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What is Bayesian Inference?

Bayesian inference: a method of inference using Bayesian' rule to
incorporate likelihood and our belief (prior) distributions with
proper model selection.

P(w |D) =
P(D|w)P(w)

P(D)

w : is the weight vector of the model, e.g. weight vector in
neural networks. D is the observed data set.

prior P(w): the probability of w before data D is observed.
This can be expert knowledge or preference about the model,
e.g. sparseness.

likelihood P(D|w): the probability of observing data D given
w .

posterior P(w |D): the probability of w after D is observed.

P(D): marginal likelihood or model evidence. It is crucial for
model selection in Bayesian inference.
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Parametric or Nonparametric Bayesian

Parametric Bayesian model: Prior on parameter with �xed or
bounded number of parameters.

Prior on parameter: sparseness generating prior → sparse
model
Examples: Bayesian neural networks, Relevance Vector
Machine, Probabilistic Classi�cation Vector Machine (PCVM),
etc.

Nonparametric Bayesian model: ∞-dimensional parameter
space

Prior on function → very �exible models.
Not sparse and computational intensive: training O(N3),
testing O(N2).
Examples: Gaussian Processes, Dirichlet Processes, etc

This talk focuses on parametric/sparse Bayesian model.
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What is sparse model?

In the estimated model f (X ;w) = Xw , if many weights, i.e.
wi = 0, are zero, the obtained mode is referred as sparse model.

f︷ ︸︸ ︷


f1
f2
· · ·
fN


 =

X︷ ︸︸ ︷


x11 x12 x13 x14 x15 · · · x1p

x21 x22 x23 x24 x25 · · · x2p

· · · · · · · · · · · · · · · · · · · · ·
xN1 xN2 xN3 xN4 xN5 · · · xNp


 ·

w︷ ︸︸ ︷


w1

0
0
w4

0
· · ·
wp




Sparsity → variable selection → model interpretability.

Sparsity → regularization → less over�tting & better
prediction.
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How to generate sparsity in sparse Bayesian learning?

Sparseness generating prior encourages sparseness:

P(w) has the highest probability when w = 0.

The higher P(w) at 0, more sparse.

Examples: Gaussian prior, Gaussian prior with hyperparameter
Gamma prior (P(wi ) ∝ 1/ |wi |); Laplace prior · · ·
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A Regression Example: Parametric Bayesian Solution

Given a training set D = (xn, yn)Nn=1, xn ∈ Rp, yn ∈ R .

Likelihood: training mean square error (MSE) assuming
zero-mean Gaussian noise

P(D|w) = (2πσ2)−N/2 exp

{
− 1

2σ2
‖f (xn;w)−yn‖2

}
,

Prior: regularization term

P(w|α) =
N∏

n=0

N(wi |0, α−1i ),

Posterior: the optimized weight vector

max
w

logP(w |D) ∝ min
w

N∑

n=1

(f (xn;w)− yn)2 +

p∑

i=1

αiw
2
i

Maximization of posterior in Bayesian inference is equivalent to
regularized regression, with the prior as regularized term.
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Relationship between Sparse Learning and Bayesian Inference

Sparse Learning

ŵ = argminw R(w) + λg(w)

R(w)− Likelihood (cost) function, e.g. MSE, cross entropy,
etc

g(w)− (prior) sparse regularization, e.g. l0, l1-lasso

Parameter λ need to be tuned by cross validation

Spare Bayesian Learning (SBL)

argmaxw logP(w |D) ∝ minw R(w) +
∑N

n=1 αng(wn)

Parameter αn is equivalent to the trade-o� parameter λ.
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The bene�ts of Bayesian Inference

Automatic model selection, i.e. regularization parameters αi
and (potential) kernel parameters, feature selection, · · · , by
maximizing the model evidence P(D|α).

Expert knowledge or preferences of the models can be easily
incorporated into the model by prior distribution.

Probabilistic outputs with con�dence intervals (covariance
matrix)
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Ignore the normalization term, or not?

P(w |D) =
P(D|w)P(w |α)

P(D|α)

To simplify calculation, the normalization term
P(D|α) =

∫
P(D|w)P(w |α)dw is often ignored to save

calculation.

In fact, P(D|α) is crucial for automatic model selection, i.e.
automatically choose best αn.
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How to automatically select model in SBL?

For best hyperparameter α after observing data D, we need to
maximize the posterior of P(α|D):

P(α|D) =
P(D|α)P(α)

P(D)

If an uniform prior P(α) is adopted. Then,

P(α|D) ∝ P(D|α).

Maximization of evidence P(D|α) is to maximize the posterior
P(α|D) of hyperparameter.

12 / 57



Iteratively optimize posterior and evidence in SBL

1 Initialization: choose an initial hyperparameter α value.

2 Posterior maximization: update the optimal weight vector w
by maximizing the posterior of weights P(w |D) with previous
α.

3 Evidence maximization: update the hyperparameter α by
maximizing the evidence P(D|α).

4 Loop steps (2) and (3) until converged.
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What are the critical problems in SBL?

Choose proper prior and likelihood distributions for speci�c
problems.

E�ective optimization approaches to maximize the posterior of
parameters and model evidence: gradient based approaches,
coordinate descent, etc.

Posterior and evidence P(D|α) =
∫
P(D|w)P(w |α)dw are

important but often intractable if prior or likelihood is not
Gaussian!

Hidden variable solutions: Expectation Maximization. Pros:
simple derivations and implementations; cons: sensitive to
initializations, local minima.
Integral approximation techniques for analytical solutions:
Laplace approximation, Variational Bayesian, Expectation
Propagation (EP)
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Rethinking of two questions in SBL

Is Gaussian prior appropriate for all problems?

Bayesian methods are the most powerful when your prior
adequately captures your beliefs. Improper prior yield
unreasonable inferences.

Gaussian prior used for several decades. Is it proper for
classi�cation?

Does more sparsity mean better solutions?

More sparsity: simpler model, but might lack of freedom to
approximate the feature-label mapping.
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Support Vector Machines: Margin Maximisation

The largest margin

SVM maximises the margin of two classes and try to minimise
the generalisation error.

The training points that are nearest to the separating function
are called support vectors. The model is immune to removal of
any non-support-vector data points.
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Support Vector Machines

Formulation

SVM makes predictions based on the function:

f (x ;w) = sign

(
N∑

n=1

ynwnK (x, xn) + b

)

xn are training examples

K (x , xn) is the kernel function

yn ∈ {−1,+1} is the label for xn
N is the total number of training examples

wn is non-negative Lagrange multiplier: wn is either zero or
positive.
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Analysis of Support Vector Machines

Advantages

Good generalization

Sparse solution: some weights wn are 0.

Disadvantages

Non-probabilistic but hard binary decisions.

Kernel parameters and parameter C (control the error
tolerance) need to be tuned by cross validation: time
consuming.
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Relevance Vector Machine

A Bayesian treatment of a generalized linear model

f (x ;w) = σ

(
N∑

n=1

wnφn(x) + b

)
,

where σ(·) is the sigmoid function for probabilistic outputs.
RVM is a Bayesian linear model with sparse prior on weights w

p(wn|αn) = N(wn|0, α−1n ).

where αn is the inverse variance of Gaussian.
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Analysis of RVM

Advantages

probabilistic output

sparser than SVM

Disadvantages

Some training points that belong to positive class (yn = +1)
may have negative weights and vice versa, leading to the
situation that the decision of RVM is based on some
untrustworthy vectors, and thus is sensitive to the kernel
parameter (even with well-selected kernel parameters.)
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Some Discussions on Voting and Learning

In kernel methods, every point makes impacts to the decision
boundary.

In SVM, every point will either �vote� for decision domain by
class label, or do not vote.

In RVM, every point can �vote� for and against decision
domain.

Voting for or/and Against?

�Any voting system permits some expression of disapproval,
but these are necessarily confused with expressions of choice or
approval, leading some to conclude that separating these
expressions is best.� (wikipedia)

Is this the same in machine learning? 22 / 57



Illustration
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Unstable RVM with respect to kernel parameter (Gaussian kernel)
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The used vectors (wi 6= 0) whose weights have opposite signs
are shown circled.

More redundant vectors with small opposite signs might lead
to unstable solutions.
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Unstable RVM with respect to kernel parameter
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Theoretical Analysis (Chen09)

Maximum-a-posterior (MAP) analysis: PCVM with truncated
priors has higher posterior than models with Gaussian priors.

Margin analysis: PCVM with truncated priors has larger
margin than models with Gaussian priors, especially with a
localized basis function.
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Discussions

SVM always assign positive/negative weights to
positive/negative �points�. This principle is implemented in
SVM by enforcing the Lagrange multipliers to be non-negative.

How to combine the advantages of RVM and SVM and discard
the unstable characteristics?
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Probabilistic Classi�cation Vector Machines

Combine the advantages of SVM and RVM

y(x ;w) = σ

(
N∑

n=1

ynwnφn(x) + b

)
,

Left-truncated Gaussian Prior on wn for non-negative wn

p(wn|αn) =

{
2N(wn|0, α−1n ) if wn ≥ 0
0 otherwise

Hyper-parameters: parameter αn.
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Truncated Prior for PCVM
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The mean of truncated Gaussian prior is larger than zero.

It is less sparse than RVM with (hierarchical) student-t prior.

Question: more spareness = better generalization?
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PCVM Formulation

Non-negative Prior

p(w |α) = N(w0|0, α−10 )
N∏

i=1

2N(wi |0, α−1i ) · δ(wi )

where δ(·) is the indicator function 1x≥0(x).

Bernoulli Likelihood

p(t | w) =
N∏

n=1

σtii [1− σi ]1−ti ,

where σn = σ
(∑N

n=0 wnφn(xn)
)
, t = (t1, t2, · · · , tN)T is a vector

of targets, ti = yi+1
2 ∈ {0, 1} is the probabilistic target.
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Derivations

According to Bayesian's theorem, the posterior is:

p(w |t) =
p(t|w)p(w |α)

p(t|α)
.

The integral to calculate posterior p(w |t) and model evidence
p(t|α) =

∫
p(t|w)p(w |α)dw are intractable due to the

truncated prior.
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Solutions

Hidden variables

Expectation Maximization (EM): simple derivations,
simultaneously optimize kernel parameters, but sensitive to
initialization and may converge to local minima (Chen09)

Integral Approximation

Laplace Approximation: deterministic and fast, and the
performance is acceptable (veri�ed by MCMC) (Chen13)

Expectation Propagation (EP): accurate but slow (Chen13)

Markov chain Monte Carlo (MCMC): the most accurate but
very slow (Chen13)
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Case Study using Laplace Approximation

The most probable w , i.e. posterior, can be obtained by
maximizing the following log likelihood

Q = log {p(t|w)p(w |α)} − log p(t|α)

=
N∑

i=1

[ti log σi + (1− ti ) log(1− σi )]− 1

2

N∑

i=0

αiw
2
i

+
N∑

i=1

log δ(wi )− const.
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Posterior of weight vector

Analyzing the �rst/second gradient of the above equation and we
obtain the optimal value

wMAP = A
−1
(

ΦT (t − σ) + k

)

ΣMAP = (ΦT
BΦ + A + D)−1.

where σi = σ
(∑N

n=0 ynwnφn(x i )
)
,

A = diag(α0, α1, · · · , αN),

D = diag(0, d1, · · · , dN) =
diag(0, σ(βw1)(1− σ(βw1))β2, · · · , σ(βwN)(1− σ(βwN))β2)

k = [0, β(1− σ(βw1)), · · · , β(1− σ(βwN))]T is the N + 1
vector, aiming to ensure that weights wi are non-negative.

34 / 57



E�cient PCVM by sequentially maximize model evidence

Model evidence L(α) = P(t|α) can be written as

L(α) = L(α−i ) + l(αi ),

where

L(α−i ): the model evidence with basis function φi deleted.

l(αi ): the contribution of αi to evidence when include φi .

Analyzing each l(αi ) → sequentially maximize model evidence →
incremental PCVM.
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MCMC vs. Laplace Approximation
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Figure : The posteriors of combination weights calculated by MCMC
(40000 sampling points) and Laplace Approximation.
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MCMC, EP and Laplace Approximation
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Figure : The comparisons of Laplace approximation, expectation
propagation and hybrid monte carlo (200,0000 sampling points) in terms
of generalization error and CPU time.

38 / 57



MCMC, EP and Laplace Approximation

Table : Comparisons of MCMC, EP and Laplace approximation on four
data sets.

Methods Cancer Diabetics

error AUC #vec CPUTime error AUC #vec CPUTime

MCMC 26.61 71.94 12 669.1s 23.17 82.86 23 764.1s

EP 26.65 72.53 9 3.2s 23.18 82.89 17 357.2s

Laplace 26.71 72.03 16 0.2s 23.11 83.12 22 1.1s

Methods Heart Thyroid

error AUC #vec CPUTime error AUC #vec CPUTime

MCMC 16.37 90.67 16 707.4s 4.94 98.71 22 913.1s

EP 16.65 90.91 13 254.7s 5.16 98.63 10 61.2s

Laplace 16.65 90.83 15 0.3s 5.02 98.87 21 0.2s
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Synthetic Data Sets
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Synthetic Data Sets
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PCVM can handle predominating linear data.
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Setup for Benchmark Tests

Compared algorithms: PCVM, SVM, relevance vector machine
(RVM) and sparse multinomial logistic regression (SMLR).

Baseline algorithms: linear/quadratic discriminant analysis
(LDA/QDA) and k Nearest Neighbor (kNN).

Parameter optimization by cross validations, including kernel
parameters in SVM, RVM, EPCVM, SMLR.

SMLR stands for sparse multinomial logistic regression
(Krishnapuram05: Sparse Multinomial Logistic Regression: Fast
Algorithms and Generalization Bounds, IEEE TPAMI, 27(6), 2005)
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Summary of Benchmark Data Sets

Data No. Train No. Test Positive % Negative % Dim

Abalone 2089 2088 50.18% 49.82% 8

Banana 2650 2650 44.83% 55.17% 2

Cancer 132 131 29.28% 70.72% 9

Diabetics 384 384 34.90% 65.10% 8

German 500 500 30.00% 70.00% 20

Heart 135 135 44.44% 55.56% 13

Image 1043 1043 56.95% 43.05% 18

Ringnorm 3700 3700 49.51% 50.49% 20

Splice 1496 1495 44.93% 55.07% 60

Thyroid 108 107 30.23% 69.77% 5

Titanic 1101 1100 58.33% 41.67% 3

Twonorm 3700 3700 50.04% 49.96% 20

Waveform 2500 2500 32.94% 67.06% 21
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Benchmark Results
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x-axis: sparsity degree, i.e. % data points used in prediction

y -axis: normalized performance across 13 data sets.

PCVM is less sparse than RVM.

PCVM achieves the best performance with error rate and AUC.
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Scalability
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Figure : Comparison of CPU time and the err rate of fast PCVM, SVM,
SMLR and RVM on Adult data set.
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Analysis

PCVM scales well with the number of training points without
compromise the performance.

RVM and SMLR do not scale well with increased data points.

SVMLight is the fastest algorithm as it was optimised by
sequential minimal optimization algorithm (SMO) and the
optimization for large problems have been implemented.
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Rademacher Complexity Bound

Rademacher complexity measures �richness� of a class of
real-valued functions.

(Meir03) Consider arbitrary scalars g > 0, r > 0. Then, for
δ ∈ (0, 1) with probability at least (1− δ) over draws of training
sets, the following bound holds:

P(yf (x , q) < 0) ≤ Remp[f ,D]+
2

s

√
2g̃(q)

N
+

√
ln logr

r g̃(q)
g + 1

2 ln
1
δ

N
,

where Remp is the empirical loss,

Remp[f ,D] =
1

N

N∑

n=1

ls(ynf (xn, q)), and g̃(q) = r ·max(KL(q||p), g),

where KL(q||p) is the Kullback-Leibler divergence from the
posterior q to the prior p over parameters w .
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KL Divergence between Prior and Posterior

The KL divergence is a non-symmetric measure of the
di�erence between two probability distributions.

The bound is related to Remp[f ,D] and KL(q||p). Given the
same Remp[f ,D], the bound is tight with small KL(q||p).

The KL divergence from normalized truncated posterior
p(w |t) to truncated Gaussian prior p(w |α) is

KL(q||p) =
1

A0

∫ ∞

0

p̃(w |t) ln
p̃(w |t)

p(w |α)
dw − lnA0.

where p̃ stands for un-normalized posterior/prior.

A0: the cumulative distribution function of posterior p(w |t)
when weights are non-negative.
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Kullback-Leibler Divergence Between Prior and Posterior

Adopt the independence assumption on weight vector, then

KL(q||p) =
∑

i ,wi 6=0





1
2

[
αi

α̂i
− 1 + ln

(
α̂i

αi

)
+ αiw

2
i

]

+ (2πα̂i )
−1/2(αi+α̂i )wi

erfcx
(
−wi

√
α̂i/2

)
− ln

(
erfc

(
−wi α̂i

2

))




,

where

erfcx(a) = ea
2

erfc(a).

αi are the initial hyperparameters.

α̂i are the optimised hyperparameters.

Fix the initial hyperparameter to αi = 0.5 (the value used in
the paper), then we obtain
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KL divergence between Truncated Posterior and Gaussian prior
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KL(q||p) is much more sensitive to weights wi than the
optimized posterior hyperparameters α̂i .

Sparseness helps to minimize the KL(q||p) divergence.
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Sparseness and the Bound

g̃(q) = r ·max(KL(q||p), g),

Minimizing KL does not lead to minimal g̃ : KL that is lower
than g does not help to further reduce g̃ .

The generalization bound is to minimize empirical loss term
(needs su�cient (i.e. not too sparse) parameters of the model)
and the sparsity (represented by KL(q||p) and g ).

More sparseness may not be better, e.g. RVM is more sparse
than SVM and PCVM (mean of truncated normal distribution
is not zero)

Adequate sparsity is preferred in sparse Bayesian learning.
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Conclusion

EPCVM makes Bayesian classi�cation more stable with respect
to kernel parameters by pointing at the weakness of standard
Gaussian prior (used for decades).

The solution of EPCVM is fully Bayesian by using the Laplace
approximation and expectation propagation.

EPCVM can incrementally choose basis functions into the
model by maximizing model evidence, which makes EPCVM
computationally more e�cient.

Theoretical analysis for EPCVM and comprehensive empirical
analysis.
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Demo and Thank you!

Many thanks for your attention!
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