knowledge
on GPR modeling, a conic fitting algorithm and the
probabilistic conic mixture model. In the following
subsections, we will present the GPR model description,
conic identification algorithm, the probabilistic model,
the classification EM algorithm and model selection
method using a Bayesian information criterion.

3.1 GPR Model Description The hyperbolic sig-
natures in GPR data are often formulated as a geometric
model [22], which is shown in Figure 1. The relation be-
tween the two-way travel time t, the horizontal position
x and the velocity of propagation v can be expressed by

(3.1)

(
t + 2R

v

t0 + 2R
v

)2

−
(

(x− x0)
v
2 t0 + R

)2

= 1,

where (x0, t0) are the coordinates of the target, z = v
2

and z0 = v0
2 . Equation (3.1) is an equation of a

hyperbola centered around (x0,
−2R

v ).
Relating Equation (3.1) with a general hyperbola,

(3.2)
(y − y0)2

a2
− (x− x0)2

b2
= 1,

and with some simple derivations, the following relation
can be obtained:



a = t0 +
2R

v
,(3.3)
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v

2
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v
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If the parameters related to the hyperbola (a, b) can
be found, the depth and the radius can be obtained by
the following equations:

R =
b(a− t0)

a
,(3.5)

depth =
vt0
2

=
bt0
a

.(3.6)

This model assumes that a long cylinder is buried in
a homogenous medium and the movement of the GPR
antenna is perpendicular to the cylinder.

Since most of the pipes are long and linear, in
practice, the operator of GPR machine always operates
in a perpendicular direction to the assumed direction
of the cylinder unless it is suspected that there are T-
junctions or the pipes change the direction1. The other
assumption for the homogenous medium can be satisfied
if these pipes are located in the shallow subsurface.

3.2 Hyperbola Fitting Algorithm In this section,
we will introduce the algorithm for hyperbola fitting.
This single hyperbola fitting algorithm is based on a
minor revision of the work [12].

The conic fitting problem can be formulated as
an implicit second order polynomial constrained least
squares problems.

F (A,x) = A ·x = Ax2 +Bxy+Cy2 +Dx+Ey+F = 0,

where A = [A,B, C, D,E, F ]T and x =
[x2, xy, y2, x, y, 1]T . F (A, xi) is called the “algebraic
distance” of a point (xi, yi) to the conic F (A,x) = 0.

The shape of the conic function is determined by

(3.7) B2 − 4AC





> 0 Hyperbola
= 0 Parabola
< 0 Ellipse

.

The fitting of a general conic may be approached
[15] by minimizing the sum of squared algebraic dis-
tances of the curve to the data points. In order to avoid

1Utility map records, which although notoriously inaccurate,
at least in the UK, generally give the rough direction of the line
of the buried apparatus (which is typically along the line of the
road).

the trivial solution, the parameter vector is often con-
strained in some way. Many of the published algorithms
differ only in the form of constraint applied to these pa-
rameters.

Fitzgibbon et al. [12] utilize a constraint on 4AC−
B2 = 1 for ellipse fitting. In their paper, the Lagrange
multiplier and eigen-decomposition are employed to
obtain a direct solution, which avoids the iterative
optimization and thus performs very fast.

In our paper, we change the constraint to B2 −
4AC = 1 and it will act a base hyperbolic fitting algo-
rithm in the probabilistic mixture model. Based on the
formulation in Equation (3.7), our proposed algorithm
can fit other conic functions and the combinations of
different conic functions, such as elliptic and hyperbolic
mixture model.

3.3 Probabilistic Model In practical applications,
GPR images are often contaminated with noise. Al-
though various kinds of pre-processing techniques have
been proposed to reduce the noise level, it is impossible
to guarantee that the processed GPR data is free from
noise. In order to take noisy spatial points into con-
sideration, we model two kinds of spatial noise in the
proposed algorithm. These two kinds of noise is back-
ground noise, in the form of observed points which is
not part of the hyperbola and feature noise, which is
the deviation of the observed hyperbolic points.

Suppose that X is a set of observation points,
and M is a partition consisting of hyperbolae,
M0,M1, · · · ,MK , where partition Mk contains Nk

points. The background noise is denoted by M0.
In the proposed model, we assume that the back-

ground noise is uniformly distributed over the region of
the image, which is equivalent to Poisson background
noise, and the hyperbolic points are distributed uni-
formly along the true underlying hyperbola; that is,
their algebraic distances2 follow a normal distribution,
with mean zero and variance σ2

j .
The resulting model becomes a hyperbolic mixture

model with the mixing probability πk (0 < πk < 1, k =
0, 1, · · · ,K, and

∑K
k=0 πk = 1). Then the likelihood can

be expressed by

L(X|π, σ) =
N∏

i=1

L(xi|π, σ),

where L(xi|π, σ) =
∑K

k=0 πkL(xi|πk, σk, xi ∈ Mk) and
the

2We use algebraic distance instead of other robust distance
metrics, such as orthogonal distance [2], to fast fit the hyperbola
and to be suitable for on-site applications. The robustness to
noise will be enhanced by the probabilistic model.



L(xi|πk, σk, xi ∈ Mk) =
1√

2πσk

exp

(
−‖fk(xi)‖2

2σ2
k

)
,

where fk(xi) is the algebraic distance from the point
(xi, yi) to the kth hyperbola.

For background noise, the likelihood can be ex-
pressed by

L(xi|π0, σ0, xi ∈ M0) =
1

Area
,

where Area is the area of the image.

3.4 Classification Expectation Maximization
Algorithm The classification expectation maximiza-
tion (CEM) algorithm is a classification version of the
well-known EM algorithm [10]: it incorporates a classi-
fication step between the E-step and the M-step of the
EM algorithm using a maximum a posteriori (MAP)
principle. In the following, the procedure of the algo-
rithm is presented with CEM.

Firstly, we provide the number of hyperbolae in the
GPR data and start with an initial partition using the
k-means algorithm.

1. Begin with an initial partition.

2. (M-step) With the configuration of the current
partitions, fit a hyperbola to each partition and
then compute the maximum likelihood estimates
(πm

k , σ2
k) for k = 1, · · · ,K.

πm
k =

#πm−1
k

N
,

and

σ2
k =

1
#πm−1

k

∑

xi∈πm−1
k

(fk(xi)− f̄k(xi))2,

where fk(xi) is the algebraic distance from the
point (xi, yi) to the kth hyperbola. πm

0 can be

estimated by #πm−1
0
N .

3. (E-step) Based on the current hyperbolae and
parameter estimates, calculate the likelihood of
each point being in each partition.

tmk (xi) =
πm

k Lk(xi)∑K
k=0 πm

k Lk(xi)
,

where Lk(xi) = 1√
2πσk

exp
(
−‖fk(xi)‖2

2σ2
k

)
, k =

1, · · · ,K and L0(xi) = 1
Area .

4. (Classification step) Assign each point xi to the
partition which provides the maximum posterior
probability tmk (xi), 0 ≤ k ≤ K, (if the maximum
posterior probability is not unique, we choose the
partition with the smallest index).

5. Check for convergence; end or return to Step 2.

After we calculated the probability of each point
being in each partition, we assign each point into the
partition for which it has the highest likelihood. Note
that at the end of each iteration, the likelihood of the
model will be calculated. Since the classification expec-
tation maximization iterations sometimes decrease the
likelihood, the process is executed for a predetermined
number of iterations, and we choose the model with the
highest overall likelihood as the final result.

3.5 Model Selection by Bayesian Information
Criterion As with other mixture models, the hyper-
bolic mixture model needs to specify the number of
hyperbolae at the beginning. The usual strategy is to
search a range for the number of hyperbolae k and select
the best one based on proper model selection methods.

In this paper, we propose to use a Bayesian infor-
mation criterion (BIC) [21] for model selection among
a class of parametric models with different numbers of
parameters. The model selection based on BIC can be
seen as a form of regularization since it is possible to
increase the likelihood by adding additional parameters
in the maximum likelihood estimation, which may lead
to overfitting. The BIC resolves this problem by intro-
ducing a penalty term for the number of parameters in
the model.

Model selection based on BIC provides (asymptoti-
cally) consistent estimators of the probability distribu-
tion giving a data set [20]. This approach works well
in practice for mixture models and other model-based
clustering problems [13, 20]. The BIC for a model with
K hyperbolae and background noise is defined by:

BIC = 2 log(L)−M log(N),

where M = K(DF + 2) + K + 1 is the number
of parameters, DF is the degrees of freedom used
in fitting a hyperbola and there are four degrees of
freedom in each hyperbola, i.e. DF = 4. The number
of hyperbolae is K; for each hyperbola, we need to
estimate σj , and we fit a hyperbola using four degrees of
freedom. There are K parameters associated with the
mixing proportions3 and one more parameter is used for

3Although there are M + 1 mixing coefficients, the constraint∑K
k=0 πk = 1 reduces one degree of freedom.
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Figure 2: Hyperbola Identification and Model Selection for Synthetic Data

image area estimation. The larger the BIC, the more the
model is favoured by the data.

As with other mixture models, our algorithm is still
sensitive to the initializations. In this paper, we utilize
a k-means algorithm to initialize the partitions. In the
experimental sections, we emphasize that the number
of data points in the primary hyperbola is significantly
more than the number of noise points. In order to
further reduce the impact of the initializations, the
experiments in this paper are run five times by providing
different random seeds for the k-means algorithm and
the model with the highest BIC value will be selected.

4 Experimental Study

In order to examine the proposed algorithm, this section
conducts several experiments on simulated and real

GPR images. The precision and the computational cost
are also analyzed in this section.

4.1 Synthetic Data In this subsection, two syn-
thetic data with two and five hyperbolae are generated
with Gaussian white noise, respectively. These hyperbo-
lae are positioned in different locations and have similar
shape to reflect the case with real GPR data. Since in
GPR B-scan images, the shape of the hyperbola is only
determined by the medium where objects are buried [11]
and if we assume that the medium does not change dra-
matically over a small neighbourhood, then the reflected
hyperbolae should have similar shapes.

Figure 2 illustrates the results. From these figures,
it can be seen that the proposed algorithm successfully
identifies these hyperbolae and ignores the noise points.

To select the most appropriate number of hyperbo-
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Figure 3: B-scan GPR Data

lae for this data set, we run the algorithm with different
k, which is the number of hyperbolae in the data set,
and record the BIC value. The result confirms that two
and five hyperbolae are the appropriate number of hy-
perbolae for these two data sets, respectively.

4.2 Real GPR Data In this subsection, we utilize a
real GPR data set to validate the proposed algorithm.
The B-scan image is illustrated in Figure 3. In this
figure it can be seen that the data set is challenging since
it contains significant noise and has another unwanted
secondary hyperbola in the middle of two primary
hyperbolae. This unwanted secondary hyperbola is
named a “ghost area” in GPR industry and it is
generated by the cross-reflection of two nearby buried
objects.

In order to process this data, we preprocess to
reduce the noise, remove the background to delete the
linear reflection of ground (upper part in Figure 3)
and reduce the intensity of the GPR data to reduce
the impact of the secondary hyperbola. For each pixel
in GPR image, the intensity of each non-zero point is
ranked and the first quartile, i.e. the median of the
data which are less than the overall median, of ranked
intensity is selected as the cut off value to prune the
noise points. Another method could sample several
intensities and use BIC to select the most appropriate
one.

After the preprocessing step, the proposed algo-
rithm is applied to this data. Figure 4 illustrates the
results. From this figure, it can be seen that the pro-
posed algorithm successfully identifies these hyperbolae.
Based on the BIC figure, we also notice that the pro-
posed algorithm with over-estimated k often generates
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Figure 5: The Buried Assets and the simulated GPR
Data

a higher BIC value than the mode with under-estimated
k. This is due to the existence of substantial noise.

We will select the model with relatively small k from
some candidate models whose BIC values are similar in
the following processing4.

4.3 Simulated GPR Data In practice, at least in
the UK, utility records rarely contain depth informa-
tion (not withstanding its potential usefulness), so eval-
uating the depth estimate from our algorithm without
physical excavation is difficult. Size information is usu-
ally present in the statutory records, but can not be
completely relied upon for accuracy.

To resolve this problem, in this section we employ
simulated GPR data to estimate the accuracy for esti-
mation of the depth and size of buried assets.

The simulated GPR data is generated by means of
the electromagnetic simulator GprMax [14]. GprMax

4In practice, in the utility sector since, as already noted, buried
apparatus is typically linear and relatively long in length, further
evidence for the number of hyperbolae/buried objects will come
from repeated GPR measurements at regular intervals (typically
at least three scans are taken 1m apart along the length of the
suspected apparatus. By integrating the evidence over these
multiple scans, the estimate on k can be further improved.
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Figure 4: Hyperbola Identification for GPR Data

was developed on the basis of the Finite-difference time-
domain (FDTD) numerical method. It discretizes the
Maxwell’s equations in both space and time and obtain
an approximate solution directly in the time domain
through an iterative process. GprMax allows the user
to specify different mediums, such as clay, soft sand,
concrete, and different sizes of buried objects with
varied diameters.

In Figure 5, we show an example to specify the
buried assets and the obtained simulated GPR Data.
Note that all the buried assets are assumed to be
cylinders. In order to validate our algorithm, we have
generated one simulated GPR dataset with one hundred
of buried pipes with varied sizes in varied mediums. The
radii of these pipes range from 4cm to 20cm and the
depths range from 40cm to 120cm. Note that in order
to obtain better results, we need to generate a relatively
higher resolution GPR data to guarantee the number
of data points in the primary hyperbola is significantly
more than the number of noise points.

In this experiment, one variant of the proposed al-
gorithm, hyperbolic-kmeans, is included for compari-
son. The hyperbolic-kmeans algorithm obtains these
hyperbolae according to the principle of k-means and
assigns the points to the hyperbola with the shortest al-
gebraic distance. Since we could not define a likelihood
function for the non-probabilistic model, hyperbolic-
kmeans, BIC will not be used in hyperbolic-kmeans al-
gorithm and the k will be chosen as the same value as
the one in Hyperbolic-mixture, which is optimized by
BIC. Since hyperbolic-kmeans does not take the proba-
bilistic model into consideration and it is very sensitive
to noise.

Table 1 reports the statistical results of the exper-
iment. The proposed algorithm manages to identify 94
out of 100 hyperbolae and for the identified hyperbolae,
the obtained hypotheses on the depth and size are quite
accurate. The number of hyperbolae k, selected by BIC,
is a little greater (105) than 100. This is because the
secondary hyperbolae of some pipes with large diame-
ters, buried in shallow subsurface, have large intensity
even after a series of pre-processing steps.

Compared with our algorithm, hyperbolic-kmeans,
which does not incorporate the probabilistic model, only
identifies 53 hyperbolae out of 100 and the calculated
hypotheses are significantly worse than our algorithm in
terms of the accuracy. It is also worth mentioning that
both algorithms operate almost in real-time (less than
1 second for the GPR dataset). Based on this exper-
iment, the probabilistic conic mixture model achieves
satisfactory performance in terms of the accuracy and
time.

We use algebraic distance instead of other robust
distance metrics, such as orthogonal distance, to fast
fit the hyperbola since most of robust distance fitting
algorithms have a high computational complexity [1].
For example, the orthogonal distance fitting has to be
iteratively implemented and if it was incorporated into
the mixture model, it will be difficult to be deployed for
on-site applications due to the computational demands.
In this method, the robustness to noise is enhanced by
the probabilistic model.

5 Conclusions

Previous algorithms for mining GPR data are
unsuitable for on-site applications due to



Table 1: The Comparison between three algorithms on hyperbola identification and hypotheses extraction from
GPR data. The number of hyperbolae k ranges from 1 to 150 and the actual number of hyperbolae in the data
set is 100.

Algorithm Hyperbola Identify (#) k selected by BIC Running Time Depth Error (%) R Error (%)
Hyperbolic-mixture 94 105 0.8s 5.4 3.79
Hyperbolic-kmeans 53 105(fixed) 0.3s 17.5 14.3
Hough Transform 89 105(fixed) 226.1s 4.9 4.2

computational complexity or the difficulty of obtaining
sufficient appropriate training data for neural network

based methods. We have addressed both of these
problems in this paper.

In order to develop a novel GPR data mining
algorithm, we extend an existing single conic fitting

algorithm by incorporating a probabilistic conic
mixture model and employing the classification
expectation maximization algorithm for the final

solution.
The proposed algorithm significantly contributes to
both theoretical research and practical application

areas. From a theoretical point of view, this research
extends the existing single conic fitting algorithm to

multiple conic fitting algorithm and provides a robust
and swift solution compared to the previous conic

fitting algorithms. In this paper, we mainly focus on
mixtures of hyperbolae although the proposed search

can be trivially extended for other conics, such as
ellipses and parabola.

For practical applications, the proposed techniques
provide an effective and accurate GPR data

interpretation tool, which is adequate for on-site
applications. This is extremely useful for the advanced

multi-channel GPR system that often generates
volumes of data in each task. Therefore, this research
will potentially play an important role in GPR and the

related industries, such as utility detection,
infrastructure and transportation industries.

In this paper, a swift conic fitting algorithm, which is
sensitive to noise, based on the eigen-decomposition is

employed based on the consideration for real-time
deployment of the proposed algorithm.

Therefore, the number of data points in the primary
hyperbolae should be significantly more than the

number of noise points. This then allows preprocessing
to reduce noise before our algorithm is applied.
Our method can be seen as a trade-off between

computational time and robustness. Our future work
will focus on improving the robustness of this

probabilistic conic mixture model. As remarked

earlier, one other way will be to incorporate evidence
from multiple scans along the length of a suspected

linear object.
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