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Abstract—Collaborative Filtering (CF), as one of the most
popular approaches, is widely employed in recommender systems
but suffers from the cold-start problem, where interactions are
very limited for new users in the system. To deal with this issue,
previous work has largely focused on utilizing various auxiliary
information such as user profiles and social relationships to infer
user preferences. However, the auxiliary information is not always
available due to reasons such as user privacy concerns, making
the CF approaches have to count on the limited interactions.
Moreover, real-world situations require both accurate and quick
recommendations for newly arrived users dynamically. Therefore,
it is of critical importance to enable fast learning for new users
during the training time of CF models.

In this paper, we present a novel learning paradigm, named
MetaCF, to learn an accurate CF model that makes fast adap-
tation on new users with limited interactions. Inspired by meta-
learning, MetaCF treats the fast adaptation on a new user
as a task and aims to learn a suitable model for initializing
the adaption. To pursue a well-generalized model, MetaCF is
equipped with a Dynamic Subgraph Sampling that accounts for
the dynamic arrival of new users by dynamically generating
representative adaptation tasks for existing users. Moreover,
to stabilize the adaption procedure that faces the shortage of
training samples, MetaCF further optimizes the learning rates
for adaption in a fine-grained manner. MetaCF is applicable
to any differentiable CF-based models where we demonstrate it
on two representative ones, FISM [1] and NGCF [2]. Extensive
experiments on three datasets validate the effectiveness of the
proposed framework, which significantly outperforms state-of-
the-art baselines by a large margin in the cold-start scenario
where user-item interactions are limited.

Index Terms—Recommendation, Meta-Learning, Cold-Start,
Collaborative Filtering

I. INTRODUCTION

Personalized recommendation has revolutionized various
Web services, which largely relieves the information overload
issues by matching users with appropriate items, e.g., movies
on Netflix and merchandise on Amazon. Collaborative Filter-
ing is one of the most popular approaches widely employed
in recommender systems, assuming that behaviorally similar
users would exhibit similar preferences on items [2]–[4].
Despite the success in serving regular users, CF approaches
severely suffer from the cold-start problem, failing on new
users whose interactions are very limited with inappropriate
recommendations. To deal with this issue, existing CF ap-
proaches largely rely on the auxiliary information, such as

user profiles [5] and social relationships [6] to facilitate the
inference of user preference. However, the scalability of these
approaches is limited due to the unavailability of the auxiliary
information in many recommendation scenarios for reasons
such as privacy concerns of users.

In this work, we argue that a good CF-based recommender
system should go beyond counting on the auxiliary infor-
mation to address the sparsity issue and seek techniques to
improve cold-start recommendations via fast learning over the
limited interactions. For instance, once the initial interactions
on the items such as iPhone 11 and PS4 from a user arrived, the
recommender system quickly adapts the user representations
from an initial state to encode the preference on electronic
products. Moreover, a good recommender system should also
enable the fast adaptation of CF-based models for new users,
which has received relatively little scrutiny. This is because
new users arrive dynamically and the very limited new in-
teractions can reflect user preferences dramatically, which are
different from any existing ones. In this work, we pursue a
well-generalized CF model with 1) generalization ability from
predicting preference of existing users to new users; 2) fast and
accurate adaption when fine-tuned with very limited training
samples, i.e., observed interactions.

Meta-learning has empirically shown the ability to enable
fast model adaption across similar tasks in standard few-shot
prediction tasks such as visual recognition [7] and neural
machine translation [8]. The core idea of meta-learning is
learning-to-learn, i.e., learning to solve the tasks well and
pursuing the generalization ability on future tasks. Technically,
meta-learning [9] trains model over a large number of tasks
with limited training samples in each task. It optimizes model
parameters according to the adaption performance on these
tasks, so the learned model can be fast adapted and generalize
well on future tasks. Therefore, employing a similar approach
to that of meta-learning on a CF model would also be helpful
to the cold-start recommendation. That is, treating the adaption
on each new user as a future task and training the CF model
with similar adaption tasks on existing users.

However, directly employing existing meta-learning meth-
ods on cold-start recommendation is insufficient due to the
following reasons: 1) The challenge of constructing tasks on
existing users similar to the future adaption task on new users,
which is critical for pursuing a model with generalization



ability. It is not wise to construct training tasks by simply
extracting the historical interactions of an existing user as
training samples, and treating the whole observed interactions
as references to make recommendations. This is because the
existing users in the system have much more interactions as
training samples than new users do in the cold-start scenario.
Moreover, the behavior of new users naturally different from
that of regular users who are familiar with the system. 2)
Performing adaption on a task via a regular model fine-tuning
as conventional meta-learning methods is infeasible for cold-
start recommendation. This is because of the difficulty of
deciding the learning-rate suitable for updating models for
different users, considering the divergence of users.

In this paper, we propose a novel meta-learning paradigm,
named MetaCF, aiming to learn the well-generalized CF
model. The key novelty of MetaCF is the Dynamic Subgraph
Sampling to construct representative training tasks. To avoid
over-fitting, we dynamically sample subgraph centered at a
user in the training phase to account for the effect of limited in-
teractions of new users. Furthermore, we extend the historical
interactions by Incorporating Potential Interactions to bridge
the gap between training tasks in history and future tasks
and facilitate generalization. Moreover, MetaCF is equipped
with Flexible Model Updating, which optimizes the learning-
rate to perform fine-tuning according to the performance of
adaption, i.e., how well the tasks are solved. It largely elim-
inates the tedious manual exploration of this highly sensitive
hyper-parameter, and thus enables a fine-grained setting with
parameter-wised learning rates which largely stabilizes the
fine-tuning procedure.

The major contributions are summarized as follows:

• To the best of our knowledge, we are the first to study cold-
start CF without relying on user auxiliary information. We
propose a novel learning paradigm, named MetaCF, that
aims to learn an accurate CF model well-generalized for
fast adaptions on new users with limited interactions.

• We devise a Dynamic Subgraph Sampling strategy that
constructs representative training tasks on existing users,
an Incorporating Potential Interactions strategy to facilitate
generalization, and a Flexible Model Updating strategy to
optimize the learning rates for adaption in a fine-grained
manner to stabilize fine-tuning.

• We implement MetaCF on two representative CF models,
FISM and NGCF. MetaCF is further evaluated on three
public real-world cold-start recommendation datasets. The
results show that MetaCF significantly outperforms state-
of-the-art methods.

II. PROBLEM DEFINITION

Let Ue = {ue1, ue2, ...uen} and Ie = {ie1, ie2, ...iem} denote
the sets of existing users and items in the system respectively,
where n is the number of users, and m is the number of items.
The user-item interactions are represented by a bipartite graph,
G = (Ue ∪ Ie ∪ Y e), where each vertex represents a user or

an item. Y e ∈ Rn×m denotes the existence of interactions
between users and items. Formally,

Y eui =

{
1, if user u has interacted with item i

0, otherwise
(1)

The setting of regular recommendation is to learn a scoring
function f(u, i|θ) from G to predict the preference of an
user u over item i, which is largely focused on the existing
users Ue. θ denotes the parameters to be learned. Cold-start
recommendation is focused on new users arriving after the
training stage. Given a set of new users Uf = {uf1 , u

f
2 , ...u

f
k},

the objective is to quickly adapt the function f(u, i|θ) learned
from G to be a user specific one f(u, i|θu) according to user’s
initial interactions Duf where Duf = {i|uf has interacted
with item i}, so as to properly predict the preference of new
user. The size of user’s initial interactions is assumed to be
smaller than K which is set as a small number (e.g., 1, 2 or
3) in consideration of the cold-start scenario1. Formally, we
treat the fast adaption on each new user as a task:

τu : (θ,Duf ) −→ θuf , (2)

which we denote as τu. A straightforward solution is to learn θ
from G as regular recommendation, and fine-tune θ over Duf .
However, it is easy to encounter the over-fitting issue, since
there are very few interactions available for new users. In this
work, we aim to learn a proper θ from G that generalizes
well on new users, i.e., solving the fast adaption tasks.
Considering that the learning target is how to solve the tasks
well (i.e., with a good generalization ability on future tasks),
addressing this problem can be seen as an instance of meta-
learning. Note that even though we argue the unavailability of
auxiliary information in some recommendation scenarios, the
information can be easily integrated into our framework as an
additional input of each task τu (see Section 4.2 for detailed
results).

III. PROPOSED METHOD

In this section, we present the details of MetaCF. As shown
in Figure 1, the framework of MetaCF is an instance of
meta-learning, which aims to learn a meta-model (can be
any differentiable CF model) well-generalized for solving
the fast model adaption task on a new user. We first detail
the meta-learning paradigm in Section 3.1, followed by the
description of a novel dynamic subgraph sampling method to
construct representative training tasks on existing users from
historical interactions with the consideration of potential future
interactions (Section 3.2). Lastly, we present the instantiation
of MetaCF implemented on two representative CF models,
FISM and NGCF.

A. Meta-learning for Fast Adaption

Meta-learning has shown remarkable success in achieving
fast model adaption across similar tasks in various few-shot
prediction tasks such as visual recognition [7] and neural

1For the new users without any observed interactions, we can recommend
the most trendy items in the system to collect their initial interactions.
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Fig. 1. The framework of MetaCF. The black rectangle border denotes the historical user-item interactions. The gray rectangle denotes the new users, who
are unseen in the training phase. The orange and blue nodes stand for users and items, respectively. (1) We randomly sample a collection of existing users
and subgraphs centered at each user to construct tasks. (2) We perform fine-tuning on each task and calculate the gradient to update the meta-model according
to performance on the task. The meta-model is then updated by aggregating the gradients from all tasks. (3) For a new user when testing, we fine-tune the
meta-model to generate a personalized model for the user.

machine translation [8]. The core idea of meta-learning is
learning-to-learn, i.e., learning to solve the tasks well and pur-
suing the generalization ability on future tasks. For instance,
in the visual recognition task, meta-learning aims to learn
an image classification model that can be quickly adapted
to classify images from unseen classes with a few training
samples. Similarly, employing a similar approach to that of
meta-learning on a CF model would also be helpful to the
cold-start recommendation, i.e., solving the fast adaption task
τu on new users. We follow one of the popular meta-learning
frameworks, MAML [9], for the consideration of its model
agnostic property to avoid the overhead of adjustment for the
specific CF model. To learn the parameters of a new task,
MAML trains the model in such a manner that the parameters
of the new task will have a promising initialization by learning
from various similar tasks. From the learned parameters, the
model is further fine-tuned on the new task with only a few
interactions over several shots of training samples for the new
task.

Similarly, to achieve fast adaption on the future tasks τu
on new users, the proposed MetaCF iteratively updates the
meta-model according to the following procedure:
• Inner loop. For each task τu, MetaCF initializes θu with

the latest parameters of the meta-model θ, and updates θu
according to the user’s training interactions.

• Outer loop. According to the adaption performance on each
task τu, i.e., the recommendation loss of θu regarding user
u, MetaCF updates the meta-model θ.
To be more specific, in each iteration/batch, a fixed number

of N tasks are included, where each task involves the param-
eter optimizations of one particular user. More precisely, we
first sample a collection of N users B = {un}Nn=1 from Ue.
Then, for each user in the collection, we sample subgraphs
between the user and corresponding positive and negative
items based on the algorithms in Section III-B. Note that

the number of sampled interactions per user in each task
is upper bounded by K. In particular, for each episode, we
randomly sample k ∈ [1,K] interactions of the user for
training. This increases the flexibility of the model as it allows
us to choose a wide range of interactions as references to make
recommendations for a user. This strategy is important, as
users have different numbers of interactions to refer to during
testing, and a fixed k does not work for all the users. The whole
algorithm is summarized in Algorithm 1. As can be seen, in
the test stage, the new user u′s specific model parameter θu
is initialized with the final θ and then fine-tuned based on
his/her limited observed interactions in Duf . In the following,
we describe details of the inner loop and outer loop.

Inner loop. The model parameters regarding a user u are
updated iteratively Ttrain times as follows:

θ(t)u = θ(t−1)u − α∇
θ
(t−1)
u

Js(θ
(t−1)
u , Ds

u, G
s
u),

Js(θ
(t−1)
u , Ds

u, G
s
u) = J(θ(t−1)u , Ds

u, G
s
u) + λ‖θ(t−1)u ‖2,

(3)

where J denotes the recommendation loss (e.g., the log
loss [10] or pairwise loss [11]) on data Ds

u with θu as the
recommender model parameters. Ds

u, Gsu are user’s sampled
data and subgraphs respectively according to Section III-B.
Ttrain is a predefined hyper-parameter controlling the number
of training updates, θ(t)u is the model parameters of user u at
time step t and θ(0)u is initialized with θ. α is the learning rate
of user parameter update. λ is a hyper-parameter to balance
the loss and the regularization term. Note that the model
parameters of user u at time step 0 are initialized by the
generalized model parameters θ.

Outer loop. We then update the generalized model param-
eters by summing up all user u’s specific loss Ju(θ

(Ttrain)
u )

in this collection together. More concretely, in each batch, the



parameters are updated as follows:

θ = θ − β∇θ
∑
ui∈B

J(θ(Ttrain)
ui

, Dq
ui
, Gqui

) (4)

where β is learning rate of the generalized model param-
eters, Dq

ui
and Gqui

are another sampled dataset and sub-
graphs according to Section III-B which are different from
Ds
ui

and Gsui
, B is a set of users involved in a batch,

∇θ
∑
ui∈B Jui

(θ
(T )
ui , D

q
ui

) is the meta gradients and θ is
updated iteratively until convergence.

Testing. As shown in Algorithm 1 (line 18-24), for evalua-
tion of new user ufk , we first initialize the user model parameter
with θ, and the user model is then fine-tuned Ttest times with
his/her observed interactions where Ttest is the number of
update for fine-tuning. The fine-tuned model is then applied
to make recommendations.

1) Flexible Model Updating: Similar to the discovery in
[12], we also find that methods utilizing MAML are very
sensitive to the setting of the user parameter learning rates
α, that is, a subtle change of the learning rate α can lead to
a dramatic performance drop. The training data of those users
who have few interactions are of very small size. It will lead
to over-fitting and unstable performance when only a small
dataset is available [13], [14]. A manually fixed learning rate
can even make the model unable to converge since it is hard
to define a proper one for a small dataset.

To learn to set the appropriate learning rates automatically,
we implement a flexible update strategy. We highlight that this
is different from conventional MAML-based methods, where
learning rates have to be hand-crafted and heavy tuning efforts
are involved. The proposed model has a higher capacity by
learning to learn not only the learner’s initialization but also
the learner’s learning rate.

In particular, for each trainable parameter matrix w ∈
RAxB , we assign α as a vector of the same size as w that
decides both the update direction and learning rate as follows:

w(t)
u = w(t−1)

u − α∇
w

(t−1)
u

Js(w
(t−1)
u , Ds

u, G
s
u)

w = w − β∇w
∑
ui∈B

Jq(w
(Ttrain)
ui

, Dq
ui
, Gqui

)

α = α− β∇α
∑
ui∈B

Jq(w
(Ttrain)
ui

, Dq
ui
, Gqui

)

where Ds
u, Gsu and Ds

u, Gsu are all sampled according to
Algorithm 2. w(0)

u is initialized with w. line 14 in Algorithm
1 gives the details of the above update for user parameter
learning rates.

B. Fast Adaptation Task Generation

1) Dynamic Subgraph Sampling: The first step of our
framework is to sample subgraphs of the interested user u
and k interactive items out of the interaction graph defined in
Section II in each task τu. Taking in the same k interactions
as references in both training and testing is impractical. It
is difficult to choose an appropriate k since different users

Algorithm 1 Personalized Fast Cold-Start User Adaption
Input: training user distribution p(u), testing new user Uf , training
update size Ttrain, fine-tune update size Ttest, sample ceiling K
Initialize: θ, β, α

1: /* Training on the existing users */
2: while not converge do
3: sample batch of users B∼p(u);
4: for user ui in B do
5: θ

(0)
ui = θ;

6: for t in range(Ttrain) do
7: Ds

ui
, Gsui

= Dynamic Subgraph Sampling(ui,K) ;
8: θ

(t)
ui = θ

(t−1)
ui − α∇

θ
(t−1)
ui

Js(θ
(t−1)
ui , Ds

ui
, Gsui

)

9: end for
10: Dq

ui
, Gqui

= Dynamic Subgraph Sampling(ui, k);
11: Evaluate J(θ(Ttrain)

ui , Dq
ui
, Gqui

)
12: end for
13: θ = θ − β∇θ

∑
ui∈B J(θ

(Ttrain)
ui , Dq

ui
, Gqui

)

14: α = α− β∇α
∑
ui∈B J(θ

(Ttrain)
ui , Dq

ui
, Gqui

)
15: end while
16:
17: /* Testing on new users */
18: for new user j in Uf do
19: Use all observed interactions to generate Ds

uj
, Gsuj

, to fine-
tune;

20: θ
(0)
uj = θ;

21: for t in range(Ttest) do
22: Compute adapted parameters θ(t)uj with gradient descent by

θ
(t)
uj = θ

(t−1)
uj − α∇

θ
(t−1)
uj

Js(θ
(t−1)
uj , Ds

uj
, Gsuj

)

23: end for
24: Recommend unobserved items to user j base on θ(Ttest)

uj

25: end for

Subgraph Sampling

Training graph Subgraph

Fig. 2. The proposed method of subgraph sampling between a user-item
pair. The blue circle represents the selected user-item pairs. The removed
interactions, shown in the shadow part, are not used for the current episode.
The yellow and orange nodes stand for users and items.

involve different numbers of interactions in practice and a fixed
k does not work well for all users. To improve the flexibility
and generalization of the model, we design a dynamic K-
shot training mechanism by constructing each training batch
of users with a dynamic number of interactions as shown in
Figure 2. To mimic the test setting of cold-start scenarios,
as shown in Algorithm 2, we randomly sample interactions
per user that are used for training and hide the remaining
interactions, which serve as interactions to be predicted for
validation. In particular, the number of sampled interactions
per user in each task is upper bounded by K. For each
update, we randomly sample k ∈ [1,K] interactions for
training. This allows us to choose a wide range of interactions
as references to make recommendations for a user during
testing based on how many interactions are available. In this
way, MetaCF not only learns from different combinations of



user-item interactions, but also becomes more flexible when
conducting recommendations.

Algorithm 2 Dynamic Subgraph Sampling
Input: the bipartite graph G, the target user u, hop number h,
sample ceiling K
Output: sampled data Du,sampled subgraphs Gu

1: Choose k ∈ [ 1, K] by random.
2: Randomly sample k edges Dn

u not connected to u in G as
negative samples.

3: Randomly sample k edges Dp
u connected to u in G as positive

samples and remove the remaining edges.
4: Gu = {}
5: Du = Dn

u ∪Dp
u

6: for each item i in Dn
u ∪Dp

u do
7: Remove the edge between user u and item i if exists
8: U = Ufringe= { u }, I = Ifringe= { i }
9: for j = 1,2,...,h do

10: U
′
fringe= { uj : uj∼ Ifringe} \ U

11: I
′
fringe= { ij : ij∼ Ufringe} \ I

12: Ufringe= U
′
fringe, Ifringe= I

′
fringe

13: U = U ∪ Ufringe, I = I ∪ Ifringe
14: end for
15: Gu,iis the vertex-included subgraph from G using vertices U,I
16: Gu = Gu∪ Gu,i
17: end for

Note: {uj : uj∼ Ifringe} is the set of nodes that are adjacent to at
least one node in Ifringe

2) Incorporating Potential Interactions: Considering that
there would be a gap between the tasks generated purely on the
historical interactions and future tasks. We further incorporate
the potential interactions from existing users to bridge the
gap by mining the structure of the interaction graph to infer
the indirect relations between users and items. The indirect
relations between the items in the graph are preserved and
presented in the latent space in unsupervised graph embedding
models. Specifically, we develop a novel module by incorpo-
rating potential interactions based on the network embedding,
which allows the model to capture long-range dependencies
and increase generalization ability to the user-item pair that
are not connected in the graph. Here we follow BiNE [15], a
random walk based network representation model, to construct
a bipartite graph and derive embeddings Z for items. The
structural similarity between item i and item j is defined as:

d(zi, zj) = −||zi − zj ||2,
where zi is the embedding for item i, d(zi, zj) is the latent
similarity between item i and item j. The interest of user u
to item j is defined as:

I(u, j) =
∑

i∈N(u)

d(zi, zj).

Different from ItemCF, the proposed model measures the
similarity of items comprehensively utilizing the structural
information in the entire bipartite graph, which not only
captures the neighborhood information but also leverages long-
range implicit relationships. We highlight that it is important
for the embedding learning, especially beneficial to alleviate
the cold-start problem. To be specific, for each user u, we

rank the interest of all items that are not connected to u and
select the highest k items to add to the neighboring nodes,
where k is the same as the number of dynamic sampling. All
the neighboring nodes are used to conduct dynamic subgraph
sampling. The newly incorporated links are only used to create
the subgraph and will not be used as the positive and negative
samples.

C. Model Instantiation
To demonstrate how the proposed MetaCF works, we im-

plement it on two representative CF-based models, FISM [1]
and NGCF [2]. Both FISM and NGCF make predictions as:

f(u, i|Θ) = (eu)T ei, (5)
where eu and ei denote the embedding of user u and item i.
The differences between FISM and NGCF are the way to cal-
culate the embedding and the according learnable parameters.

FISM. As an item-based CF model, FISM treats embedding
of items as learnable parameters and calculates user embed-
dings from the interacted items. Formally,

eu =
1

|N(u)|γ
∑

j∈N(u)

ej , (6)

where γ is a hyper-parameter controlling the normalization
effect; N(u) denotes the items interacted by user u. For
positive user-item pairs, the target item i is removed from
N(u) to avoid the modeling of self-similarity of the target
item. In training phase, MetaCF optimizes all the learnable
parameters of FISM, i.e., Θ = {ei|i ∈ [1,m]}.

NGCF. NGCF performs graph convolution over the sub-
graph Gu,i centered at user u and item i to obtain user and
item representations, which propagate the embedding of user
and item over Gu,i to account for the global high-order inter-
dependencies among users and items. We employ a d-layer
NGCF where the embedding of item i is iteratively propagated
to its d-hop neighbors. Different from the standard NGCF
where the embedding of both users and items are model
parameters, we devise a variant of NGCF called Inductive
NGCF which omits the parameters on user embedding and
initiate the embedding propagation from item to user. Algo-
rithm 3 shows the details of the propagation procedure where
σ denotes an activation function; W (l)

I and W
(l)
U are model

parameters at layer l performing embedding transformation.
In the training stage of Inductive NGCF, MetaCF learns the
parameters of both item embedding and transformation, i.e.,
Θ = {ei|i ∈ [1,m]}, {(W (l)

I ,W
(l)
U )|l ∈ [0, d]}.

Loss Function. For both FISM and NGCF, we adopt
the widely used pairwise Bayesian Personalized Ranking
(BPR) [11] as the recommendation loss J . For each observed
positive user-item interaction (u, i) ∈ Du, we randomly sam-
pling a negative interaction (u, j) as described in Algorithm 2.
The BPR loss is formulated as:

J(θ,Du) =
∑

(u,i)∈Du

−lnσ(f(u, i|θ)− f(u, j|θ)), (7)

where σ(·) denotes the sigmoid function.

IV. EXPERIMENTS

To justify the effectiveness of MetaCF, we conduct extensive
experiments to answer the following research questions:



Algorithm 3 Inductive NGCF
Input: Subgraph Gu,i, User u, Item i, NGCF depth d, Activation
function σ
Output: eu, ei

1: for l in range(d) do
2: m

(l)
u←i =

W
(l)
I
e
(l−1)
i√

|Nu||Ni|
/*N(u), N(i) denote the neighbors of

u, i*/
3: e

(l)
u = σ(m

(l)
u←u +

∑
j∈N(u)m

(l)
u←j)

4: m
(l)
i←u =

W
(l)
U
e
(l−1)
u√

|Nu||Ni|

5: e
(l)
i = σ(m

(l)
i←i +

∑
j∈N(i)m

(l)
i←j)

6:
7: end for
8: eu = e

(l)
u , ei = e

(l)
i

• RQ1: How does MetaCF perform compared with state-of-
the-art item recommendation methods?

• RQ2: How do different modules of our MetaCF (e.g.,
the dynamic subgraph sampling module) contribute to the
performance?

• RQ3: What is the effect of our MetaCF on users with
different levels of sparsity?

• RQ4: How do different hyper-parameters settings affect
MetaCF?

A. Experiment Settings
TABLE I

STATISTICS OF THE DATASETS.

Dataset Users Items Interactions Density
Amazon-Electronics 192,403 63,001 1,689,188 0.014%

Amazon-Kindle 68,223 61,885 982,619 0.023%
Last-FM 1,892 1,7632 92,834 0.278%

To evaluate the effectiveness of our approach, we conducted
experiments on three widely used benchmark datasets in
different domains. The first two datasets are from the Amazon
collection [16], which contains product reviews from Amazon
ranging from May 1996 to July 2014. We follow [17] and
select Amazon-Electronics and Amazon-Kindle as the first and
the second dataset. The third dataset is collected from Last-
FM, which is an official song tag dataset and the artists are
viewed as the items. We follow [2] and use the 10-core setting
for these datasets to ensure that each user and item has at least
ten interactions. All the datasets above are publicly available.

We conduct inductive personalized recommendation exper-
iments on these three datasets. For each dataset, 10% of the
users are involved in the validation set and another 10% of the
users are involved in the testing set. These users are excluded
from the construction of the training graph. Next, for each
test and validation user, represented by a node in the graph,
we select a portion of the interactions as the observed edge
in the validation and test phase, i.e. the positive samples. The
remaining interactions in the validation and test set serve as the
validation and test data. That is, the trained model has never
seen this part of the nodes in the training, so new items need
to be recommended based on the edges the user observed.
We organize the experiment with three different sizes of
observation edges, namely 5-shot, 3-shot and 1-shot, which
means that each new node has 5, 3 and 1 edges that can be

used as the input for model validation and test. To evaluate the
performance of the item recommendation, we adopt the leave-
one-out evaluation, which has been widely used [1], [4], [18].
More precisely, for each user in the validation and testing set,
we leave his latest interaction for validation and test. For each
user node in the test and validation set, we take each observed
edge as a positive sample of the user, and then randomly select
100 items that did not interact with the current user as the
negative samples. This method has been widely used in many
other works [4], [18]–[21]. Then we rank the list consisting
of the positive item and 100 negative items. Following [2], we
use Hit Ratio at rank 10 (HR@10) and Normalized Discounted
Cumulative Gain at rank 10 (NDCG@10) as the evaluation
metrics to measure the ranking performance.

1) Baselines: We compare MetaCF with the following
baselines:

• DropoutNet [22]: DropoutNet combines the dropout tech-
nique with a deep neural network to learn effective features
of the input to solve the cold-start problem. To make it
adapted to our setting, we treat interactions as features.

• FISM [1]: This is a representative item-based CF model as
formulated in Equation (4).

• NGCF [2]: We use the inductive version of Neural Graph
Collaborative Filtering, using the subgraph sampling strat-
egy in the training process.

• MeLU [23]: MeLU presents a meta-learning strategy to
address the user cold-start problem. As we focus on mod-
eling user behaviors, to make a fair comparison, we use the
user/item historical interactions as the user/item features in
this model.

Note that we omit the comparison with potential baselines
of streaming recommendation [24] since their objective is to
perform fast model adaption for all users instead of personal-
ized adaption for specific cold-start users.

2) Parameter Settings: In the training stage, we set the
dimensions of embedding vectors of all the above models to
64 by default. For the NGCF model, we utilize two layers of
embedding propagation network to obtain the best results. For
the FISM model, We test γ from 0 to 1 with a step size of 0.1,
finding a value of 0 leads to the best results on all datasets.
For a fair comparison, for all models, we optimize them with
bayesian personalized ranking [11] loss via the mini-batch
Adam [25] algorithm. We set the number of training epochs
to 100 and the number of batches in each epoch to 512. We
train 64 tasks in a batch and set the upper bound of k-shot
to 5 in MetaCF. The inner learning rate is initialized to 1e-
3 and then optimized by our algorithm. The training update
step and fine-tuning update step are both set to 4. Without
special mention, we report the performance of MetaCF with
following default settings: learning rate=1e-3, dropout rate=0.2
[26], weight decay=1e-4.

B. Results (RQ1)

Table II shows the recommendation performance of all
compared methods w.r.t. HR@10, and NDCG@10 on the
Amazon-Electronics, Last-FM, and Amazon-Kindle datasets



TABLE II
EXPERIMENTAL RESULTS OF DIFFERENT METHODS OVER THE THREE DATASETS.

Model DropoutNet MeLU FISM MetaCFFISM NGCF MetaCFNGCF

Electronics
HR@10

1-shot 0.111 0.246 0.201 0.310 0.285 0.401
3-shot 0.214 0.288 0.263 0.325 0.335 0.427
5-shot 0.246 0.345 0.317 0.391 0.387 0.434

NDCG@10
1-shot 0.066 0.127 0.115 0.177 0.147 0.239
3-shot 0.112 0.167 0.157 0.246 0.182 0.254
5-shot 0.134 0.202 0.189 0.273 0.214 0.257

LastFM
HR@10

1-shot 0.284 0.413 0.394 0.443 0.463 0.508
3-shot 0.448 0.466 0.414 0.488 0.519 0.534
5-shot 0.477 0.489 0.442 0.498 0.528 0.547

NDCG@10
1-shot 0.208 0.251 0.229 0.289 0.266 0.304
3-shot 0.274 0.238 0.227 0.297 0.312 0.325
5-shot 0.291 0.255 0.237 0.298 0.317 0.331

Kindle
HR@10

1-shot 0.136 0.389 0.375 0.403 0.410 0.512
3-shot 0.328 0.512 0.508 0.539 0.530 0.626
5-shot 0.440 0.531 0.513 0.542 0.567 0.656

NDCG@10
1-shot 0.117 0.222 0.224 0.276 0.219 0.295
3-shot 0.245 0.291 0.286 0.319 0.295 0.382
5-shot 0.299 0.318 0.315 0.337 0.321 0.407

under the 1/3/5-shot settings. From the table, we have the
following findings:
• We observe that MeLU, where the meta-learning strategy

is used for new users, has a much better performance than
DropoutNet. This proves the advantage of meta-learning in
the cold-start problem in recommender systems.

• Without MetaCF, NGCF can make a relatively more ac-
curate recommendation for new users than other baselines.
This indicates the significance of using high-order interac-
tions, or structural information when few interactions are
available for new users.

• We notice that MetaCF outperforms all baseline methods
under all settings. This indicates the importance of both
reasonably utilizing the local and global information and
fast adaptation on new users in the cold-start scenario in
recommender systems.

• By leveraging our framework on collaborative filtering mod-
els, we improve their performance significantly on the three
datasets. For instance, compared with NGCF, MetaCF im-
proves the HR@10 performance from 0.285, 0.335, 0.387
to 0.401, 0.427, and 0.434 for the 1/3/5-shot setting on the
Amazon-Electronics dataset, respectively. This demonstrates
the effectiveness of fast adaptation utilizing our framework
on top of CF-based models.

Incorporating Side Information: Our approach can not only
leverage local and global information but also well utilize
side information. To justify this, additional experiments were
conducted on the Amazon-Electronics dataset. In particular,
user and item reviews are used to serve as side information.
To represent reviews, we first leverage GloVe [27] to obtain the
word embeddings. The review embedding is further derived by
taking the average of involved word embeddings in the review.
The constructed review embeddings are further integrated into
different methods to serve as side information. The corre-
sponding results are summarized in Table III. The proposed
method with consideration of side information achieves further
improvement and consistently outperforms MeLU.

TABLE III
EFFECT OF SIDE INFORMATION.

Model Electronics LastFM Kindle
HR NDCG HR NDCG HR NDCG

MeLU 0.246 0.127 0.413 0.251 0.389 0.222

MeLU+SI 0.301 0.156 0.439 0.277 0.398 0.262

MetaCFNGCF 0.401 0.239 0.508 0.304 0.512 0.295

MetaCFNGCF +SI 0.423 0.254 0.533 0.331 0.539 0.308
MetaCFFISM 0.310 0.177 0.443 0.289 0.403 0.276

MetaCFFISM+SI 0.331 0.198 0.456 0.303 0.428 0.289
C. In-depth Analysis of MetaCF (RQ2)

We then investigate the effectiveness of the proposed
MetaCF under different circumstances.

Recall that MetaCF has three essential components: dy-
namic subgraph sampling, incorporating potential global inter-
actions, and flexible model update strategy. Different MetaCF
variants are designed for comparison of its components. We
summarize them as follows:
• MetaCF¬D: A variant of MetaCF with the dynamic sub-

graph sampling module being removed.
• MetaCF¬G: A variant of MetaCF with the global long-

range interaction being removed, using only the existing
interactions.

• MetaCF¬F : A variant of MetaCF with the flexible model
update strategy being removed.

Different models are summarized in Table IV, where the
symbol X indicates the algorithm exploits the corresponding
information. The Local means that the model aggregates the
neighborhood information in the graph. We use Adapt to
represent the ability to adapt to new users. The DGS means
the dynamic subgraph sampling module. The Global represents
the model with potential long-range interactions. The FMU is
the flexible model update strategy for meta-learning.

1) Effect of Dynamic Subgraph Sampling: We first explore
the impact of dynamic graph sampling (DGS) that uses up
to k-shot neighborhood information of each user. Table V
summarizes the experimental results obtained under 1-shot



TABLE IV
THE SUMMARY OF DIFFERENT MODELS.

Methods Local Adapt DGS Global FMU
DropoutNet

FISM X
NGCF X
MeLU X

MetaCF¬D X X X X
MetaCF¬G X X X X
MetaCF¬F X X X X

MetaCF X X X X X

setting. We note that the MetaCF with dynamic subgraph
sampling outperforms MetaCF¬D on all the datasets as it
imitates the few-shot setting in the testing stage. The same
trend can be observed about FISM.

TABLE V
EFFECT OF DYNAMIC SUBGRAPH SAMPLING.

Model Electronics LastFM Kindle
HR NDCG HR NDCG HR NDCG

MetaCF¬DNGCF 0.348 0.197 0.442 0.256 0.435 0.245

MetaCFNGCF 0.401 0.239 0.508 0.304 0.512 0.295

MetaCF¬DFISM 0.267 0.145 0.417 0.248 0.355 0.231

MetaCFFISM 0.310 0.177 0.443 0.289 0.403 0.276

2) Effect of Incorporating Potential Interactions: To ex-
plore the effect of incorporating potential interactions that
utilize the structural information to do data augmentation for
users, we use MetaCF¬GNGCF to indicate the MetaCF model
without the module of incorporating potential interactions.
Table VI summarizes the experimental results which are
obtained on the Amazon-Electronics dataset o NGCF model.
We note that the MetaCF with the module of incorporating
potential interactions outperforms MetaCF¬G, especially in
1-shot setting. It is clear that our method can alleviate data
sparsity to some extent at a small cost.

TABLE VI
EFFECT OF INCORPORATING POTENTIAL INTERACTIONS.

MetaCFNGCF MetaCF¬GNGCF
HR NDCG HR NDCG

1-shot 0.401 0.239 0.389 0.227

3-shot 0.427 0.254 0.421 0.245

5-shot 0.434 0.257 0.432 0.252

3) Effect of Flexible Model Update Strategy: To explore
the impact of different model update strategies, we consider
the variants of NGCF and FISM that use different settings.
Our MetaCF framework dynamically learns the inner learning
rate which is a very important hyper-parameter. This saves a
lot of time adjusting this parameter. We compare our method
with the original approach that fixes the inner learning rate.
For the fixed inner learning rate, we test the values of [1e-
2; 1e-3; 1e-4; 1e-5] and choose the best one according to
the validation performance. We use MetaCF¬FNGCF to indicate
leveraging MetaCF on NGCF with fixed learning rates and
NGCFfinetune to represent the NGCF model with the fine-
tuning stage. Notations for FISM are similar. Table VII sum-

marizes the experimental results under 1-shot setting. We have
the following findings:
• Leveraging MetaCF framework on NGCF or FISM with the

fixed inner learning rate has much worse performance than
learning it dynamically, even though our framework still
has made a little improvement on the initial one. We can
conclude that the inner learning rate is a significant factor
in our task.

• We evaluate the effect of MetaCF by comparing it with just
fine-tuning. The results show that directly fine-tuning on
new users can lead to extremely bad performance due to the
insufficiency of data. On the contrary, adapting with MetaCF
can leverage the existing users’ information as regularization
to avoid over-fitting.

TABLE VII
EFFECT OF FLEXIBLE MODEL UPDATE STRATEGY.

Model Electronics LastFM Kindle
HR NDCG HR NDCG HR NDCG

NGCF 0.285 0.147 0.463 0.266 0.410 0.219

NGCFfinetune 0.237 0.116 0.422 0.232 0.332 0.146

MetaCF¬FNGCF 0.319 0.166 0.471 0.273 0.436 0.238

MetaCFNGCF 0.401 0.239 0.508 0.304 0.512 0.295
FISM 0.201 0.115 0.394 0.229 0.375 0.224

FISMfinetune 0.188 0.106 0.390 0.218 0.358 0.211

MetaCF¬FFISM 0.223 0.132 0.413 0.245 0.382 0.254

MetaCFFISM 0.310 0.177 0.443 0.289 0.403 0.276

D. Model Sensitivity

1) Performance w.r.t. Interaction Sparsity Levels (RQ3):
The sparsity issue usually limits the performance of recom-
mender systems as we mentioned before and our framework
dedicates to solving the data sparsity problem. To investigate
the effect of user interactions sparsity on our framework, we
conduct experiments over different sparsity levels of test user
interactions. To be more specific, we divide the test users into
different groups based on the number of interactions per user.
For each test user, we fix the target interactions to predict in
different settings of the sparsity level. Fig 3 shows how our
framework’s performance varies in different test groups by
fixing the 5-shot training mechanism and its comparison with
original FISM and NGCF on the Amazon-Electronics dataset.
We have similar observations on the other two datasets.

(a) FISM (b) NGCF
Fig. 3. HR@10 performance comparison over different sparsity levels of test
user groups on Amazon-electronics.

2) Impacts of Hyper-parameters (RQ4): Our MetaCF
method introduces two additional hyper-parameters, i.e., train-
ing update step and fine-tuning update step, to control the



TABLE VIII
EFFECT OF TRAINING UPDATE STEPS.

HR@10 NDCG@10
MetaCFTU -1 0.472 0.257
MetaCFTU -2 0.491 0.286
MetaCFTU -3 0.505 0.291
MetaCFTU -4 0.512 0.296
MetaCFTU -5 0.510 0.294

number of updates for a training task and the number of fine-
tuning for new users, respectively. Here we show how these
two hyper-parameters impact the performance and also shed
light on how to set them. All the results are tested on the
Amazon-Electronics dataset with MetaCFNGCF .

First, we fix fine-tuning update step to 4 and vary the
training update steps. In particular, we search the training
update step in the range of {1, 2, 3, 4, 5}. Table VIII summa-
rizes the experimental results, wherein MetaCFTU -4 indicates
the NGCF model updated four times, and similar notations
for others. As we can see, MetaCFTU -2, 3, 4, substantially
gain improvement over MetaCFTU -1 since insufficient train-
ing updates will lead to under-fitting problem. MetaCFTU -5
performs a little worse than MetaCFTU -4 probably due to the
inconsistency between the fine-tuning and training update step.

Then, to investigate the initial performance of MetaCF and
the benefit of fine-tuning, we fix the training update step to 4
and vary the fine-tuning update step. In particular, we search
the fine-tuning update step in the range of {0, 1, 2, 3, 4,
5}. Table IX summarizes the experimental results, wherein
MetaCFFU -4 indicates the model fine-tuned four times, and
similar notations for others. According to the table, we draw
the following conclusions:

• We observe that MetaCFFU -0 has consistently outperformed
other baselines without fine-tuning. It demonstrates the
effectiveness of MetaCFFU , indicating that the modeling of
personal inference could greatly avoid over-fitting.

• MetaCFFU -2, 3, 4 substantially gain improvement over
MetaCFFU -1. MetaCFFU -5 performs a little worse than
MetaCFFU -4. The reason may be similar to the discussion
about the training update steps.

TABLE IX
EFFECT OF FINE-TUNING UPDATE STEPS.

HR@10 NDCG@10
MetaCFFU -0 0.502 0.287
MetaCFFU -1 0.503 0.290
MetaCFFU -2 0.505 0.291
MetaCFFU -3 0.510 0.295
MetaCFFU -4 0.512 0.296
MetaCFFU -5 0.511 0.295

V. RELATED WORK

In this section, we go over the related works on collaborative
filtering, cold-start recommendation and meta-learning.

A. Collaborative Filtering

Due to the abundance of user feedback such as ratings
and purchases that can directly reflect a user’s preference,
research on item recommendation has mainly focused on
mining the feedback data, known as collaborative filtering
(CF). Matrix Factorization (MF) [28] plays a dominant role
in recommender systems. The basic principle behind MF is
that we could project users or items into a latent space so that
users’ preferences can be reflected using their proximity to
the items. Kabbur et al. [1] propose a factored item similarity
model (FISM), which represents an item as an embedding
vector and models the similarity between two items as the
inner product of their embedding vectors. FISM provides
advanced recommendation accuracy and is well suited for
online recommendation scenarios. Recently deep learning has
been leveraged to develop non-linear neural network models
for CF. For instance, He et al. [3] employs nonlinear neural
networks as the interaction function. Graph neural network
models for CF [2], [29]–[31] have been developed utilizing
deep learning and graph learning. Wang et al. [2] exploit the
user-item graph structure by propagating embeddings on it.
We argue that the existing methods cannot do fast adaption in
the cold-start collaborative filtering setting, and they can be
improved by our proposed method.

B. Cold-start Recommendation

Cold-start is a common problem in recommender systems
when there is insufficient information in the recommendation
process to make reliable recommendations for a user. It can be
classified into a complete cold-start problem, where no inter-
actions are available for new users, and incomplete cold-start
problem, where there only exist few interactions for new users.
In this work, we mainly deal with the incomplete cold-start
case. Traditional collaborative filtering methods cannot solve
this task without re-training the models. The standard way is
to rely on content information to model new users’ preferences
and new items’ characteristics. This has been widely used in
many works [22], [23], [32]–[38]. The DropoutNet [22] trains
deep neural network models to generalize to missing input
by applying dropout, which can be viewed as a successful
training method for pre-training the base models. MetaRec
[36] presents a meta-learning strategy that learns the user’s
specific item representations and adapts biases of a neural
network to address the cold-start issue on items. MeLU [23]
proposes to use the state-of-the-art meta-learning to solve
the user cold-start problem. Pan et al. [38] propose Meta-
Embedding, a meta-learning based approach that learns to
generate desirable initial embeddings for new ad IDs. Different
from them, our MetaCF seeks to go beyond incorporating
auxiliary features and utilizes structural information among
users and items to learn the embeddings of new nodes.
Therefore, MetaCF can solve the cold-start problem when the
content information is unavailable, which is infeasible for the
above models. Moreover, in [38] they need to pre-train the
base-model, which is laborious. In contrast, our framework
MetaCF can learn from scratch and do not need additional
steps.



C. Meta-Learning

Meta-learning, also known as learning to learn, intends to
design models that can learn new skills or adapt to new envi-
ronments rapidly with a few training examples [39]. Previous
work on the application of meta-learning in recommender
systems includes [40]–[43]. Besides the works about cold-
start recommendation we discussed before, there have been
work [42] that utilized meta-learning to select recommendation
algorithms and a recent work [40] proposes λopt to optimize
regularization hyper-parameters based on the validation data.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed MetaCF which leverages meta-
learning to address the cold-start problem in recommendation
tasks. MetaCF can adapt to new users in an accurate and
expeditious manner with only a few interactions. Extensive
experiments on three real-world datasets demonstrate the ef-
fectiveness of MetaCF, which outperforms a set of state-of-
the-art baselines. In future work, we would like to extend our
work in the following three directions. First, we would like
to migrate our model to solve the cold-start problems from
the perspective of items. Second, we will extend our work
to incorporate the relationships between users and items to
construct a knowledge graph to further improve the effective-
ness. Last, we would also like to explore the effectiveness of
MetaCF in the scenario of sequential recommendation.
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