
1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2947174, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

ATM: An Attentive Translation Model for
Next-Item Recommendation

Bin Wu, Xiangnan He, Zhongchuan Sun, Liang Chen, and Yangdong Ye

Abstract—Predicting what items a user will consume in the
next time (i.e., next-item recommendation) is a crucial task for
recommender systems. While the factorization method is a popu-
lar choice in recommendation, several recent efforts have shown
that the inner product does not satisfy the triangle inequality,
which may hurt the model’s generalization ability. TransRec
is a promising method to overcome this issue, which learns a
distance metric to predict the strength of user-item interactions.
Nevertheless, such method only uses the latest consumed item
to model a user’s short-term preference, which is insufficient
for modeling fidelity. In this paper, we propose a simple yet
effective method named ATM, short for Attentive Translation
Model, to explicitly exploit high-order sequential information
for next-item recommendation. Specifically, we construct a user-
specific translation vector by accounting for multiple recent
items, which encode more information about a user’s short-
term preference than the latest item. To aggregate multiple items
into one representation, we devise a position-aware attention
mechanism, learning different weights on items at different
orders in a personalized way. Extensive experiments on four real-
world datasets show that our method significantly outperforms
several state-of-the-art methods.

Index Terms—Attention, Translation, Next-Item Recommen-
dation, Implicit Feedback.

I. INTRODUCTION

RECOMMENDER systems aim to infer users’ preferences
on items and assist users in identifying desired informa-

tion [1], [2]. In the past decade [3], many efforts have been
made to develop general recommendation methods, such as
neighbor-based methods [4], matrix factorization (MF) [5], [6],
[7], and neural networks [8], [9], [10]. These methods focus
on modeling user behaviors on items (e.g., purchase/click
records) and forgo other affiliated information like time, user
profiles, and item attributes. While offering a generic solution
for building recommendation service [11], CF methods usually
provide suboptimal performance in personalized ranking and
can be substantially improved by incorporating these informa-
tion [12], [13], [14].

User behaviors are sequential by nature. As such, from
a practical standpoint, predicting what items a user will
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Fig. 1: An example to illustrate the recommendation mechanism of
TransRec and our method. (a) TransRec applies first-order Markov
modeling which only considers the previous one item to predict the
next. (b) Our method enhances TransRec with high-order Markov
modeling, using multiple previous items to predict the next.

consume in the next time (i.e., short-term interest) could be
more valuable than predicting user’s general interest. This
task is known as next-item recommendation, which tailors
the model design and learning to predict the next item to
consume. The Factorized Personalized Markov Chain (FPMC)
method [15] is a pioneer and prevalent solution for next-item
recommendation. It complements MF with the modeling of
the interaction between the next item and the latest consumed
item, which encodes users’ short-term interests (i.e., the first-
order Markov assumption). However, a drawback of such
factorization-based method lies in the use of the inner product
to model the interaction between a user and an item, which
does not satisfy the triangle inequality1 [16] and may incur
large ranking loss [2]. The triangle inequality states that for
any three objects, the sum of any two pairwise distance should
be greater than or equal to the remaining pairwise distance.
For instance, items i and j are both similar to item k. The
triangle inequality means that item i is also similar to item j.
Therefore, these existing approaches based on inner product
operator can only preserve the first-order proximity (i.e., both
i and j are similar to k), but fail to capture the second-order
proximity (i.e., i and j are also similar); this drawback leads
to suboptimal performance, as described in [16].

A recent trend in recommendation research is to explore
more expressive interaction function to model the user-item
relation. For example, He et al. [2] formulates the neural
collaborative filtering (NCF) framework, augmenting inner

1(a, c)’s distance is bounded by the sum of distances between (a, b) and
(b, c): d(a, c) ≤ d(a, b) + d(b, c).
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product with deep neural networks in interaction learning (i.e.,
the NeuMF model); later the authors [18] extend the NCF
framework by using outer product and convolution neural
network to learn the interaction function (i.e., the ConvNCF
model); and He et al. [17] applies a distance metric that
satisfies the triangle inequality to model user-item interaction
(i.e., the TransRec model). While NeuMF and ConvNCF are
general recommendation methods that do not capture the
sequential effect, TransRec is the most relevant work that
is designed for next-item recommendation (a.k.a., sequential
recommendation). However, TransRec only uses the latest
consumed item as short-term user interest (i.e., the first-
order Markov assumption as in FPMC), which we believe is
insufficient and may lead to suboptimal performance.

Figure 1 shows an example to illustrate the limitation
of first-order Markov modeling and the usefulness of high-
order Markov modeling for next-item recommendation. The
subfigure (a) shows the paradigm of TransRec which only uses
the previous item to predict the next item, making it difficult
to determine which hat better meets the user’s current need. In
contrast, the subfigure (b) shows our proposal which accounts
for multiple previous items, making it possible to distinguish
the user’s current need better. Here the hat with black and red
as the main color is a desired choice, considering the user’s
purchases of a red coat and a pair of black shoes in time t−4
and t− 1.

In this paper, we focus on exploiting high-order sequential
information for next-item recommendation. We propose a
new method named ATM (short for Attentive Translation
Model), which implements high-order Markov modeling under
the TransRec framework. Specifically, when constructing the
vector to “translate” a user to the next item, we consider
multiple recent items rather than the most recent one. The key
technical challenge here is how to aggregate the items from
different orders to form a representative translation vector,
which is critical to the model’s effectiveness. Technically
speaking, standard aggregation operations such as max pooling
and average pooling [19] can be directly applied. However,
they do not cater to the characteristics of personalized high-
order Markov modeling thus are less suitable for next-item
recommendation. To this end, we adopt a personalized atten-
tion strategy, which can learn different weights on items at
different orders and for different users.

To summarize, our main contributions are threefold:
• We contribute a simple yet effective solution ATM to

integrate personalized high-order Markov modeling into
the translation-based recommendation framework.

• We develop a personalized attention mechanism, which
is adaptive and position-aware, to capture the varying
importance of information at different orders.

• We conduct extensive experiments on a variety of real-
world datasets, demonstrating quantitatively that ATM
significantly outperforms several state-of-the-art methods
and qualitatively that it is capable of making meaningful
recommendations.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews preliminaries on general recommen-
dation, sequential recommendation, attention mechanism and

knowledge graph. Section III provides the formulation of
the problem, elaborates our proposed method, and describes
how to optimize ATM. In Section IV, extensive experiments
are performed to evaluate the effectiveness of our proposed
method for next-item recommendation. Lastly, we conclude
this paper and give future work in Section V.

II. RELATED WORK

In this section, we review general recommendation that are
closely related to ours, followed by a summarization of stud-
ies on sequential recommendation and attention mechanism.
Lastly we introduce knowledge graph technologies, especially
translation-based recommendation.

A. General Recommendation

Traditional item recommendation usually relies on collab-
orative filtering [20], [21] to learn from implicit feedback
such as purchases, clicks, and thumbs-up. Many of these
approaches use matrix factorization techniques [22], [23], [24],
[25], which seek to learn user and item embedding vectors
and use the inner product to predict the strength of user-item
interaction. Several existing works [26], [27] have shown that
inner product does not satisfy the condition of the triangle
inequality, which may limit generalization of the model [16].
Recently, a trend in recommendation research is to seek more
expressive interaction function to model the user-item relation.
For example, Hsieh et al. [16] formulated collaborative metric
learning method, replacing the inner product by applying an
Euclidean metric; and He et al. [18] proposed to use an outer
product operation and Convolution Neural Network (CNN)
to learn the interaction function. Despite great promise, these
methods neglected the influence of sequential dynamics, which
may be unsuitable for next-item recommendation [28], [29].

B. Sequential Recommendation

In recent years, the importance of sequential patterns in
recommender systems has been gradually recognized by re-
searchers [15], [30]. The early pioneer work by [15] proposed
a Factorized Personalized Markov Chains (FPMC) method for
next-item recommendation. The work combined the power
of MF at modeling general tastes and the strength of the
first-order Markov Chain (MC) at modeling sequential pat-
terns. Afterwards, Personalized Ranking Metric Embedding
(PRME) method [31] replaces the inner product operators in
FPMC with Euclidean distance, where the condition of the
triangle inequality plays a vital role in helping the method
to generalize well [16]. As illustrated the limitation of first-
order Markov modeling in Fig. 1, there are several methods
adopting high-order Markov chains that consider multiple
recent items. Specifically, He et al. [32] integrated similarity-
based models with high-order Markov chains smoothly to
predict personalized sequential behavior; this method learns
adaptive weights for different orders and different users.
Nevertheless, we argue that it is unreasonable to assign a
same weight for different items, which occur in the same
order at each time step. ConvolutionAl Sequence Embedding
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Recommendation (Caser) [33], a Convolutional Neural Net-
work (CNN) based method, regards the embedding matrix of
high-order Markov chains as an “image” and adopts horizontal
and vertical convolutional operations to capture sequential
patterns. Recently, Yan et al. [34] extended the Caser method
by leveraging pairwise encoding module and 2D convolutional
filters to capture high-level sequential patterns. Other than
the above MC/CNN-based methods, another branch of work
adopts Recurrent Neural Network (RNN) to capture sequential
patterns. For instance, Yu et al. [19] proposed a dynamic
recurrent basket model based on RNN for next-basket rec-
ommendation; and Hidasi et al. [35], [36] proposed to use
Gated Recurrent Unit (GRU) to model sequential behavior
for session-based recommendation. More recently, Recurrent
Convolutional Neural Network (RCNN) [37] leverages the
convolutional operation of CNN to extract short-term sequen-
tial patterns, while adopts the recurrent operation of RNN
to capture long-term dependencies. Since these RNN-based
methods take the state from the last step and current action as
their input, these dependencies make RNN-based methods less
efficient (i.e., higher model complexity). Moreover, the recent
study [38] demonstrates that these sophisticated RNN/CNN-
based methods underperform the simpler model FPMC by a
large margin. It may be because these complex models require
large amounts of data to capture long-term patterns, i.e., easily
overfitting in high-sparsity settings.

C. Attention Mechanism

Inspired by the psychological cognition scheme, attention
mechanism has shown high performance in many tasks, such
as image/video captioning [39] and machine translation [40].
Its key idea is to learn to assign adaptive weights for a set
of features, i.e., higher attentive weights demonstrate that the
corresponding features are more informative. In recent years,
due to its strong interpretability, the attention mechanism
has been introduced into recommender systems [38], [41],
[42], [43]. For instance, in the NAIS model for item-based
collaborative filtering, He et al. [41] applied an attention
network to distinguish which historical items in a user’s
profile are more important for a prediction. In the ACF model
for multimedia recommendation, Chen et al. [42] employed
a component-level attention module to select representative
features for multimedia items, and an item-level attention
module to choose informative items to infer the underlying
users’ preferences. In the NARM model for session-based
recommendation, Li et al. [43] explored a hybrid encoder
with an attention mechanism to capture user’s main purpose
in the current session. Recently, Yu et al. [38] introduced a
Multi-order Attentive Ranking model (MARank) for next-item
recommendation, which unifies both individual- and union-
level sequential patterns for modeling user’s short-term prefer-
ence. MARank and all previous works usually adopt standard
attention mechanism to capture user’s varying attentions on
different items. Nevertheless, standard attention mechanism is
unaware of the positions (i.e., orders) of the recent items. In
fact, temporal order is very important for sequential recom-
mendation. Comparatively, we devise a personalized attention

mechanism for translation-based method, which is an adaptive
and position-aware aggregation strategy.

D. Knowledge Graph

Recent years have witnessed rapid growth in knowledge
graph (KG) construction and application [44]. A large number
of KGs have been created, including Freebase, YAGO, NELL,
DBpedia et al., and successfully applied to many challenging
tasks, from relation extraction [45] and question answer-
ing [46] to link prediction [47] and entity classification [48].
A typical KG is a multi-relational graph consisted of entities
and relations. Each edge is represented as a triple of the
form <head entity, relation, tail entity>, showing that two
entities are connected by a specific relation, e.g., <Tom,
graduated from, NUS>. Among the various KG techniques,
TransE [49] is a prominent and representative model, which
embeds entities and relationships of multi-relational data in
a transition space that satisfies

−−−−−−−→
head entity +

−−−−→
relation ≈−−−−−−→

tail entity; readers can refer to [44] for a detailed survey.
Notably, due to their scalability and superior performance

over traditional factorization-based methods [50], translation-
based methods have been adopted for recommender system-
s [17], [51], [52], [53], [54], [55]. For instance, Park et al. [51]
integrated neighborhood information and translational metric
learning to model the intensity and heterogeneity of user-item
relationships. LRML [52], which is an extension of Collab-
orative Metric Learning (CML) [16], adopts an augmented
memory module and learns to attend over memory blocks to
construct relational embeddings. For fashion recommendation,
Yang et al. [53] embedded items into a transition space,
where category-specific complementary relations is modeled
by a translation embedding to model the transition between
items. The work that is most relevant to our work is [17],
which introduces a translation-based method (TransRec) for
next-item recommendation; this method embedded all items
into a transition space, and then translated the previous item
towards the next item by a translation vector. Our work is
distinguished from the above methods in that we adopt high-
order Markov chains to construct translation embedding, and
extensive experiments have verified our assumption is realistic
and reasonable.

III. PROPOSED METHOD

A. Problem Formulation

In this paper, we focus on solving the next-item rec-
ommendation task which is formulated as follows. Let U
and I denote the set of users and items, respectively. For
each user u, a sequence of actions Su is known: Su =
{Su1 ,Su2 , · · · ,Su|Su|} with Sut ∈ I. The action history of all
users is A = {S1, · · · ,S |U|}. Given each user u and her/his
behavior sequence Su, the goal of next-item recommendation
is to derive a total ranking >u,t over all the un-observed items
at time t and to recommend the top-N items for the user u.
The key notations and their explanations used in this paper
are summarized in Table I.
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TABLE I: Notations

Notation Explanation

U ,I user set, item set
u,j,t user u ∈ U , item j ∈ I, a specific time step
Su action sequence of user u: {Su1 , · · · ,Su|Su|}
Sut the item that user u interacted with at time step t
γUu embedding vector associated with user u
γIj embedding vector associated with item j

a global translation vector
Tu(t) translation vector associated with user u at time step t
bj bias term associated with item j
d(x, y) distance between x and y

item embedding

t-4 t-3 t-2 t-1

t

user embedding translation embedding

agg

Fig. 2: Illustration of high-order Markov chains for a user-specific
translation embedding. The agg symbol denotes aggregation opera-
tion. Best viewed in color.

B. Personalized Attentive Translation Model

In recommendation scenarios, users and items can be treated
as ‘entities’ as well. Inspired by the translation embedding
techniques [49], we represent each user/item as an embedding
vector in a transition space, and treat every user-item inter-
action as one specific type of ‘relation’. Let γUu ∈ RK and
γISut ∈ RK be the embedding vector of user u and item Sut ,
respectively, and K be the embedding size, i.e., the dimension
of the embedding vector. To model the sequential behaviors,
we utilize a user-specific translation vector Tu(t) to model the
user’s short-term dynamics. In particular, if user u at time step
t is translated towards the next item Sut , the following relation
should hold

γUu + Tu(t) ≈ γISut . (1)

In other words, γISut should be the nearest neighbor of γUu +
Tu(t) in the transition space. Given the recent L items that
user u has interacted with {Sut−1, · · · ,Sut−L}, Tu(t) can be
obtained from an Lth order Markov chains which is defined
as follows:

Tu(t) = a + f(γISut−1
, · · · , γISut−L

), (2)

where f(·) denotes the aggregation operation and a de-
notes the user-irrelevant translation vector to capture global
transition bias. Figure 2 illustrates a general framework for
aggregating high-order Markov chains.

One advantage of our method is that we can integrate
different aggregation operators to construct the user-specific
translation vector Tu(t). To aggregate the high-order Markov
chains into a single embedding vector, max pooling and
average pooling are probably the most widely used [19].
Unfortunately, these two pooling operations lack the flexibility
to model different orders of the Markov chain with different

weights. Intuitively, recent actions should be more correlated
with the next action. To achieve this goal, we can allow the
recent L items unequally to the translation vector Tu(t) by
employing a weighted sum:

f(γISut−1
, · · · , γISut−L

) =
∑L

l=1
αl · γISut−l , (3)

where αl is a trainable parameter that denotes the individual-
ized weight of the order l in contributing to the translation
vector Tu(t). While this schema seems to be capable of
differentiating the importance of different orders, it ignores
the fact that different users may differ in sequential behav-
iors. Furthermore, each user employs the same weight vector
to capture their short-term interests, which may limit the
model’s representation ability. To alleviate the limitation, an
intuitive solution is to assign a personalized weight vector
βu = {βu,1, βu,2, . . . , βu,L} for the target user u. The revised
schema is designed as follows:

f(γISut−1
, · · · , γISut−L

) =
∑L

l=1
(αl + βu,l) · γISut−l . (4)

While the above solution sounds to be reasonable, it comes
across a main obstacle. The size of β is very huge (i.e.,
|U| × L), which is lack of flexibility in practice. Particularly,
we argue that it is unreasonable to assign a global weight
for different items, which occur in the same order at each
time step. Continuing an earlier example, suppose that a user
is shopping at Amazon. At time step t, the user may put
more attention on the red coat (t − 4) and a pair of black
shoes (t − 1). At other time steps, the above aggregation
operation will still assign higher weights on the 1th order
and 4th order items. From the perspective of user repre-
sentation learning, this strategy is not capable of capturing
user’s varying attentions on different items. Inspired by the
recent success of attention mechanism in many tasks, such
as machine translation [40], multimedia recommendation [42]
and group recommendation [56], we design a personalized
attention mechanism, which is an adaptive and position-aware
aggregation operation, to capture the importance of each item
in the short-term interests of a given user. Formally, the
attention network is defined as:

h(u, t, l) = φ(γISut−lW1 + PlW2 + b), (5)

α(u, t, l) =
exp(γUu h

>(u, t, l))∑L
g=1 exp(γ

U
u h
>(u, t, g))

, (6)

where W1 ∈ RK×K, W2 ∈ RK×K and b ∈ RK are
the trainable parameters. As we can see, the size of these
parameters (i.e., 2K2 + (L + 1)K,K � |U|) is much smaller
than that of β. Unlike standard attention mechanism that is
unaware of the positions of recent items [38], [42], we inject a
learnable position embedding matrix P ∈ RL×K to model the
effect of different orders. φ(·) is the activation function and we
adopt tanh to enhance nonlinear capability. To reduce the size
of the model parameters, we use the embedding γUu of user
u as the context vector and get the adaptive weight α(u, t, l)
as the normalized similarity between h(u, t, l) and γUu with a
softmax function. Figure 3 illustrates the architecture of ATM,
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Fig. 3: An illustration of ATM model architecture. Best viewed in color.

which introduces the position-aware attention mechanism to
differentiate the varying contributions of the user u’s recently
interacted Lth order items for the final prediction. As a result,
we can compute user’s dynamic preference as a sum of the
item embeddings weighted by the attention scores as follows:

f(γISut−1
, · · · , γISut−L

) =
∑L

l=1
α(u, t, l) · γISut−l . (7)

It is worth noting that ATM with the designed attention
mechanism is capable of learning different weights on items
at different orders and for different users. Finally, for user u,
the probability of item Sut being the next item (at time step t)
with an Lth order Markov chains is predicted by:

Prob(Sut | u,Sut−1, · · · ,Sut−L)

∝ µSut − d(γUu + Tu(t), γISut ),
(8)

where d(·) denotes the L2 distance. In Eq. (8), we add a single
bias term µ to capture the overall item popularity.

C. Optimization Criterion

Given a user u and the previous action sequence
{Su1 , ...,Sut−1}, Sut >u,t j denotes that item Sut is ranked
higher than item j for user u. Here it is a natural choice to op-
timize such ranking between Sut and j by Sequential Bayesian
Personalized Ranking (S-BPR) [15]. Assuming independence
of all users, the model parameters of ATM can be inferred by
optimizing the following maximum a posterior:

arg max
Θ

∏
u∈U

|Su|∏
t=L+1

∏
j 6=Sut

Prob(Sut >u,t j|Θ) Prob(Θ), (9)

where Θ = {a, b, µ, γUu∈U , γIj∈I ,W1,W2,P } is the set
of our model parameters. By employing a sigmod function

σ(z) = 1
1+e−z , the ranking probability can be rewritten as the

following:

Prob(Sut >u,t j|Θ) = Prob(p̂u,t,Sut − p̂u,t,j > 0|Θ)

= σ(p̂u,t,Sut − p̂u,t,j),
(10)

where p̂u,t,Sut is a shorthand for the prediction in Eq. (8).
Same as FPMC, the prior distributions over parameters are
assumed to be Gaussian. Hence, we have the final objective
function of the proposed model, where λ is a regularization
hyper-parameter.

arg max
Θ

ln
∏
u∈U

|Su|∏
t=L+1

∏
j 6=Sut

Prob(Sut >u,t j|Θ) Prob(Θ)

= arg max
Θ

∑
u∈U

|Su|∑
t=L+1

∑
j 6=Sut

lnσ(p̂u,t,Sut − p̂u,t,j)− λ‖Θ‖
2.

(11)

Due to the huge number of (u, t,Sut , j) quadruples, di-
rectly optimizing the objective function in Eq. (11) is time
consuming. Instead, following the approach of S-BPR, we
independently draw the training quadruples by bootstrapping
and apply Stochastic Gradient Descent (SGD) to update the
model parameters. According to SGD, the complete algorithm
is summarized in Algorithm 1.

Space Complexity. As shown in Eq. (9), the model parame-
ters are composed of two parts: Θ1 = {a, µ, γUu∈U , γIj∈I} and
Θ2 = {b,W1,W2,P }. The first part of our model parameters
is the same as TransRec and grows linearly with users and
items. For parameters Θ2 (i.e., 2K2 + (L + 1)K), they are
shared among all items and users, with the dimensionality of
each variable is far less than the number of items and users.
As K and L are usually very small (e.g., K<100, L<5), this
additional storage cost is practically negligible. Therefore, the
space complexity of our proposed method is comparable with
TransRec.



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2947174, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 6

Algorithm 1: The optimization for ATM.
Input: sequential data A, learning rate ε, regularization

hyper-parameter λ;
Output: global transition bias a, item bias µ, embedding

vectors γU ,γI , position embedding matrix P ,
and parameters in attention network b,W1,W2;

1 Initialize a, µ, γU , γI ,P with Gaussian distribution and
b,W1,W2 with xavier;

2 repeat
3 draw (u, t,Sut ) from A;
4 draw j from I\Su;
5 for l← 1 to L do
6 Compute h(u, t, l) according to Eq. (5);

7 for l← 1 to L do
8 Compute α(u, t, l) according to Eq. (6);

9 Compute Tu(t) according to Eq. (2) and (7);
γ̃Uu ← γUu + Tu(t)

10 Compute p̂u,t,Sut and p̂u,t,j according to Eq. (8);
11 R̂(u, t,Sut , j) = p̂u,t,Sut − p̂u,t,j ;
12 for each parameter θ in Θ do
13 θ ← θ+ ε ·

(
σ(R̂(u, t,Sut , j))

∂R̂(u,t,Sut ,j)
∂θ − λθ

)
;

14 until convergence;
15 return Θ = {a, b, µ, γUu∈U , γIj∈I ,W1,W2,P }.

Time Complexity. We analyze the time complexity of
the predictive model of ATM, i.e., Eq. (8). This reflects
the time overhead of ATM in testing, and the training time
of ATM should be proportional to the time overhead of
testing. The time complexity of obtaining a prediction p̂u,t,Sut
with TransRec (cf. Eq. (1)) is O(K), where K denotes the
embedding size. Compared to TransRec, the additional time
cost of obtaining a prediction score with ATM comes from
position-aware attention network. Since the denominator of
softmax function (i.e., Eq. (6)) needs to traverse over all items
in {Sut−1, · · · ,Sut−L}, the time complexity of obtaining an
α(u, t, l) is O(K2L). Considering the α(u, t, l) term is shared
across the computation of p̂u,t,Sut and p̂u,t,j , we only need to
compute it once and cache it. As such, the computation of
p̂u,t,Sut − p̂u,t,j takes additional time cost O(K2L). In fact,
as shown in our experiments, ATM could obtain the best
performance when L = 3 or 4. Also, the embedding size is
limited with K � min(|U|,|I|). Thus, the additional time cost
is acceptable and our method could be scaled up to large-scale
datasets.

IV. EXPERIMENTS

In this section, our experiments are intended to answer the
following research questions:
RQ1 How does ATM perform when compared with several

state-of-the-art competitors?
RQ2 How do different aggregation strategies affect the per-

formance of our ATM method?
RQ3 How do different orders of Markov chains affect the

performance of our ATM method?

RQ4 Is the designed attention mechanism capable of learning
meaningful patterns?

A. Experimental Settings

TABLE II: Statistics of the evaluation datasets.

Dataset User# Item# Action# Sparsity
Cellphone 7,622 36,121 110,539 99.95%
Tool 7,945 42,614 131,008 99.96%
Clothing 25,160 156,091 379,749 99.99%
Epinions 1,444 17,556 24,531 99.90%

Datasets. To evaluate the performance of our method for
next-item recommendation, we experimented on four publicly
accessible datasets.
• Amazon.2 The first group of datasets is from Amazon.com

and span May 1996 to July 2014, containing a large number of
consumptions of users in different categories. In particular, we
take a series of broad categories including ‘Cell Phones and
Accessories’, ‘Tools and Home Improvement’, and ‘Clothing,
Shoes and Jewelry’, which are named as Cellphone, Tool, and
Clothing for short.
• Epinions.3 It is originally from Epinions.com, containing

a large number of online consumer reviews from January 2001
to November 2013. This dataset was collected by [57] and is
widely used for evaluating next item prediction methods.

In our experiments, we transform observed ratings into
binary implicit feedback as ground truth, such that our goal
is to rank items that a user would be likely to purchase/click.
For each of the above datasets, we eliminate users that have
less than 10 associated actions. As a result, Table II shows the
characteristics of the final datasets.

Evaluation Protocol. Similar to previous works [18], [58],
we adopt the leave-one-out evaluation to evaluate the perfor-
mance of next-item recommendation. Specially, for each user,
we sort his/her interactions in chronological order, holding
out the second-to-last interaction as the validation set and
the last interaction as the test set. The remainder is used for
training. Unlike previous works [2], [56], [59] that randomly
select 100 items that have not been consumed by the given
user, we choose all items non-interacted by each user as the
candidate items for next-item recommendation. As there are
many un-observed items for each user, our evaluation protocol
should handle much more challenging cases for next-item
recommendation. We contend that our evaluation protocol is
more suitable for providing a fair comparison for the next-
item recommendation task, as it essentially avoids sampling
bias during evaluation. In our experiments, we employ two
ranking-oriented metrics, Hit Ratio (HR@N) and Normalized
Discounted Cumulative Gain (NDCG@N), which have been
widely used in the literature [59], [60], [61]. Intuitively,
HR@N measures whether the testing item is in the top-N
list, while NDCG@N accounts for the position of the hit by
assigning higher scores to hits at top ranks. Notably, as we only
have one test instance for each user, HR@N is proportional

2https://cseweb.ucsd.edu/∼jmcauley/datasets.html
3http://jmcauley.ucsd.edu/data/epinions/
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to Precision@N, and is equivalent to Recall@N. Formally, the
definitions of HR@N and NDCG@N are shown as follows:

HR@N =
1

|U|

|U|∑
u=1

N∑
a=1

δu(a),

NDCG@N =
1

|U|

|U|∑
u=1

∑N
a=1

2δu(a)−1
log2(a+1)

1/ log2(a+ 1)
,

(12)

where |U| is the number of users. δu(a) is a binary indicator
function that equals to 1 if the item at rank a is purchased in
the test data, otherwise equals to 0.

Baselines. In our experiments, we compare ATM with
several state-of-the-arts, including general recommendation
methods, MC-based methods and RNN/CNN-based methods.
General Recommendation Methods:
• BPRMF: This baseline is a state-of-the-art pairwise

method, which is proposed in [62]. It models the pairwise
ranking for each pair of the unobserved and observed
products, and employs SGD with bootstrap sampling for
optimization.

• NeuMF: This is a state-of-the-art method with binary
cross-entropy loss, which is proposed in [2]. This mod-
el seamlessly combines the linearity of MF and non-
linearity of DNNs for modeling user-item interactions.
It ignores the sequential patterns in the system.

MC-based Methods:
• FPMC: This baseline is described in [15], which is a

state-of-the-art method for next-item recommendation. It
unifies the strength of matrix factorization at modeling
users’ general preferences and the power of first-order
Markov chain at capturing sequential patterns.

• PRME: This method is described in [31], which replaces
the inner products in FPMC with Euclidean distances.
It embeds users and items into two Euclidean spaces to
model personalized Markov behavior.

• Fossil: It is proposed by He et al. [32], which combines
factored similarity model (i.e., FISM [63]) and high-order
Markov chains by adopting a weight sum aggregation
over multiple recent item embeddings.

• TransRec: This method is described in [17], which
embeds each item in a shared Euclidean space and learns
personalized translation vectors through this space for
each user.

• MARank [38]: An improved version of FPMC, which
unifies both individual- and union-level item interaction
into preference inference model from multiple views,
and shows significant performance gains on next-item
recommendation.

RNN/CNN-based Methods:
• NARM [43]: An RNN-based state-of-the-art recom-

mender, which adopts attention mechanism to the user’s
main purpose from the hidden states and combines it with
sequential behaviors as a unified session representation to
generate recommendations.

• Caser [33]: A CNN-based state-of-the-art recommender,
which captures high-order Markov chains by employing

horizontal and vertical convolutional operations on the
embedding matrix of the L most recent items.

TABLE III: Properties of methods being compared.

Method Sequentially Triangle High-order Position
-aware -preserving Markov chains -aware

BPRMF 8 8 8 8
NeuMF 8 8 8 8
NARM 4 8 4 4
Caser 4 8 4 8
FPMC 4 8 8 8
PRME 4 4 8 8
Fossil 4 8 4 8
TransRec 4 4 8 8
MARank 4 8 4 8
ATM 4 4 4 4

As other general recommender systems and sequential
methods (e.g., eALS [58], ACF [42], GRU4Rec [35],
GRU4Rec+ [36]) have been outperformed on similar datasets
by our baselines, we omit comparison against them. We also
dont’s include temporal models, such as TimeSVD++ [64] and
RRN [65], which differ in setting from what we consider. In
order to provide a clear understanding of the above methods,
we provide a summary of their properties in Table III whether
they are ‘sequentially-aware’, ‘triangle-preserving’, ‘consider
high-order Markov chains’, and ‘position-aware’.

Hyper-parameter Settings. For fair comparison, we im-
plement BPRMF, FPMC, TransRec, PRME and our pro-
posed model using TensorFlow. The learning rate is se-
lected from {0.001,0.005,0.01,0.05,0.1}. For NeuMF4, NAR-
M5, Caser6, Fossil7 and MARank8, we adopt the authors’
released source code and tune their hyper-parameters in
the same way. For BPRMF, FPMC, TransRec, PRME and
ATM, the regularization hyper-parameters are searched in
{0.00001,0.0001,0.001,0.01,0.1,1,10}. For PRME, we search
α in {0.1,0.2,0.4,0.6,0.8}. For ATM, we tune the hyper-
parameter L in {1,2,3,4,5}. All experiments are conducted on
a server equipped with Intel XeonCPU E5-2637@ 3.50GHz on
128GB, 3 NVIDIA GeForce Tian X Pascal (12GB for each).

B. Performance Analysis

Comparison with State-of-The-Arts (RQ1) We now eval-
uate the performance of ATM by comparing the results on four
datasets with its competitors. Table IV shows recommendation
accuracy in two metrics w.r.t. the embedding size. Moreover,
we conduct the paired two-sample t-test experiments, demon-
strating that the improvements are statistically stable and non-
contingent (p-value < 0.01). Due to space limitation, they are
omitted. Several comparisons are maked to better understand
and explian our findings as follows:

BPRMF vs. NeuMF. By combining the strength of linear
MF and the power of non-linear multi-layer perceptron model,
NeuMF substantially outperforms BPR on all datasets. This
observation is consistent with that in [2].

4https://github.com/hexiangnan/neural collaborative filtering
5https://github.com/lijingsdu/sessionRec NARM
6https://github.com/graytowne/caser pytorch
7https://sites.google.com/view/ruining-he/.
8https://github.com/voladorlu/MARank
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TABLE IV: Recommendation performance (%) of different methods on four datasets with N=50. Column ‘Improve’ indicates the percentage
of improvements that ATM achieves relative to the * results. The best performing method in each case is boldfaced (higher is better).

Dataset Metric BPRMF NeuMF NARM Caser FPMC PRME Fossil TransRec MARank ATM Improve
Cellphone HR 5.8384 6.3658 6.6573 7.2947 7.7145 7.8618 8.0687 8.6854 8.8431* 9.6502 8.07%
K=16 NDCG 1.7785 1.8932 1.9681 2.1739 2.3355 2.3626 2.4386 2.7320 2.9010* 3.2006 10.32%

HR 7.1504 7.8601 7.9375 8.0345 8.2393 8.5935 8.8953 9.3545 9.6127* 10.6893 11.20%
K=64 NDCG 2.3374 2.4816 2.5240 2.5570 2.6323 2.8985 2.9339 3.0666 3.3518* 3.9217 17.00%
Tool HR 3.4487 4.2179 4.3651 4.4053 4.5060 4.6786 4.8584 5.2234 5.4369* 5.8235 7.11%
K=16 NDCG 0.9745 1.3155 1.4502 1.5325 1.5862 1.6046 1.6301 1.6607 1.7822* 1.9038 6.82%

HR 4.0654 4.4218 4.6863 4.7955 4.9087 5.0312 5.2360 5.5507 5.8349* 6.5375 12.04%
K=64 NDCG 1.2874 1.5574 1.6217 1.6524 1.6681 1.7102 1.7658 1.8464 1.9386* 2.2019 13.58%
Clothing HR 1.3672 1.4208 1.4536 1.4706 1.4785 1.4966 1.6057 1.8084 2.0896* 2.3236 11.19%
K=16 NDCG 0.4111 0.4668 0.4772 0.4887 0.4999 0.5066 0.5399 0.5652 0.6135* 0.7028 14.55%

HR 1.8323 1.8959 1.9235 1.9436 1.9515 2.0191 2.2854 2.5358 2.7233* 2.9327 7.68%
K=64 NDCG 0.6675 0.6919 0.7031 0.7088 0.7067 0.7359 0.8338 0.8870 0.9691* 1.1305 16.65%
Epinions HR 1.4863 1.5235 1.5319 1.5928 1.6620 1.6834 1.7183 1.7313 1.7807* 1.8802 5.58%
K=16 NDCG 0.3746 0.4227 0.4368 0.4406 0.4492 0.4978 0.5139 0.5216 0.5569* 0.6206 11.43%

HR 1.5928 1.6422 1.6997 1.7198 1.7313 1.7688 1.8698 2.0083 2.2096* 2.3367 5.75%
K=64 NDCG 0.4132 0.4318 0.4725 0.4906 0.5047 0.5832 0.6977 0.7344 0.7687* 0.8209 6.79%
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Fig. 4: Performance for different values of N (K=64).

NARM vs. BPRMF & NeuMF. Compared to BPRMF
and NeuMF, NARM focus on capturing short-term dynamics
among items. Remarkably, NARM achieves comparable pre-
diction accuracy with BPRMF and NeuMF. This means that
it is important to model sequential patterns in the next-item
recommendation task.

FPMC vs. PRME. PRME shows consistent improvements
over FPMC. This is because the inner product does not satisfy
the crucial triangle inequality, which limits the expressiveness
of FPMC.

TransRec vs. FPMC & PRME. Notably, TransRec has
competitive performance with FPMC and PRME. This indi-
cates that it is more reasonable to utilize translation mechanism
to model user-item and item-item relationships.

FPMC vs. Fossil. Fossil achieves considerably better results
than FPMC in all cases, which verifies the usefulness of high-
order Markov chains in the next-item recommendation task.

Fossil vs. Caser. It is interesting to note that Fossil achieves
better performance than Caser with a large margin. This
owes to CNN-based model having more parameters to capture
high-order transitions (i.e., easy overfitting), whereas carefully
designed but simpler model is more effective in high-sparsity

datasets.
MARank vs. ATM. As expected, the later model signifi-

cantly outperforms the former one. It indicates that 1) temporal
order plays a significant role for making a meaningful recom-
mendation.; 2) our personalized attention mechanism has the
ability of learning adaptive weights on items at different orders
and for different users; 3) constructing translation embedding
with high-order Markov chains is quite reasonable.

Note that for all results presented so far, the size of the
top-N list chosen is 50 (i.e., N = 50). Next, we evaluate the
overall performance achieved by various methods with varying
the size of the top-N list. Figure 4 illustrates the HR@N and
NDCG@N values of ATM versus some baselines for different
values of N (i.e., 10, 20, 30 and 40). The main findings are
summarized as follows:
• All methods perform consistently with different datasets.

Precisely, as N increases, HR@N and NDCG@N also
increase.

• MARank can always outperform state-of-the-art CNN-
based method — Caser. This indicates that it is benefi-
cial to unify both individual-and union-level sequential
patterns for modeling user’s short-term preference.
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TABLE V: NDCG@50 of TransRec and ATM with different aggre-
gation operations. MAX represents the max pooling strategy, AVG
represents the average pooling strategy, ATT represents the attention
mechanism without the positional embedding matrix P , and PAT
denotes the designed position-aware attention mechanism.

Dataset Cellphone Tool Clothing Epinions
TransRec 2.7320 1.6607 0.5652 0.5216
MAX 2.7621 1.6943 0.5879 0.5283
AVG 2.8036 1.7211 0.6002 0.5407
ATT 2.9751 1.8697 0.6864 0.5932
PAT 3.2006 1.9038 0.7028 0.6206

• ATM achieves the best performance in all datasets, further
justifying that modeling high-order Markov chains as
translation embedding is realistic and reasonable.

Study of Aggregation Operation (RQ2) To get a better
understanding of our method, it is necessary to investigate the
key component of ATM — aggregation operation. Table V
shows the results of ATM with different aggregation opera-
tions. There are three key observations:
• TransRec vs. MAX/AVG. Our ATM method with the

MAX strategy or the AVG strategy consistently outper-
forms TransRec in all cases. It demonstrates the benefit
of using high-order Markov chains and the flexibility of
our proposed ATM method.
• MAX/AVG vs. ATT. When the ATT mechanism is ap-

plied to our method ATM, the performance for next-item
recommendation is significantly improved as compared
with max pooling and average pooling. This because
ATM with ATT mechanism is capable of assigns person-
alized weights on the Lth order Markov chains depending
on user embeddings and item embeddings.
• ATT vs. PAT. This comparison shows the effect of using

positional embedding matrix. Table V shows that adding
positional embeddings causes ATM’s performances in-
creasing dramatically on four real-world datasets. The
good quality of ATM with PAT mechanism demonstrates
that our position-aware attention mechanism is capable
of capturing user’s varying attentions at different orders
and on different items.

Effect of Different Orders of Markov Chains (RQ3) As
there is little work on modeling high-order Markov chains
with translation technique, it is necessary to discuss whether
using a high-order translation is beneficial to the next-item
recommendation task. Towards this end, we further studied
ATM with different orders of Markov chains. L=4 indicates
ATM with fourth-order Markov chains, and similar notions
for others. Figure 5 shows the experimental results of both
methods on NDCG@50. Results of another metric exhibit
similar conclusions but is omitted for space reasons. From
the figure, we have the following observations:
• It is easy to see that, the recommendation performance

of TransRec is equal to ATM with a first-order Markov
chain. This is because that setting L to 1 means that ATM
boils down to TransRec.
• As we increase the order of the Markov chain (from 2 to

5), the performance tends to initially increase and then
decrease. On all datasets, the optimal L value is 3 or 4.

On Epinions, we find that when the L value is larger than
3, the performance of ATM starts to drop. It reveals that
using a small order is sufficient for modeling short-term
temporal dynamics, since the few most recent user-item
interactions capture enough information to predict next
action.
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Fig. 5: Performance comparisons for different values of L on four
real-world datasets (K=64).

Case Study (RQ4) Apart from the superior recommenda-
tion performance, another main advantage of ATM is its ability
in interpreting user’s varying attentions on different items. To
illustrate this, we present some micro-level case studies in
Table VI. Specifically, we randomly selected two users (i.e.,
#806 and #3752) from cellphone and clothing datasets, and
they recently bought four items which are shown in column
2 to 5. The target items (i.e., #837 and #5786) are positive
examples in the testing set. From the two cases, we find
that the most important items appear in the end of activity
sequences. This phenomenon confirms that the most recent
action is more correlated with the next action. But this does not
mean that higher-order items are meaningless. For instance, the
two users also put high attentions on 4th order items (i.e., #128
and #745). To demonstrate the rationality, we further study
the content of these items. We have following observations
from real-world data: (1) In the fist case on cellphone, the
target item (i.e., #837) is iphone finger iRing, and the higher
attended items (i.e., #128 and #1080) are Black iphone and
iphone case, while the lower attended items (i.e., #2657 and
#311) are USB wall charger and Earphone. Just as expected,
when predicting user’s purchase decision-making, the recent
items, which is more relevant to the target item, were putted
more attentions. (2) In the another case on clothing, the target
item (i.e., #5786) is a hat with black and red colors, and the
higher attended items (i.e., #745 and #9802) are a red coat
and a pair of black shoes, while the lowest attended item (i.e.,
#1260) is a white sweater. This well justifies our motivating
example (i.e., Fig. 1) in introduction, providing evidence that
our method has the ability of uncovering meaningful patterns
in consumption sequences.
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TABLE VI: Attention weights breakdown of two sampled users.

Dataset t-4 t-3 t-2 t-1 Target
item ID

Cellphone #128 #2657 #311 #1080 #8370.36 0.05 0.13 0.46

Clothing #745 #1260 #5891 #9802 #57860.31 0.09 0.22 0.38

V. CONCLUSION

In this paper, we proposed a simple yet effective model, i.e.,
ATM, to exploit high-order sequential information for next-
item recommendation. Specifically, we constructed a user-
specific translation vector by aggregating multiple recent item-
s, which encode more information about a user’s short-term
preference than the most recent item. In sharp contrast to two
typical aggregation operations (i.e., max pooling and average
pooling), we designed a personalized attention mechanism for
ATM, which has the capability of learning different weights on
items at different orders and for different users. To evaluate our
model, we conducted extensive experiments on multiple real-
world datasets and found that ATM with the designed attention
mechanism consistently surpasses with several state-of-the-art
methods. In future, we plan to examine how to incorporate
auxiliary information such as textual reviews [66], [67], [68]
and social networks [13], [57] into ATM and analyze their
effects for next-item recommendation.
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