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Abstract—Location recommendation becomes increasingly im-
portant in the mobile era. Particularly, how to exploit per-
sonalized geographical preferences determines the quality of
recommended results. A number of efforts have been made on
this task, however, there exists a common limitation called the out-
of-town recommending problem, i.e., those far places can hardly
be recommended. In this paper, we first reveal why modeling the
geographical patterns is difficult with the help of the extreme
value theory. We find that out-of-town distances are heavy-tailed
variables with few observations and extreme values, making it
difficult to use common distributions to describe them. To address
this issue, we propose a new function called volcano function to
model out-of-town distances and personalize it for different users.
Empirical results show that we can learn effective patterns from
limited observations. Finally we extend the volcano function to
a ranking-based collaborative filtering framework, naming it as
volcano network (VolNet). Experimental results show the superior
performance of VolNet, especially the recall is improved from 0.2
to 0.35 in recommending remote venues compared with the state-
of-the-art method GeoMF++.

Index Terms—Location recommendation, Out-of-Town, Ex-
treme Value Theory

I. INTRODUCTION

As the number of GPS built-in devices grows rapidly,
geographical data are widely used and produced in online
services, e.g. the check-in data in Meetup. In these services,
location recommendation plays a vital role because it can
encourage users to explore more places. Nevertheless, it is
difficult to find Point-of-Interests (POIs) among numerous
venues due to the sparsity of user-venue matrix [1], [2]. For
instance, there are more than 105 million venues in Foursquare
until 2019, where users only visited 200 of them in average.
Towards this problem, several methods have proposed to utilize
side information, e.g., geographical coordinates [3], social con-
nections [4] and textual contents [5]. Particularly, approaches
developed on geographical coordinates are attracting more and
more attention because they can be easily applied in various
location recommendation scenarios [6], [7]. Therefore we focus
on utilizing geographical information to improve the quality
of location recommendation.

According to previous research, the cornerstone of this task
is how to better model personalized geographical patterns of
visited places [9]–[11]. A number of efforts have been made
on it, for instance, using power-law distribution to model the
distances between visited venues [3] and detecting geographical
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Fig. 1. The left figure is the recommendation results by one state-of-the-art
method (GeoMF++ [8]), where contour line depicts the probability of being
recommended. The left figure shows the frequency of visited distances of a
user. The detailed settings such as how to find the center of the user are listed
in Sec. 3.

clusters on visited venues [12]. Although empirical results
state the effectiveness of these methods [2], there exists a
common concern, that is, they hardly can recommend out-of-
town places to users [13]. In order to demonstrate this issue,
we evaluate the state-of-the-art method GeoMF++ [8] and plot
the recommended results for a user in Fig. 1. As we can see
from the results, although the user sometimes visit far places,
the model fails to recognize this geographical pattern.

These out-of-town venues, which are far from commonly
visited places, is important in improving the experience of a
location recommender system [14]. For example, a user will be
satisfied if being recommended with a good place for hiking at
the weekend. According to previous researches, users may visit
up to 30% far places in real systems [15]. In order to improve
the quality of recommended venues, several works propose to
use contextual data such as temporal and social information
to recommend out-of-town venues [1], [13], [15], however,
they cannot be generalized to various location recommendation
applications because some datasets do not have that kind of side
information. Until now, there still lacks the work of modeling
geographical patterns of out-of-town venues for better location
recommendation. Therefore in this paper, we aim to answer the
following questions: (1) Why current methods lack the ability
of modeling geographical patterns of out-of-town venues? (2)
How to present a general solution for this problem?

For the first problem, we propose to use extreme value theory
(EVT) to reveal the difficulties. In summary, the challenges are
mainly two-folds. (1) According to EVT, data in real-world
applications often follow heavy-tailed distributions. However,
most distributions that we used are light-tailed, which leads
to the fact that we often underestimate the probability of



Fig. 2. The left figure demonstrates the range of visited distances from
different users. The right figure is the proposed volcano function on the map.

tailed data. For instance, in our problem, the probability of
recommending large distances will be much lower than the
actual visiting frequency, as shown in Fig. 1; (2) Compared
with visited distances around the center, the number of tailed
distances is much smaller, therefore it is hard to model the tailed
distribution with few observations. Considering the difficulties
caused by heavy-tailed data and limited observations, how to
model the geographical patterns of out-of-town venues is still
an open problem.

In this paper, we propose to address this issue in location
recommendation. First we assume that, these out-of-town
venues should have the geographical property of neither close
nor too far. The reason of not too far is that people can hardly
visit those places due to the intolerable traffic cost [16]. Based
on the motivation, we propose a heavy-tailed function called
volcano function to measure the out-of-town probability of a
certain location, whose shape is like a volcano on the map
in Fig. 2. Second, we find that users often have personalized
out-of-town ranges. As a demonstration, we plot the largest
10% visited distances of five users in Fig. 2. Places around
100km may be out-of-town for user 1, however they are too far
to reach for user 5. Therefore we propose to assign each user
with a personalized volcano, where the size and steepness vary
from person to person. Furthermore, we take the clustering
phenomenon into consideration, that is, the visited locations of
users often form several areas [17], [18]. For instance, a user
may have visited several cities. Based on this phenomenon,
we propose to learn multiple personalized volcanoes rather
than a single volcano for each user. With the help of EVT, we
successfully tackle the above problems in modeling out-of-town
distances (heavy-tailed data and limited observations) and learn
effective volcanoes for each user. Finally, as the comprehensive
framework, we propose a novel location recommendation
solution called Volcano Network (VolNet), which can take
out-of-town distances into consideration during the prediction.
In summary, our main contributions are:

• We study out-of-town recommending problem with the EVT
explaining why current location recommendation methods
suffer from this problem. Furthermore, we propose a new
function to model the geographical patterns of out-of-town
venues. With the help of EVT, we successfully tackle the
problem of heavy-tailed data and limited observations. To
our best knowledge, it is the first work to model out-of-town
distances in location recommendation.

• We propose VolNet by integrating the proposed function

into POI recommendation. We evaluate the effectiveness
of VolNet with extensive experiments on three real-world
location recommendation datasets (i.e. Foursquare, Yelp and
Meetup). Empirical results state that our proposed framework
achieves significant improvements compared with the state-
of-the-art methods. For instance, we make 80% relative
improvement on recall.

II. RELATED WORK

In this section we briefly review the related works. Location
recommendation is a crucial task in modern recommendation
system. A number of studies exploit geographical preferences
to improve the recommendation, e.g. [3] assumes that distances
between visited POIs follow the power-law distribution (PD),
and recommends those locations with high probability under
the estimated distribution. [19] extends the model to the cases
with additional temporal information. [18] assumes each user
has several clusters on visited POIs and proposed to use
Multi-center Gaussian Model (MGM) to model these clusters.
[20] extends the PD to Kernel Density Estimator (KDE) with
Gaussian Kernel, where [21] extends the KDE to 2-dimensional
KDE. [2] further improves the performance of KDE [2], [6], [8]
by introducing collaborative filtering technique [22], [23]. There
also exist several works using other kinds of side information
such as social connections [24], [25], tags [26] and temporal
information [27]–[29]. However, they require specific context
information and lack the ability of being extended to other
location recommendation scenarios [9], [10].

Although current methods achieve promising results, they
suffer from the out-of-town recommending problem, where the
recommended venues are usually near the user [13]. Several
works try to recommend out-of-town venues by additional
side information. For example, [15] proposes to use social
connections to find potential remote venues from similar users.
[1] proposes to use text information inside out-of-town venues,
for example, park and beach. [14] proposes to find pattern
inside visiting timestamps of out-of-town venues. However, as
we have discussed above, they strongly rely on the specific
side information and they are not able to be applied in other
location recommendation applications. Recently, [30] proposes
to model out-of-town regions rather than out-of-town venues.
However, there still lacks the work of modeling personalized
geographical preferences on out-of-town venues due to the
sparsity and extreme values.

III. PRELIMINARIES

In this section, we will explain why current methods lack the
ability of modeling out-of-town distances under the perspective
of extreme value theory.

A. Notations

The set of venues is denoted as L with size |L|. For each
venue i ∈ L, its geographical coordinate (i.e., longitude and
latitude) can be described as φi ∈ R2. The set of users is
denoted as U with size |U|. Each user u ∈ U contains a list of
visited POIs Lu with size |Lu|. The POI recommendation task



TABLE I
MATHEMATICAL NOTATIONS

Symbol Size Description
φi R2 Longitude and latitude for venue i
Lu |Lu| Venues visited by user u
L̃uk |L̃uk| Venues in cluster k of user u

duik R Distance between venue i and center of user
u’s cluster k

yuik {0, 1} Label of out-of-town distance
K R Number of clusters
D R Size of latent factors in MF
µuk R2 Center of cluster k of user u
Σuk R2×2 Covariance of cluster k of user u

ρuik R Probability of location i belongs to cluster k
of user u

muk, λuk R Minima and variance of distances in cluster k
of user u (L̃uk)

αuk , βuk ,
suk , buk

R Paramters in volcano function for user u’s
cluster k

γuk, auk R Parameters for fitting tail distribution
Wu, Hi RD Latent vectors in MF
Xu, Yu RK Preference vectors on clusters for user u

Mu RK×K Correlation between Peak and Volcano vector
for user u.

Pui RK Peak vector of user u and venue i, where Puik

is the element of cluster k

Vui RK Volcano vector of user u and venue i, where
Vuik is the element of cluster k

ξ R+ Threshold for filtering far venues from center

ξ1, ξ2 R+
Threshold for generating training samples,
where ξ1 >> ξ2

we focus on is to utilize the observations Lu to recommend
potential POIs for each user u.

B. Calculating Visited Distances

Considering that directly modeling geographical coordinates
is complex, current methods commonly transform the coor-
dinates to distances for further study. We also apply such
technique in this paper. Given a visited venue set Lu by user
u, we suppose there are K clusters inside visited venues,
where this assumption can be easily found in previous works
[18]. For each cluster k, we can write its center as µk ∈ R2,
which represents the geographical coordinate of the cluster.
Meanwhile, we can write the covariance of the cluster as
Σk ∈ R2×2, which represents the range of the cluster. The
center and covariance vary from person to person. For the sake
of simplicity, we omit the subscript u in the rest of this section
. For instance, we simplify µuk to µk. Then we can calculate
the center and variance by minimizing following objective
function:

min
ρ,µ,Σ

∑
i∈Lu

K∑
k=1

ρik(φi − µk)TΣ−1
k (φi − µk), (1)

where ρik ∈ [0, 1] is the probability of location i belonging to
cluster k, and

∑K
k=1 ρik = 1. Several mature algorithms by

iterative optimization can be efficiently applied to solve the
optimization problem above [31], and one of the solution can
be found in the appendix. By optimizing Eq. 13, the clusters
of a user can be characterized by parameter µ and Σ. For
instance in Fig. 3(a), with visited venues of a certain user,
two corresponding clusters can be learned. In addition, due to

the fuzziness of the clustering algorithm brought by parameter
ρ, it is reasonable to assume each user has the same cluster
size C [17], [18], [32]. Based on the above process, given
location i ∈ Lu, the distance between i and cluster k of can
be calculated as dik = (φi − µk)TΣ−1

k (φi − µk).

C. Why Modeling Out-of-Town Distances is Difficult?

We continue to study the pattern inside distances for each
cluster. For instance, why it is difficult to model out-of-town
distances. Before that, we should remove venues in the other
clusters. For cluster k, we form a new venue set as,

L̃uk = {i|i ∈ Lu and ρik > ξ}, (2)

where ξ is a preset small threshold. Different clusters may
share the same out-of-town venues, for example in Fig. 3(a),
venues with latitudes in [35.6, 35.65] are in both cluster 1 and 2.
Then we can study the distribution of visited distances in each
cluster. Specifically, we fit them with exponential distribution,
which is widely used in modeling visited distances with the
following cumulative density function (c.d.f) [3]:

1− F (d) = e
d−mk
λk , (3)

where mk ∈ R and λk > 0 are mean and variance of the
distances respectively for cluster k. The inference of them can
be found in the appendix. As we can see from the results in Fig.
3(b), although the distribution fits venues around the center
well, the probability is lower than the empirical frequency in
remote places. Therefore these places are easily be neglected
during the prediction.

From the view of extreme value theory, this failure comes
from the fact that commonly used distributions such as
Gaussian, Exponential and Poisson are light-tailed distributions.
However, data in most real-world applications usually follows
heavy-tailed distributions [33]. The advantage of light-tailed
distributions is that they can model centered data well with
the help of the law of large numbers. However, it is hard
to apply them on heavy-tailed data mainly because [33]:
(1) the observations of tailed data is not sufficient enough;
(2) heavy-tailed data often have unbounded expectation and
momentum, which makes it difficult to infer parameters of
the distribution. Considering the above challenges, current
location recommendation methods use light-tailed distributions
to model visited distances, which makes them unable to model
out-of-town distances.

IV. MODELING OUT-OF-TOWN DISTANCES

In this section, we will present how to address the issues of
limited observations and extreme values in modeling out-of-
town distances.

A. Volcano Function

In order to tackle the above issues, we propose to utilize prior
knowledge. First, as we have discussed above, those out-of-
town distances have the geographical property of neither close
nor too far. Therefore we can use both geographical property
and heavy-tailed property to model out-of-town distances.



(a) Heat map for clustering on a user, where contour
line is the probability of belonging to a cluster.

(b) Distribution of distances in each cluster,
where the histogram is the empirical distribution.

(c) The shape of volcano function for
each cluster.

Fig. 3. Procedures of inferring the volcano function for a user, where K = 2.

Specifically, we propose a heavy-tailed function to predict
whether a distance is out-of-town or not for a user. Formally,
for cluster k of the user:

Vk(d) =
αkβk
sk

[ω(d− bk)

sk

]
exp
[
−
(ω(d− bk)

sk

)−αk] (4)

where ω(d) = log(1+ed) denotes the softplus function, βk ∈ R
is the zoom parameter to normalize vk(d) into [0, 1]. αk ∈ R
is the shape parameter which controls the shapes such as the
width of the curve. sk ∈ R and bk ∈ R are the scale and bias
parameters respectively. This function takes inspiration from
Fréchet distribution, which is widely used in fitting heavy-
tailed data [34]. As shown in Fig. 3(c), the curve starts sharply
and falls slowly. If we remap the distances to geographical
coordinates, this function looks like a volcano around the
cluster. Therefore we call this function as volcano function.

Due to the clustering phenomenon, we can assign multiple
personalized volcanoes for each user, whose shape could vary
from person to person. For the sake of simplicity, we also omit
the subscript u. Based on volcano functions, we can predict out-
of-town probability of a distance to improve the performance
on recommending remote venues. Then the remaining problem
is, how to learn the proposed volcano functions for each user?

B. Inference for Volcano Function

As for the inference, we propose to sample pairs of (dik, yik)
to train the proposed function, where dik is the distance and
yik ∈ {0, 1} is the indicator whether this distance is out-
of-town or not. Based on these samples, we can use the
classification loss function to train the function,

`(αk, βk, sk, bk) =
∑
i

− yik log Vk(dik) (5)

− (1− yik) log(1− Vk(dik))

However, there exists a major concern: how to label dik in
the dataset for learning the function? For this problem, we
propose to use the following sampling strategy:

• Nearby Places (yik = 0) : If the probability from the
exponential distribution of a distance is larger than an
extremely large threshold ξ1 (e.g. 0.7), which means it is
near the center of a cluster. We label it as nearby place.

• Far Places (yik = 0) : If the probability of a distance from
the exponential distribution is smaller than an extremely
small threshold ξ2 (e.g. 1e− 2), which means it is too far
from the user. We label it as a far place.

• Out-of-Town Places (yik = 1) : For distances with
probability between ξ2 and ξ1, if the probability of the
distance from exponential distribution is lower than the true
tail distribution, we label it as an out-of-town place.

Here we use the facts that visited distances are heavy-tailed
data and a light-tailed distribution is unable to model them.
Then the problem is how to represent the true tail distribution.
In order to address this issue, we introduce extreme value theory
again, where the approximated cumulative density function can
be written as,

1− F (d) ≈ (1− F (tk))
[
1−Hγk

(d− tk
ηk

)]
, d > tk, (6)

where ηk > 0, tk is a large threshold and Hγ is defined as,

Hγ(d) = −(1 + γk · d)−1/γk , (7)

where γk is called the extreme value index. For the parameters
in the tail distribution, we propose to conduct the estimation
as follows. First we define the threshold tk as the T -largest
distance in the cluster k. As for the extreme value index γk,
we use Pickands Estimator [35] to do the parameter inference.
For the scale parameter ηk, we estimate it with the methods
proposed by [33]. The detailed inference is listed in the
appendix. Based on the fitted tail distribution, we can sample
some dik from L̃uk and label it as yik for training the volcano
function.



C. Regularized Learning Strategy

However, we encounter a new problem during the inference,
that is, the optimization hardly converges. We find the main
reason is that the expectation and momentum of the function
does not exists due to the heavy tail. Therefore we will
encounter gradients explosion or vanish during the inference.
In order to learn the parameters effectively, we propose to add
several penalty terms on the classification loss to ensure the
convergence. Specifically, we consider the following statistics
of volcano function:

• Although the expectation of the function may not exist, the
median of the gate however have a closed-form formula as
(ln 2)

− 1
αk . By denoting the median of positive samples is

ψuk, then we propose the first regularization term

`1(αk) = ‖(ln 2)
− 1
αk − ψk‖2, (8)

where the approximation ω(x) ≈ x is applied.
• We also add a penalty on sk by regularizing the mode of

the function (i.e., the value for which the function takes its
maxima) to the median:

`2(αk, sk, bk) = ‖bk + sk

( αk
1 + αk

) 1
αk − ψk‖2

• In order to normalize the output from volcano function into
range [0, 1], we regularize the gate’s maximum to 1 by

`3(αk, βk) = ‖αk + 1

sk

(αk + 1

αk

) 1
αk e
−αk+1

αk − 1

βk
‖2

• Finally we regularize bias b by `4(bk) = ‖bk‖2

By adding these penalty terms to the original binary cross-
entropy loss, we are therefore able to infer the parameters by
gradient-based methods such as Adam [36]. After this stage,
we have finally finished the learning of volcano function. The
whole algorithm is listed in Alg. 1.

D. Summary

As we have discussed above, current methods lack the ability
of modeling out-of-town distances because observations follow
heavy-tailed distribution. In this section, we propose to use prior
information. Specifically, we consider the factors of neither
close nor too far property and heavy-tailed data, and propose a
new function called volcano function. Furthermore, we present a
regularized learning strategy to infer parameters in the function.
As is depicted in Fig. 3, it is easy to see that the function can
indeed measure the out-of-town distances well. Interestingly,
our proposed method also captures the differences between
different clusters. For instance, the user has a tendency to visit
more remote venues in cluster 1 than those in cluster 2, which
may correspond to the real world scenario where, e.g., cluster
1 may have more convenient transportation than cluster 2 to
encourage user’s exploration. Therefore the volcano function
for cluster 1 is wider than cluster 2. In summary, we tackle
two aforementioned challenges by:

Algorithm 1 Inference of volcano function for a user.

1: Input: Visited Locations Lu by user u.
2: Initialize: Parameters αk, βk, sk, bk
3: Infer µk,Σk, ρik by detecting clusters (Eq. 13)
4: for each cluster k do
5: Form filtered POIs L̃uk by ρik, ξ (Eq. 2)
6: Fit exponential distribution with parameter λk,mk

7: Set tk as the T -largest distance in L̃uk
8: Infer γk by Pickands Estimator
9: Infer ηk by the method in [33]

10: Establish tail distribution with parameters tk, γk, ηk
11: Sample (dik, yik) from L̃uk (Sec. IV-B)
12: Learn αk, βk, sk, bk in volcano function by:

min
αk,βk,sk,bk

`(αk, βk, sk, bk) + `1(αk) (9)

+`2(αk, sk, bk) + `3(αk, βk) + `4(bk)

13: end for

• Heavy-tailed Data: We propose a novel volcano function to
address this issue. Compared with previous light-tailed distri-
butions, our function will not under-estimate the probability
of out-of-town distances.

• Limited Observations: We introduce the prior knowledge
to this problem, for example, sampling pairs (dik, yik) and
the proposed regularized learning. As we can see from the
results, we can model out-of-town distances effectively with
only few samples.

V. RECOMMENDATION MODEL

As we can see from the results, we can learn effective
personalized volcanoes for each user. In this section we will
present how to incorporate learned volcanoes into location
recommendation.

A. Volcano Network

We further implement our proposed function as a novel
network structure called Volcano Network (VolNet), as is shown
in Fig. 4. Given a user u and a venue i, the network first
outputs two vectors: peak vector Pui ∈ RK and volcano vector
Vui ∈ RK . The volcano vector describes whether the venue is
out-of-town for this user or not, where peak vector measures
how close is the venue to the user. Overally, our proposed
VolNet consists of five parts:
• Distance Gate: This gate transforms the representation of

longitude and latitude φi to duik, which is the distance
between the venues and the learned clusters, as is defined
in Eq. ??. The pre-trained parameters in this gate are the
center of each cluster µuk and the covariance of each cluster
Σuk in Eq. 13.

• Peak Function: This gate is the function to calculate peak
vector Pui. For cluster k,

Puik = exp(−(duik −muk)/λuk), (10)



Fig. 4. The overview of volcano network. Given a pair of user u and location i, VolNet will output the predicting value rui.

where muk and λuk are parameters in the estimated expo-
nential distribution.

• Volcano Function: This gate calculates the volcano vector
Vui by proposed function in Eq. 4: Vuik = Vuk(duik), where
αuk, βuk, suk and buk are the leanred parameters of the
volcano function.

• Tensor Layer: This layer calculates the content-based rating
between user u and location i by,

r̂ui = XT
u Pui + Y Tu Vui + PTuiMuVui, (11)

where Xu, Yu ∈ RK are the weight on peak vector and
volcano vector respectively, which determines the personal-
ized preference on whether to choose distant venues or not.
The purpose of introducing Mu ∈ RK×K here is that this
form helps find latent correlations between the peak vector
and volcano vector [37]. In our framework, it describes the
personalized correlation between visiting nearby places and
visiting out-of-town venues.

• CF Layer: This layer calculates the recommending rating
of location i by rui = r̂ui + WT

u Hi, where Wu, Hi ∈ RD
are latent factors in collaborative filtering.

B. Inference

Considering that the peak vector Pui and the volcano vector
Vui are calculated from the pre-trained volcano functions,
the rest of the parameters can be inferred by gradient-based
methods such as Adam [36] under the following ranking loss
[6],

max
W,H,X,Y,M

∑
u∈U

∑
i∈Lu,i′ /∈Lu

σ(rui − rui′), (12)

where σ(x) = 1/(1 + e−x) is the sigmoid function. The goal
is to maximize the rating of visited venues compared with
the unvisited. We also deliver a concise analysis on the time
complexity of our model. The whole training comprises the
following stages, that is, for each user u,
• µ,Σ: We use fuzzy c-means algorithm for the optimization,

whose complexity is O(|Lu|K2).
• m,λ: They are inferred by doing statistics on the original

data, whose complexity is linearity O(|Lu|)

TABLE II
DATASETS DESCRIPTION.

Foursquare Yelp Meetup
Users 48,943 2,293 30,886
POIs 332,971 30,886 18,994

Check-ins 1,065,553 573,703 860,888
Max Longitude −70.01◦ 139.91◦ −3.11◦

Min Longitude −124.65◦ 139.47◦ −115.37◦

Max Latitude 48.99◦ 35.86◦ 55.98◦

Min Latitude 25.12◦ 35.51◦ 32.87◦

• Volcano function: The complexity of fitting tail distribution
is O(|Lu|T ). Meanwhile, the sampling and the training
complexity is O(|Lu|G), where G is the sampling size for
training volcano functions.

• CF model: The complexity is O(|Lu|(D +K2)).
Therefore for each user, the total time complexity is
O(|Lu|(K2 +G+D+T )), which is the constant times to the
size of visited POIs.

VI. EMPIRICAL RESULTS

In this section we report our empirical results mainly from
two aspects, accuracy and serendipity in POI recommendation.
In particular, the research questions are:
• RQ1: Could we enhance the performance of location

recommendation compared with the state-of-the-art methods?
• RQ2: Is the improvement caused by our modeling on out-

of-town venues?
• RQ3: What is the influence of hyper-parameters?

A. Experimental Settings

1) Dataset & Metrics: We choose three standard check-in
datasets of different size and spatial range: Foursquare1, Yelp2

and Meetup3. Their statistics are listed in Table II. By con-
ducting 10-fold cross validation in each experiment, we report
the averaged results with corresponding p-values calculated
by paired t-test. For the evaluation, we use Precision@N ,
Recall@N , F1@N and Area Under the ROC curve (AUC) as
measurement. We also validate the results under different N .

1https://foursquare.com/
2https://www.yelp.com/
3https://www.meetup.com/



TABLE III
PERFORMANCE IN TERMS OF PRECISION@N, RECALL@N AND F1@N AMONG VARIOUS APPROACHES ON DIVERSE DATASETS, WHERE THE BEST RESULTS
ARE HIGHLIGHTED IN BOLD. * DENOTES A SIGNIFICANT DIFFERENCE COMPARED TO THE BEST RESULT, ACCORDING TO THE PAIRED T-TEST FOR p < 0.05.

N Model Foursquare Yelp Meetup
Precision@N Recall@N F1@N Precision@N Recall@N F1@N Precision@N Recall@N F1@N

3

NMF 0.2840* 0.0280* 0.0510* 0.3218* 0.0026* 0.0052* 0.2530* 0.0897* 0.1324*
MGM 0.2980* 0.0587* 0.0981* 0.3720* 0.0152* 0.0272* 0.3415* 0.1020* 0.1570*

GeoMF++ 0.3389 0.1803* 0.2354* 0.4662 0.0312* 0.0584* 0.3899* 0.1425* 0.2087*
GeoCNTN 0.3422 0.1699* 0.2271* 0.4425 0.0479* 0.0864* 0.3715* 0.1209* 0.1824*

VolNet 0.3450 0.2960 0.3186 0.4378* 0.1712 0.2462 0.4190 0.2576 0.3190

8

NMF 0.2573* 0.1573* 0.1952* 0.3184* 0.0209* 0.0393* 0.2452* 0.1274* 0.1677*
MGM 0.2667* 0.2217* 0.2421* 0.3538* 0.0592* 0.1014* 0.3231* 0.1357* 0.1912*

GeoMF++ 0.2877* 0.3120* 0.2994* 0.4380 0.0821* 0.1383* 0.3561* 0.1839* 0.2425*
GeoCNTN 0.3020* 0.2977* 0.2998* 0.4295 0.1028* 0.1659* 0.3428* 0.1637* 0.2216*

VolNet 0.3508 0.3712 0.3607 0.4250 0.2275 0.2963 0.4033 0.2919 0.3386

15

NMF 0.1980* 0.3022* 0.2392* 0.2681* 0.1419* 0.1856* 0.2387* 0.2178* 0.2278*
MGM 0.2180* 0.3793* 0.2769* 0.2960* 0.1528* 0.2016* 0.2850* 0.2324* 0.2560*

GeoMF++ 0.2392* 0.4113* 0.3025* 0.3762 0.2089* 0.2686* 0.3231* 0.2466* 0.2797*
GeoCNTN 0.2415 0.3824* 0.2960* 0.3718 0.1997* 0.2598* 0.3081* 0.2502* 0.2761*

VolNet 0.2582 0.4391 0.3252 0.3669 0.3103 0.3362 0.3863 0.3497 0.3671

2) Baselines: We compare our proposed VolNet with the
following state-of-the-art models for POI recommendation.
• NMF: Non-Negative Matrix Factorization (NMF) [38], which

is an effective collaborative filtering model in POI recom-
mendation [2], [20]. NMF works by predicting user-POI
matrix directly without using any geographical information.

• MGM: Multi-center Gaussian Model [18], which combines
matrix factorization with probability of a POI’s belonging
to pre-trained user’s clusters.

• GeoMF++: Geographical Matrix Factorization [2], which
combines non-parametric kernel density estimator of user’s
visited geographical locations into matrix factorization and
is able to model distant locations compared with MGM. We
use GeoMF++ [8] as baseline, which is the improved version
of GeoMF.

• GeoCNTN: Geographical Convolutional Neural Tensor Net-
work (GeoCNTN) [7] proposes to use a hybrid network
structure to model both global and local views of visited
locations for entities in LBSN. In our experiments, we utilize
the global view only because each venue simply occupies
one location.
3) Other details: All the latent factor models have the same

dimension of embedding as 20. The learning rate for Adam
optimizer is set as 0.001, the parameters are initialized by
Gaussian initializer with mean 0 and standard deviation 0.01,
and all the regularization coefficients are set as 0.1.The cluster
number K = 5, and we also validate influence of different
clusters. For the other hyper-parameters, we use the validation
results to determine the best value, for instance, T = 10 in
learning heavy-tailed distribution, and G = 40, ξ = 0.5, ξ1 =
0.8 and ξ2 = 1e− 3 in learning the volcano function.

B. Experimental Results

For RQ1, we compare the accuracy of our model with
baselines (Table III). First, we notice geographical informa-
tion is indeed important in POI recommendation from the
comparison between NMF and other models. Especially in
Yelp, the recall of NMF is close to 0 when recommending
POIs. The comparison between MGM and GeoMF++ reassures

TABLE IV
AUC RESULTS FOR POI RECOMMENDATION.

Foursquare Yelp Meetup
NMF 0.7868* 0.6369* 0.7827*
MGM 0.8273* 0.7600* 0.8309*

GeoMF++ 0.8326* 0.7842* 0.8330*
GeoCNTN 0.8412* 0.7795* 0.8219*

VolNet 0.8742 0.8425 0.8721

our consideration that remote locations matter, e.g. the recall
of GeoMF++ improves by about 10% compared with MGM
on Foursquare dataset. Although such an improvement from
GeoMF++ and GeoCNTN are observed compared with MGM,
it is still not satisfying. As a strong empirical validation of
our proposed VolNet, its performance is observed to be over
the best baseline GeoMF++ by 14.6% in recall metric on
Foursquare and by 20% in F1 score on Yelp. In addition, our
model outperforms all other baselines in F1 score, which further
validate the improved accuracy of VolNet. We also validate
the effectiveness of the POI recommendations in AUC metric,
as shown in Table IV. The results are similar to F1-score. For
example, the results of MGM, GeoMF++ and GeoCNTN are
observed to be much better than NMF, while all of them are
poorer than our model. Especially in Yelp dataset, our model
significantly outperforms the best baseline by 8.9% in AUC.

As we can see from the previous results, we largely improve
the recall, which means that we can find more potential POIs.
Then the problem is, whether the improvement is caused by
our modeling on out-of-town venues or not. In order to validate
this, we pay attention to recommendation on places that are far
from users. Specifically, we use Eq. 3 to filter close venues for
each user to form a subset of the test set. According to previous
researches that users often visit 30% far places [15], we keep
30% venues with the above approach. Due to the lack of space
and the fact that the performance of GeoCNTN is similar to
GeoMF++, we only plot GeoMF++ here for demonstration. As
we can see from the results, VolNet largely outperforms all the
baselines in recall on each dataset, which proves that VolNet
indeed recommends far places to improve the performance. On
the other side, our methods also outperforms all baselines in
precision, which proves that we can correctly measure whether



Fig. 5. Performance of models in recommending far venues, measured by Precision@N and Recall@N .

Fig. 6. Experimental results for investigating the influence of number of
volcano. The results of Foursquare are reported on the top two figures, where
Meetup’s results are on the bottom.

the place is too far for the user to reach.
Noticeably, the spatial range of the dataset also influences

the accuracy to some degree. In large datasets, the visited
venues are more centered for each user on the huge map. On
the other side, venues in small datasets appear to be more
scattered such as Yelp, which leads to the fact that visited
distances are more heavy-tailed. As a consequence, it is much
harder for recommendation models to predict correct remote
POIs, e.g., the corresponding recall value is much smaller than
those in the other datasets. Considering that VolNet tries to
predict venues with out-of-town distances, the recall is much
larger than all the baselines. For instance, we improve the recall
from 0.2 to 0.31 when N = 15. Besides, although GeoCNTN
utilizes deep neural network to extract geographical patterns
from visited data, the performance of GeoCNTN is still similar
to GeoMF++.

For RQ3, as is mentioned, we set the number of clusters as
5 for all the datasets. We expect a different number of clusters
may probably influence the performance of recommendations.
We validate this hypothesis with results presented in Fig. 6.
We set the range of K from 2 to 7 on different datasets and
compare the result with the best baseline GeoMF++ (in dash
line). As we can see, the curves on change of performance

roughly achieve its optimum around K = 5, with the exact
optimal setting of K varying on different datasets slightly.
For instance, as users in Yelp dataset visit more locations in
average, the optimal K was observed to be 6, while in Meetup
dataset the optimal value for K was around 4. Furthermore,
the number of volcanoes is observed to have a larger influence
on the precision metric than that on recall. We infer the reason
mainly as, although more volcanoes can help user find more
out-of-town venues, the locations near the cluster center would
otherwise be less recommended. Therefore there is a trade-off
between nearby and out-of-town places.

VII. CONCLUSION

In this paper, we focus on modeling personalized geograph-
ical preferences on out-of-town venues and propose a novel
framework called Volcano Network (VolNet). Specifically we
assume that those out-of-town venues should be neither too
close or too far, and propose a new function called volcano
function to model the personalized out-of-town distances.
According to the empirical results, VolNet is validated to
noticeably improve recall compared with the state-of-the-art
methods. Indeed, there are many potential directions based
on our work. For example, it is promising to utilize 2-
dimensional geographical patterns rather than distances to study
this problem. Furthermore, we will devise more functions for
modeling out-of-town distances and compare the difference
with our current choice. Finally, it would be interesting to carry
out spatial behavior analysis through the lens of interpretable
features obtained by VolNet.
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APPENDIX

A. Fitting Exponential Distribution

At the first stage we use fuzzy C-Means [32] to find clusters
of a user and train µ,Σ, which has been previously applied
in LBSN tasks (e.g. [7]). The optimization objective of fuzzy
CMeans is formulated as,

min
pk,µk,Σk

∑
i∈Lu

K∑
k=1

ρεik · dik, s.t.
K∑
k=1

ρik = 1 (13)

where dik = (φi − µk)TΣ−1
k (φi − µk), ρik represents the

probability of location i belonging to cluster k, with ε ∈
(1,+∞] the factor of fuzziness. Several mature algorithms by
iterative optimization can be efficiently applied to solve the
optimization problem above [31]. Here we choose the method
described in [39], with one iterative step in their algorithm as
follows.

µk =
[ ∑
i∈Lu

ρεik

]−1∑
i

[
ρik
]ε
φi

ρik =

[
K∑
j=1

[ (φi − µk)TΣ−1
k (φi − µk)

(φi − µj)TΣ−1
j (φi − µj)

] 1
ε−1

]−1

(14)

Λk =

[
K∑
j=1

∑
i∈Lu

ρεij

]−1 K∑
j=1

∑
i∈Lu

ρεij(φi − µk)(φi − µk)T

, where | · | is the determinant of a matrix and Σk = |Λk|
1
2 Λ−1

k

Based on pre-trained µk,Σk and the filtered cluster L̃uk,
we further infer parameters in the exponential distribution, i.e.
mk, λk. Considering that mk is the locale parameter and λk
is the scale parameter, we propose to maximize the following
exponential likelihood, where distances from locations in L̃uk
to the cluster center serve as observations. Formally, it is

max
mk,λk

K∑
k=1

∑
i∈L̃uk

1

λk
exp
[
− dik −mk

λk

]
(15)

, which can be easily solved with standard gradient descent
algorithms.

B. Fitting Tail Distribution

As we have discussed above, common distributions such as
Gaussian, Poisson and Exponential are light-tailed distributions
[40]. On the other side, most data in real world applications
such as climate data follow heavy-tailed distribution [41],
[42], which have infinity momentum. As the formal definition,
suppose variables x > 0, if its cumulative density function
(c.d.f) F satisfies [43]

∫∞
0
etxdF (x) = ∞ ∀t > 0, then we

call the distribution of x is a heavy-tailed distribution. In order

to model the tail distribution of these data, extreme value
theory propose to study the maximum of the observations.
Generally speaking, suppose n random variables X1, . . . , Xn

are i.i.d sampled from an arbitrary distribution F (x), then the
distribution of the maximum should be 0:

lim
n→∞

P (max(X1, · · · , Xn) ≤ x) = lim
n→∞

Fn(x) = 0 (16)

However, previous works find that, if we conduct a linear
transformation on Mn = max(x1, · · · , xn), the distribution of
the maximum will not degenerate:

Theorem 1 ( [44], [45]). If there exists sequences
(an)n∈Z+ , (δn)n∈Z+ such that ∀n ∈ Z+, an > 0 and

lim
n→∞

P
(Mn − δn

an
≤ x

)
= G(x) 6= 0 (17)

Then the class of G(x) must be of the following form

Gγ(x) =

{
exp
[
− (1 + γx)−1/γ

]
, 1 + γx > 0, γ 6= 0

exp
[
− e−x

]
, γ = 0

(18)

, where γ is called extreme value index. Besides, there exists
a positive function a such that

lim
t→x∗

P
(X − t
a(t)

> x|X > t
)

= Hγ(x) (19)

, where x∗ = sup{x : F (x) < 1} and Hγ(x) = logG(x).

In the theorem above, Gγ(x) is conventionally called the
class of extreme distributions, which describes the limiting
probability of maximum of parent distribution F (x). In
consideration of the correlation between parent distribution
F (x) and limiting distribution Gγ(x) [45], this theorem can
be regarded as the law of large numbers for maximum to some
extent [46]. In this paper, we propose to use this theorem to
approximate the tail distribution:

1− F (d) ≈ (1− F (tk))
[
1−Hγk

(d− tk
ηk

)]
, d > tk (20)

Then for each cluster k, we do inference on parameters as
follows:
• Threshold: We choose the threshold tk = d

(T )
k , where

d
(T )
k represents the T -largest distance in cluster k. Thus the

probability of 1− F (tk) can be approximated as T/|Luk|
• Extreme Value Index: We use the Pickands Estimator to

estimate γk, which is a mature algorithm for estimating γk
and is guaranteed to converge [35]:

γk =
1

ln 2
log

d
(T )
k − d(2T )

k

d
(2T )
k − d(4T )

k

(21)

• Scale Parameter: We estimate the term ak by methods
proposed by [33]:

ak = 1
2d

(T )
k Θk

(
1− Θ2

k

Θ̂k

)−1

Θk =
1

T

T−1∑
τ=0

log d
(τ)
k − log d

(T )
k

Θ̂k =
1

T

T−1∑
τ=0

[
log d

(τ)
k − log d

(T )
k

]2
(22)



REFERENCES

[1] W. Wang, H. Yin, L. Chen, Y. Sun, S. Sadiq, and X. Zhou, “Geo-
sage: A geographical sparse additive generative model for spatial item
recommendation,” in KDD, 2015.

[2] D. Lian, C. Zhao, X. Xie, G. Sun, E. Chen, and Y. Rui, “Geomf: joint
geographical modeling and matrix factorization for point-of-interest
recommendation,” in SIGKDD, 2014.

[3] M. Ye, P. Yin, W. C. Lee, and D. L. Lee, “Exploiting geographical
influence for collaborative point-of-interest recommendation,” pp. 325–
334, 2011.

[4] J.-D. Zhang and C.-Y. Chow, “Geosoca: Exploiting geographical, social
and categorical correlations for point-of-interest recommendations,” in
SIGIR, 2015, pp. 443–452.

[5] M. Aliannejadi and F. Crestani, “Personalized context-aware point of
interest recommendation,” ACM Trans. Inf. Syst., vol. 36, no. 4, pp. 45:1–
45:28, Oct. 2018. [Online]. Available: http://doi.acm.org/10.1145/3231933

[6] X. Li, G. Cong, X. L. Li, T. A. N. Pham, and S. Krishnaswamy, “Rank-
geofm:a ranking based geographical factorization method for point of
interest recommendation,” 2015, pp. 433–442.

[7] D. Ding, M. Zhang, X. Pan, D. Wu, and P. Pu, “Geographical feature
extraction for entities in location-based social networks,” in WWW, 2018.

[8] D. Lian, K. Zheng, Y. Ge, L. Cao, E. Chen, and X. Xie, “Geomf++:
Scalable location recommendation via joint geographical modeling and
matrix factorization,” ACM Trans. Inf. Syst., vol. 36, no. 3, pp. 33:1–33:29,
Mar. 2018. [Online]. Available: http://doi.acm.org/10.1145/3182166

[9] J. Bao, Y. Zheng, D. Wilkie, and M. Mokbel, “Recommendations in
location-based social networks: a survey,” GeoInformatica, vol. 19, no. 3,
pp. 525–565, 2015.

[10] Y. Yu and X. Chen, “A survey of point-of-interest recommendation in
location-based social networks,” in Workshops at the AAAI 2015.

[11] W. R. Tobler, “A computer movie simulating urban growth in the detroit
region,” Economic Geography, vol. 46, no. sup1, pp. 234–240, 1970.

[12] C. Cheng, H. Yang, I. King, and M. R. Lyu, “Fused matrix factorization
with geographical and social influence in location-based social networks,”
2012.

[13] G. Ference, M. Ye, and W.-C. Lee, “Location recommendation for out-of-
town users in location-based social networks,” in Proceedings of the 22nd
ACM international conference on Information & Knowledge Management.
ACM, 2013, pp. 721–726.

[14] S. Khoshahval, M. Farnaghi, M. Taleai, and A. Mansourian, A Per-
sonalized Location-Based and Serendipity-Oriented Point of Interest
Recommender Assistant Based on Behavioral Patterns, 03 2018.

[15] H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen, “Lcars:a location-content-
aware recommender system,” in SIGKDD, 2013.

[16] D. T. Ory and P. L. Mokhtarian, “When is getting there half the fun?
modeling the liking for travel,” Transportation Research Part A: Policy
and Practice, vol. 39, no. 2-3, pp. 97–123, 2005.

[17] B. Liu, H. Xiong, S. Papadimitriou, Y. Fu, and Z. Yao, “A general geo-
graphical probabilistic factor model for point of interest recommendation,”
IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 5,
pp. 1167–1179, 2015.

[18] C. Cheng, H. Yang, I. King, and M. R. Lyu, “Fused matrix factorization
with geographical and social influence in location-based social networks,”
AAAI Conference on Artificial Intelligence, 2012.

[19] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann, “Time-aware
point-of-interest recommendation,” in SIGIR, 2013.

[20] J.-D. Zhang, C.-Y. Chow, and Y. Li, “igeorec: A personalized and efficient
geographical location recommendation framework,” IEEE Transactions
on Services Computing, vol. 8, no. 5, pp. 701–714, 2015.

[21] J.-D. Zhang and C.-Y. Chow, “Core: Exploiting the personalized influence
of two-dimensional geographic coordinates for location recommenda-
tions,” Information Sciences, vol. 293, pp. 163–181, 2015.

[22] T. Horozov, N. Narasimhan, and V. Vasudevan, “Using location for person-
alized poi recommendations in mobile environments,” Proc.int.symp.on
Applications and the Internet, pp. 124–129, 2006.

[23] M. Ye, P. Yin, and W. C. Lee, “Location recommendation for location-
based social networks,” in ACM Sigspatial International Symposium on
Advances in Geographic Information Systems, Acm-Gis 2010, November
3-5, 2010, San Jose, Ca, Usa, Proceedings, 2010, pp. 458–461.

[24] S. Scellato, A. Noulas, and C. Mascolo, “Exploiting place features in
link prediction on location-based social networks,” in Proceedings of the
17th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2011, pp. 1046–1054.

[25] Y. Liu, W. Wei, A. Sun, and C. Miao, “Exploiting geographical neigh-
borhood characteristics for location recommendation,” in Proceedings of
the 23rd ACM International Conference on Conference on Information
and Knowledge Management. ACM, 2014, pp. 739–748.

[26] N. Zheng, Q. Li, S. Liao, and L. Zhang, “Flickr group recommendation
based on tensor decomposition,” in Proceedings of the 33rd international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 2010, pp. 737–738.

[27] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user
movement in location-based social networks,” in SIGKDD. ACM, 2011.

[28] X. Li, M. Jiang, H. Hong, and L. Liao, “A time-aware personalized
point-of-interest recommendation via high-order tensor factorization,”
ACM Transactions on Information Systems (TOIS), vol. 35, no. 4, p. 31,
2017.

[29] J. Manotumruksa, C. Macdonald, and I. Ounis, “A contextual attention
recurrent architecture for context-aware venue recommendation,” in The
41st International ACM SIGIR Conference on Research & Development
in Information Retrieval. ACM, 2018, pp. 555–564.

[30] T.-A. N. Pham, X. Li, and G. Cong, “A general model for out-of-
town region recommendation,” in Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2017, pp. 401–410.

[31] P. Wang, “Pattern recognition with fuzzy objective function algorithms
(james c. bezdek),” Siam Review, vol. 25, no. 3, pp. 442–442, 1983.

[32] J. C. Dunn, “A fuzzy relative of the isodata process and its use in
detecting compact well-separated clusters,” 1973.

[33] L. D. Haan and A. Ferreira, “Extreme value theory: an introduction,”
Series in Operations Research and Financial Engineering, vol. 60, no. 1,
pp. 1–20, 2006.

[34] L. De Haan and A. Ferreira, Extreme value theory: an introduction.
Springer Science & Business Media, 2007.

[35] J. P. Iii, “Statistical inference using extreme order statistics,” Annals of
Statistics, vol. 3, no. 1, pp. 119–131, 1975.

[36] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[37] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with neural
tensor networks for knowledge base completion,” in NIPS, 2013.

[38] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in NIPS, 2001.

[39] D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy co-
variance matrix,” in Decision and Control including the 17th Symposium
on Adaptive Processes, 1978 IEEE Conference on. IEEE, 1979, pp.
761–766.

[40] L. von Bortkiewicz, Variationsbreite und mittlerer Fehler. Berliner
Mathematische Gesellschaft, 1921.

[41] T. Okubo and N. Narita, “On the distribution of extreme winds expected
in japan,” National Bureau of Standards Special Publication, vol. 560,
p. 1, 1980.

[42] J. A. Tawn, “Estimating probabilities of extreme sea-levels,” Journal of
the Royal Statistical Society, vol. 41, no. 1, pp. 77–93, 1992.

[43] T. Rolski, H. Schmidli, V. Schmidt, and J. L. Teugels, Stochastic processes
for insurance and finance. John Wiley & Sons, 2009, vol. 505.

[44] R. A. Fisher and L. H. C. Tippett, “Limiting forms of the frequency
distribution of the largest or smallest member of a sample,” Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 24, no. 2, pp.
180–190, 1928.

[45] Gnedenko, “Sur la distribution limite du terme maximum d’une série
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