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Abstract

In recent years, research interest in object retrieval has shift-
ed from 2D towards 3D data. Despite many well-designed
approaches, we point out that limitations still exist and there
is tremendous room for improvement, including the heavy re-
liance on hand-crafted features, the separated optimization of
feature extraction and object retrieval, and the lack of suf-
ficient training samples. In this work, we address the above
limitations for 3D object retrieval by developing a novel end-
to-end solution named Group Pair Convolutional Neural Net-
work (GPCNN). It can jointly learn the visual features from
multiple views of a 3D model and optimize towards the objec-
t retrieval task. To tackle the insufficient training data issue,
we innovatively employ a pair-wise learning scheme, which
learns model parameters from the similarity of each sample
pair, rather than the traditional way of learning from sparse
label-sample matching. Extensive experiments on three pub-
lic benchmarks show that our GPCNN solution significantly
outperforms the state-of-the-art methods with 3% to 42% im-
provement in retrieval accuracy.

Introduction

With the rapid development of 3D model capturing tools
and computing power, there are an increasing number of 3D
objects in various domains (Mavar-Haramija, Prats-Galino,
and Notaris 2015; Gao et al. 2017), such as computer vision,
medical simulation, architectural design, computer graphic-
s and computer-aided design. In contrast to object retrieval
on 2D images, retrieving objects from 3D data is a more
practical and realistic task. As such, addressing 3D objec-
t retrieval is a relevant and timely research topic and has
attracted much attention in recent years (Liu et al. 2016;
Leng et al. 2015; Liu et al. 2015).

Early works on 3D object retrieval are largely based on
3D models, where low-level feature-based methods (Ip et al.
2002; Osada et al. 2002; Mademlis et al. 2009) and high-
level structure-based methods (LENG et al. 2009) have been
employed. As these methods require the 3D models to be ex-
plicitly available, it limits the range of applications of these
methods. Recently, extensive research efforts have been ded-
icated to view-based 3D object retrieval methods (Liu et al.
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2015; Nie, Liu, and Su 2016) owing to the highly discrimi-
native property of multiple views in representing 3D objects
(Ohbuchi et al. 2008; Ohbuchi and Furuya 2009). Several
visual descriptors have been proposed, including the light-
field descriptors (LFDs) (Chen et al. 2003), elevation de-
scriptors (EDs) (Shih, Lee, and Wang 2007), bag of visu-
al features (BoVF) (Ohbuchi and Furuya 2009), and com-
pact multi-view descriptors (CMVDs)(Ohbuchi and Furuya
2009). These view-based methods share a common advan-
tage, that is, being invariant to articulation and global de-
formation of the 3D models. Along this line, many retrieval
algorithms (Steinbach, Karypis, and Kumar 2000; Gao et al.
2011; Leordeanu and Hebert 2005; Cho, Lee, and Lee 2010;
Gao et al. 2016) have also been developed such as, Haus-
dorff distance (HAUS) and Nearest Neighbor (NN) (Stein-
bach, Karypis, and Kumar 2000), weighted bipartite graph
matching (WBGM) (Gao et al. 2011), spectral matching (S-
M) (Leordeanu and Hebert 2005), and reweighted random
walks matching (RRWM) (Cho, Lee, and Lee 2010) select
representative views from the query or candidate model, up-
dating the matching degree of each view in an iterative way.
More recently, Class-statistics matching method with pair-
constraint (CSPC) (Gao et al. 2016) converts the view-based
distance measure to object-based distance measure.

Despite many recent efforts, we observe that most of them
rely on hand-crafted features, such as LFDs, BoVF, and
CMVD. As such, these methods have a relatively low ro-
bustness; particularly, when it comes to different datasets
with different 3D object properties — such as illumination
conditions, scales and view variations — their performance
vary greatly.

Along another line, deep learning techniques have been
employed to address the 3D related tasks, such as objec-
t classification (Socher et al. 2012) and content-based PET
image retrieval (Liu et al. 2014). These works show that the
features extracted by Convolutional Neural Networks (C-
NNs) are more robust and effective, leading to better per-
formance than hand-crafted features. However, we point out
that a key limitation of these methods is that the feature ex-
traction and model training are performed separately. As a
result, there lacks necessary interactions between the feature
extraction and model training — the feature extractor only
extracts general features without knowing which characters
are more important for the retrieval model, and the retrieval



model cannot supply any guidance for the feature extractor.
To tackle this, several recent efforts have tried to design end-
to-end deep architecture for the task, such as SPP-NET (He
etal. 2014), 2ch-2stream (Zagoruyko and Komodakis 2015),
MV-CNN (Su et al. 2016) and Siamese network (Wang,
Kang, and Li 2015). While deep models are highly expres-
sive, they meanwhile require a large number of training sam-
ples to ensure the model can learn useful patterns rather than
overfitting the data. However, existing methods all employ a
point-wise learning scheme, which requires a large number
of 3D samples — which are difficult to obtain — for effec-
tive training.

To address the aforementioned issues, we develop a nov-
el multi-view based 3D retrieval method named Group Pair
Convolutional Neural Network (GPCNN), which unifies the
strength of multi-view representation of 3D models with ef-
fective deep features learned by CNNs. To alleviate the spar-
sity issue of limited training samples, we employ a pair-wise
learning scheme, which performs training on each pair of 3D
samples by preserving their similarity. As each 3D sample
is represented as a group of images captured from multiple
views, we also term each sample pair as “group pair’. By
learning from each pair of groups, we can extend the number
of training samples from O(N) to O(N?) where N denotes
the number of labelled 3D samples, reducing the demand for
labelled 3D data significantly. Lastly, we adopt the contrac-
tive loss as the optimization objective, so as to implement the
idea that 3D samples of the same category should be more
similar than that of different categories. This optimization
target lends support to the retrieval process directly and al-
lows the learning of GPCNN in an end-to-end manner.

The main contributions of this work are summarized as
follows.

e We develop a novel deep learning solution GPCNN for
3D object retrieval, which is an end-to-end approach that
seamlessly fuses the learning of visual features from mul-
tiple views with the retrieval model.

e We propose a simple yet effective scheme to lower the de-
mand for large number of labelled 3D samples for training
deep learning models. The idea is to artificially enrich the
training data by performing pair-wise learning on the sim-
ilarity of samples, and use a contractive loss to support the
retrieval task effectively.

e We conduct extensive experiments on three benchmarks
of 3D objects, demonstrating that our proposed GPCN-
N significantly outperforms state-of-the-art 3D object re-
trieval methods, including CSPC (Gao et al. 2016) and
Siamese CNN (Chopra, Hadsell, and Lecun 2005).

The rest of the paper is organized as follows. The relat-
ed work is first given in Section Related Work. After for-
mulating the problem in Section Problem Formulation, we
elaborate our proposed GPCNN solution in Section Pro-
posed Method. We then conduct experiments to evaluate
our method in Section Experiments. Lastly, we conclude
the paper in Section Conclusion.

Related Work

In recent years, more and more 3D model retrieval methods
are proposed and they can roughly be divided into two cat-
egories: (1) model-based methods; (2) view-based methods,
Thus, we will introduce these methods respectively. More-
over, the related deep learning methods are also discussed.

e 3D object retrieval method based on models. In fact,
model-based methods are proposed in early work, where
an explicit 3D model data for retrieval is required, and
then a lot of visual feature representations are proposed
for describing 3D model, such as, leverage geometric mo-
ments (Yang and Albregtsen 1996), Fourier descriptors
(Persoon and Fu 1977), surface distributions (Lu et al.
2014) and shape descriptors (Polewski et al. 2015). These
feature representations are very popular, and they are of-
ten employed in different kinds of retrieval algorithms,
for example, 3D shape histogram (Ankerst et al. 1999)
is proposed as an intuitive and powerful similarity model
for 3D objects. Meanwhile, quadratic form distance func-
tions to account for errors of measurement are employed
to allow a particular flexibility; A novel retrieval method
based on the shape feature of 3D models is proposed in
(Osada et al. 2001) where the shape distribution sampled
from the 3D model is constructed as the digital signature
of an object and further it is utilized to compute the simi-
larity between different models; In fact, all of the 3D pat-
terns from the model are employed for retrieval and clas-
sification. When no model information is available, a 3D
model construction procedure is required to generate the
virtual model using a collection of images. However, 3D
model reconstruction is computationally expensive, and
its performance is highly restricted by the sampled im-
ages. Therefore, the practical applications of model-based
methods are seriously limited.

e 3D object retrieval method based on views. Recently, s-
ince view-based methods are independent of 3D model-
s, and can be realized simply with the multi-view repre-
sentation of models (Nie, Liu, and Su 2016), thus, it has
attracted much more attention. Even more so, it will be
very easy for this approach to directly extend to the re-
trieval in real objects, which has promising applications
in e-business and location-based mobile applications. For
example, Zernike moments and Fourier descriptors (Chen
et al. 2003) are firstly extracted for each view image, and
then the nearest neighbor method is utilized for the sim-
ilarity measure between different models; A novel fea-
ture descriptor, elevation descriptor (Shih, Lee, and Wang
2007) is proposed for 3D object representation, which is
invariant to translation, rotation and scaling of 3D mod-
els; In (Ansary, Daoudi, and Vandeborre 2007), X-means
is used to select representative views and then Bayesian
models is applied to compute the similarity between d-
ifferent models; A general framework for 3D object re-
trieval is proposed in (Gao et al. 2012), where camera ar-
ray restriction is free, and each object can be represented
by a free set of views. The proposed CCFV model can be
generated on the basis of the query Gaussian models by
combining the positive matching model and the negative



matching model. This method can remove the constraint
of static camera array settings for view capturing and can
be applied to any view-based 3D object database. A nov-
el Compact Multi-View Descriptors (CMVD) is proposed
in (Ohbuchi and Furuya 2009) for 3D model representa-
tion where camera arrays are set at the 18 vertices of a
32-hedron to capture the CMVD, and these cameras are
uniformly distributed. Wang et al. (Wang et al. 2016) in-
vestigate the discriminative information of each view in
dataset, and then the reverse distance metric is employed.
Although these algorithms can have good performance,
they are hand-crafted features whose robustness is limit-
ed.

e Visual representation based on deep learning for 3D ob-
ject retrieval. Visual feature representations play an im-
portant role in the object retrieval, and they can be divided
into local feature representation (SIFT, SURF) and glob-
al feature representation (Zernike, HOG, HSV). Howev-
er, for 3D object retrieval, there is a high requirement for
more discriminative feature representations. Thus, deep
learning is often employed to learn more powerful visu-
al representation for challenging tasks (Liu et al. 2017;
?). For example, Socher et al. (Socher et al. 2012) pro-
posed a model based on convolutional neural networks
(CNN) to learn feature for 3D object classification, and
then the classic SVM was utilized to handle classification
problem. Liu et al. (Liu et al. 2014) proposed accurate
content-based PET images retrieval where high-level ROI
features with deep learning architecture was employed.
He et al.(He et al. 2014) proposed SPP-net, whose pyra-
mid pooling was robust to object deformations, and it
could generate a fixed-length representation regardless of
image size/scale. Zagoruyko et al. (Zagoruyko and Ko-
modakis 2015) discussed how to directly learn the visu-
al representation from image data. LonchaNet (Gomez-
Donoso et al. 2017) was proposed which was a deep learn-
ing architecture for point clouds classification with pro-
viding a low computation cost. Multi-view CNN (MVC-
NN) (Su et al. 2016) architecture was proposed for 3D
shape classification, where multiple views can be simul-
taneously employed. Wang et al (Wang, Kang, and Li
2015) proposed Siamese network which was consisted of
two chains for cross domain (sketch-view) matching. Al-
though these existing CNNs can obtain satisfying on some
tasks, the large number of labeled training samples is re-
quired. However, the training samples in 3D datasets are
very small, and it will be difficult for us to train the CNN.
Moreover, most of the state-of-the-art CNN architectures
only have one branch, and most of them are designed for
classification task. Therefore, for view based 3D object
retrieval problem, the existing CNN architectures are in-
adequate and low performance.

Problem Formulation

In a nutshell, the 3D object retrieval problem is formulated
as: given a 3D object (query), retrieving the matching or rel-
evant 3D objects (documents), and ranking the documents
according to the similarity with the query.

Typically, there are two ways to get the 3D model for an
object: either 1) directly obtain the 3D model by scanning
the object with professional 3D capturing equipments, or 2)
indirectly reconstruct the 3D model from images of multi-
ple views of the object. However, both ways are quite costly
to achieve in practice — professional 3D capturing equip-
ments are usually expensive and inconvenient to carry, and
reconstructing 3D models from images are computationally
expensive when no model information is given. Moreover, it
is also difficult to extract effective features for 3D models.
As such, the applications of model-based retrieval approach-
es are quite limited in practice.

In this work, we focus on the view-based setting, which
does not require the 3D model explicitly and is more prac-
tically plausible than model-based approaches. Particularly,
we represent a 3D object (both query and gallery) as a group
of images captured from different views, performing the re-
trieval task based on the multi-view representation of 3D ob-
jects. Note that in case of the 3D model is provided, we can
easily get its multi-view representation by simulating virtu-
al cameras to take pictures from different viewpoints of the
object.

Proposed Method

The key to the retrieval task lies in measuring the similar-
ity between two 3D objects. Considering that an object is
represented as a group of images, an intuitive solution is to
learn the features (aka. representation) for an image group,
and then estimating the similarity with some statistical mea-
sures like cosine similarity. Nevertheless, such an intuitive
solution has several flaws, making the retrieval performance
unsatisfactory. First, it is unclear how to generate the repre-
sentation for a group of images from the representation of
each individual image; simply a pooling operation like av-
erage/max pooling will lose many useful information and
cannot fully exploit the complementary information of dif-
ferent views. Second, the separated steps of feature learning
and similarity measuring lack necessary interaction between
the feature extractor and the retrieval model; as a result, the
extractor has no information about which regions are more
important for the retrieval task, making the results subopti-
mal.

Instead of measuring the image group similarity with s-
tatistical measures on extracted features, we unify the two
steps and learn the similarity of two groups from data. The
basic idea is that if two groups are in the same category (or
assigned with the same label), they should express some vi-
sual similarity to a certain extent and have similar represen-
tation in the latent space. To implement this idea, we de-
sign a model to directly estimate the similarity of two image
groups, using the labelling information to guide the learning
of model parameters.

The GPCNN Solution

Figure 1 illustrates our GPCNN solution, which consists of
three main components: the input layer of group-pair gener-
ation, the CNN-based deep architecture for feature learning,
and contractive loss for model optimization and similarity
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Figure 1: The architecture of our proposed GPCNN for 3D object retrieval. The apple object comes from query set, and the car
is from the gallery set. Moreover, multiple samples are chosen from the query set and the gallery set respectively. These samples
are then separately fed into the branch of CNN for obtaining feature maps. Furthermore, the view pooling scheme is employed
to choose high-response feature maps from multi-view samples, and then CNN Part II is used to obtain effective descriptors.
Finally, the value of the contractive loss between two groups is evaluated, which can also be employed as the similarity metric.

measurement. In what follows, we elaborate the components
one by one.

Group-pair Generation Each training example is a pair
of 3D objects, i.e., group of images in our multi-view set-
ting. As the model learning is usually done in a stochas-
tic manner, such as by using Stochastic Gradient Descent
(SGD), we first randomly sample a 3D object from the la-
belled training data. We then pair the object with another
randomly-sampled object of the same (different) category to
form a positive (negative) training instance. For a positive
sample, it is assigned with a target of value 1, and for a neg-
ative sample, its target value is 0.

In existing public 3D benchmarks (Liu et al. 2016; Chen
et al. 2003; Ess et al. 2008), the number of labelled 3D sam-
ples is usually small for each category. As such, the conven-
tional point-wise learning strategy, as used in AlexNet, will
suffer from the small data issue and easily be overfitting.
Although the situation can be alleviated by performing fine-
tuning on pre-trained models, we find the training can still be
inadequate, evidenced by the relatively low performance. By
expanding the sparse object—label relations to dense object—
object data, we can increase the number of training samples
by a magnitude. Moreover, it enables the direct estimation
of the similarity of two 3D objects.

CNN-based Deep Architecture The core component of
GPCNN has three main parts:

e 1) CNN-Part I Conventional CNNs like VGG-16 or
AlexNet receives a single view (image) for training,
which can not explicitly leverage the commonalities of
multiple views in a class. In the field of 3D retrieval,
the Siamese network receives a view pair as the input
for training, which still fails to capture the potential re-
lationship among multiple views. Here, our GPCNN re-

ceives two groups as the input, where each group con-
tains multiple views. For each view, we utilize a CNN for
feature extraction; To allow the learning of common pat-
terns among multiple views, we enforce the CNNs share
the same model parameters. More details about the CNN
structure and settings can be found in Section Implemen-
tation Details.

e 2) View Pooling After extracting the feature maps for
each view, we now consider how to model the interac-
tion among multiple views of an object. The view pool-
ing layer aims to implement the locally optimal screen-
ing of multiple views. Specifically, it performs element-
wise operation on each feature map of a view, and then
obtains locally high-response feature maps of each view.
Finally, we convert the feature maps of multiple views in-
to high-response feature maps of one view, so that it can
implement views screening and initial association among
views.

e 3) CNN-Part II The high-response feature maps obtained
in the View Pooling layer are then fed into the CNN Part
II. In this part, only one branch CNN is used for deal-
ing with the association information cross multiple views
by using high-response feature maps. After that, the high-
response feature vectors can be extracted in the (fully con-
nected layer, and since its location lies in seventh layer,
thus, we called it as fc7 for abbreviation.) fc7 layer of C-
NN Part II, and these feature vectors serve as the features
for a group.

Contractive Loss Function Since GPCNN is a double-
chain CNN, there are two groups of feature vectors ob-
tained in fc7s individually. The contractive loss function is
utilized to receive these two feature vectors and compute
loss of two groups according to their feature distances. In
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The contractive loss function descrlbes the matching de-
gree of two objects. In each iteration of SGD training, if
two objects are the same category, the contractive loss
function will reduce the feature distance between these
two objects; otherwise, it will increase the feature dis-
tance between these two objects. After training, we use

d(an, ZQ ) as the similarity metric of two groups, so
as to s1mphfy the whole retrieval process. In other words,
our network architecture can output the similarity metric

of two groups directly.

Implementation Details

In detail, we randomly extract three views from each objec-
t, and then the two groups of views diverge at a data layer
and are sent into the two branches separately. Each branch
has two parts CNN architectures. CNN Part I is the paral-
lel processing of multiple views, and in this part, the group
of views are sent through three parallel CNNs that share the
same parameters. CNN Part I consists of five convolution
layers convl-5, and each convolution layer is followed by
the Pooling layer and Rectified Linear Unit (ReLU). Par-
ticularly, there are two Batch Norm layers norml-2 fol-
lowed by con-1 and con-2, respectively. After Part I, We
use the element-wise maximum operation for the views of
each group in the view-pooling layer, so as to mine high-
response feature maps to facilitate the comparison of two ob-
jects. The View-pooling layer is closely related to the max-
pooling and maxout layer, with the only difference on the
dimension where the pooling operation is performed. An al-
ternative is the element-wise mean operation, which howev-
er shows weaker performance in our experiments. Moreover,
we also observe that it should be placed close to the last con-
volutional layer (conv5). Next, the high-response views are
sent through the CNN Part II, which consists of two inner
product layers fc6-7 to deal with high-response views.

Experiments

In order to evaluate the retrieval performance of our GPCN-
N, we perform 3D object retrieval on three public 3D object
datasets. We initially introduce the datasets and evaluation
criteria, and then, the experimental setting is given. Mean-
while, we will evaluate GPCNN from three aspects respec-
tively:1) We will discuss how many training samples we can
obtain, and then compare with the training samples in the

original dataset; 2) We will evaluate the performance of G-
PCNN, and then compare with hand-crafted feature repre-
sentation by different retrieval algorithms; 3)In addition, we
also compare GPCNN network architecture to VGG-16 and
siamese convolutional neural network.

Dataset

In our experiments, three widely-used datasets are employed
where each object in gallery set is firstly represented by a
free set of views which means that these views can be cap-
tured from any direction without camera constraint. The de-
tails of these datasets are shown as follows:

e ETH 3D object dataset (Ess et al. 2008), where it contains
80 objects belonging to § categories, and each object from
ETH includes 41 different view images;

e NTU-60 3D model dataset (Chen et al. 2003), where it
contains 549 objects belonging to 47 categories, and each
object from NTU-60 includes 60 different view samples;

e MVRED 3D category dataset (Liu et al. 2016), where it
contains 505 objects belonging to 61 categories, and each
object from MVRED includes 36 different view images;

Object samples from different datasets are shown in Fig.2
respectively.
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Figure 2: Object examples from different 3D datasets, from
top to down, and left to right, samples come from ETH, N-
TU, MVRED datasets respectively

Evaluation Criteria

In order to fully assess the performance of different algo-
rithms, seven evaluation criterions are employed to evalu-
ate the retrieval performance, and they are Nearest Neigh-
bor (NN), First Tier (FT), Second Tier (ST), F-measure (F),
Discounted Cumulative Gain (DCG) (Osada et al. 2001),
Average Normalized Modified Retrieval Rank (ANMRR)
and Precision-Recall Curve (PR-Curve). For the details, y-
ou can find them in (Liu et al. 2016; Chen et al. 2003;
Ess et al. 2008).

Here, it is noted that for NN, FT, ST, F and DCG the big-
ger the better, but for ANMRR the smaller the better, and the
greater of the area under PR-Curve, its performance is bet-
ter. In addition, in order to fair competition, we also follow



the parameter setting in other papers, where k is set to ten,
thus, we also compute the performance when k is used (each
retrieval, top ten retrieval results are utilized to compute the
evaluation criteria value).

Experimental Setting

For each dataset, the first 80% views in each object is u-
tilzied as gallery set and the remaining views in each object
is used as query set. When building the training dataset and
validation dataset, we choose group-pair samples from the
gallery set. The proportion of positive and negative group-
pair sample is 1:3 for all datasets. In ETH, 10,000 positive
group-pair samples and 30,000 negative group-pair samples
from ETH gallery set are produced as training samples. In
NTU and MVRED, 30,000 positive group-pair samples and
90,000 negative group-pair samples from NTU gallery set
are collected as training samples. For the validation dataset,
the same scheme is employed. In order to prove the stability
of testing, we cluster the remaining views of each object into
three subclusters, and then, these three views are considered
as a group to represent the object.

In our experiments,for GPCNN, when it is utilzied into
NTU and MVRED datasets, the sizes of convolution kernels
of each layer in CNN Part I are 32, 64, 128,256 and 512 re-
spectively, but when it is evaluated on ETH dataset, the sizes
of convolution kernels of each layer in CNN Part I are 16, 32,
64, 128 and 256 respectively. As for VGG-16 and siamese
convolutional neural network, the parameters are pre-trained
on the ImageNet dataset, and then each 3D dataset is utilized
to fine-tune the parameters with default settings.

Competing Methods
Several popular methods are implemented for comparison:

e Adaptive View Clustering (AVC) (Osada et al. 2001):
AVC selects the optimal 2D characteristic views of a 3D
model based on the adaptive clustering algorithm and then
utilizes a probabilistic Bayesian method for 3D model re-
trieval.

e Camera Constraint Free Ciew (CCFV) (Gao et al. 2012):
A CCFV model is generated on the basis of the query
Gaussian models by combining the positive matching
model and the negative matching model.

e Weighted Bipartite Graph Matching (WBGM) (Gao et al.
2011) WBGM builds the weighted bipartite graph only
with the attributes of individual 2D views.

e Hausdorff distance (HAUS) & Nearest Neighbor (NN)
(Steinbach, Karypis, and Kumar 2000): The Hausdorff
distance is used to measure the maximum distance be-
tween a set and its nearest point in the other set. The n-
earest neighbor-based method is similar to HAUS.

e Class-Statistic and Pair-Constraint (CSPC) (Gao et al.
2016): The retrieval results from different retrieval algo-
rithms are combined.

e Siamese Convolutional Neural Network (Chopra, Hadsel-
1, and Lecun 2005; Bromley et al. 1993): Siamese Convo-
lutional Neural Network takes a pair of samples instead of

taking single sample as input, and the loss functions are
usually defined over pairs.

e VGG-16 network (Chatfield et al. 2014): VGG-16 con-
sists of five groups of convolution, and each group in-
cludes 3 convolution layers. Meanwhile, there are three
fully connected layers and a Softmax classification layer.
The inner product layer fc7 (after Rectified Linear Units,
4096-dimensional) is used as image descriptor.

The Number of Training Samples

The details of three datasets are shown in Table.1. It shows
that if we employ the original data as the training dataset,
the number of samples has only 3280 in ETH dataset. How-
ever, since multiple-view samples from different objects are
chosen as a group-pair samples, thus, we can easily obtain
10660 x 10660 samples whose number of group-pair sam-
ples is far more than the number of views in the original
dataset. In detail, there are only 3280, 32940 and 18180
samples for training and validating network in ETH, NTU-
60 and MVRED respectively. In this way, it is easy to lead
to over-fitting when training CNN network, moreover, it al-
so overlooks the generality of multi-view objects. Howev-
er, when group-pair samples are utilized, multiple views are
combined into a pair, thus, we have far more samples to train
and validate the networks. Moreover, the generalization abil-
ity of CNN can be improved and the common information
from multiple views can be fully explored.

Performance Evaluation and Comparison

We firstly assess the performance of GPCNN on three 3D
datasets, and then compare it with the state-of-the-art al-
gorithms, whose performances are obtained by running the
codes offered by the authors with default settings. In addi-
tion, in the state-of-the-art algorithms, the efficient Zernike
feature is extracted for all datasets. Their results are shown
in Fig.3, Fig.4 and Fig.5. From Fig.3 (a) and Fig.3 (b), we
can observe that since ETH is a small dataset which only
includes 80 objects, the state-of-the-art algorithms can have
good retrieval performances. Since the group-pair scheme is
utilized, we can obtain a lot of training samples for GPCN-
N, thus, GPCNN also can achieve a gain of 4%-36%, 1%-
34%, 3%-26% on FT, ST, F and obtain a decline of 4%-28%
on ANMRR.

The experimental results on ETH
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Figure 3: Retrieval result comparison and PR Curve com-
parison of different 3D model retrieval algorithms on ETH
datasets

In MVRED dataset, the retrieval comparison obviously
indicates that GPCNN can consistently outperform others.



Table 1: Comparison of the number of samples with single-view input and multiple-view inputs

Data Sets Original Samples Group-Pair Samples
Objects Views Samples  Views in Group Groups Group pairs All Group Pairs
(one object) (one object) (two objects) (all objects)
ETH 80 41 3280 3 10660 10660 x 10660 3160 x 10660 x 10660
NTU-60 549 60 32940 3 34220 34220 x 34220 150426 x 34220 x 34220
MVRED 505 36 18180 3 7140 7140 x 7140 127260 x 7140 x 7140

From Fig.4 (a) and Fig.4 (b), GPCNN achieves a gain of

Compared with other CNNs

3.5%-42%, 1.5%-27.5%, 8%-39%, 8.3%-28%, 2.5%-34.5%

on NN, FT, ST, DCG, F and obtain a decline of 2%-29% on

ANMRR.
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Figure 4: Retrieval result comparison and PR Curve compar-
ison of different 3D model retrieval algorithms on MVRED

3D dataset

In NTU dataset, from Fig.5 (a) and Fig.5 (b), GPCNN

In order to further prove the superiority of GPCNN, in this
section, we will compare GPCNN with the Siamese Convo-
lutional Neural Network and VGG-16 network. For siamese
convolutional neural network, a pair of views will be re-
ceived as training unit, but in GPCNN, group pair sam-
ples will be input, accordingly, there is no View-Pooling in
Siamese Convolutional Neural Network. For VGG-16, this
network is one branch network which can only receive one
view and use Softmax layer to implement image classifica-
tion. To implement 3D object retrieval, the inner product
layer fc7 of VGG-16 (after Rectified Linear Units, 4096-
dimensional) is used as image descriptor, and then we use
NN method to finish 3D object retrieval. Their results are
shown in Fig.6, Fig.7 and Fig.8 respectively.

From these figures, we can find that the performance of
Siamese Convolutional Neural Network is much better than
that of VGG-16. In other words, the performance of Siamese
network is more efficient than that of single network, such

outperforms 3%-42%, 4%-27%, 22%-41%, 11%-37% and
4%-32% on NN, FT, ST, DCG, F and obtain a decline of 2%-
29% on ANMRR. In addition, for the PR comparison, Fig.3
(b), Fig.4 (b), Fig.5 (b) shows the PR curve comparison of
different 3D object retrieval algorithms on ETH, NTU-60
and MVRED datasets respectively. From them, we can see
that our GPCNN obviously outperforms all other algorithm-
s on MVRED and NTU datasets, but it is still a litter better
than CSPC method on ETH dataset. it is noted that the work
of CSPC was published on ACM MM 2016 where differ-
ent retrieval results from different retrieval algorithms are
combined. In conclusion, GPCNN is efficient and effective,
which significantly outperforms the state-of-the-art method-
S.

The experimental results on NTU
1
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0.4

as VGG-16. In addition,in ETH dataset,Fig.6(a) and Fig.6
(b) demonstrate that GPCNN achieves a gain of 8%-90%,
13%-62%, 3%-67%, 2%-43%, 13%-94% on FT, ST, F and
obtain a decline of 11%-72% on ANMRR.

The experimental results on ETH
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Figure 6: Retrieval result comparison and PR Curve com-
parison of different 3D model retrieval algorithms on ETH

datasets

In MVRED dataset, the retrieval comparison also obvi-
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Figure 5: Retrieval result comparison and PR Curve com-
parison of different 3D model retrieval algorithms on NTU

dataset

ously indicates that GPCNN can consistently outperform
others. From Fig.7 (a) and Fig.7 (b), GPCNN achieves a
gain of 35%-64%, 24%-40%, 34%-57%, 27%-38%, 30%-
51% on NN, FT, ST, DCG, F and obtain a decline of 31%-
7% on ANMRR.

In NTU dataset, from Fig.8 (a) and Fig.8 (b), GPCN-
N outperforms 37%-57%, 18%-36%, 27%-31%, 18%-33%
and 23%-43% on NN, FT, ST, DCG, F and obtain a de-
cline of 21%-33% on ANMRR. In addition, for the PR



The experimental results on MVRED
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Figure 7: Retrieval result comparison and PR Curve compar-
ison of different 3D model retrieval algorithms on MVRED
3D datasets

curve comparison, Fig.6 (b), Fig.7 (b), Fig.8 (b) show the PR
curve comparison of different CNNs on ETH, NTU-60 and
MVRED datasets respectively. From them, we can see that
our GPCNN’s performance significantly higher than others.
In other words, group-pair and view pooling scheme can fur-
ther improve the performance, and the latent complementary
information is fully explored.

The experimental results on NTU
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Figure 8: Retrieval result comparison and PR Curve com-
parison of different 3D model retrieval algorithms on NTU
dataset

Conclusion

In this work, a novel end-to-end solution named Group
Pair Convolutional Neural Network (GPCNN) is proposed
which can jointly learn the visual features from multiple
views of a 3D model and optimize towards the object re-
trieval task. Extend experiment results demonstrate that the
group-pair network architecture is very useful, and it can re-
duce the requirement of the training samples in the original
dataset. Moverover, view pooling scheme is effecient to ex-
plore the latent complementary information from different
views, and multi-view samples can supply much more in-
formation, and generate compact descriptor with powerful
discrimination for individual 3D objects. Finally, the end-to-
end solution scheme can further improve the discrimination
which will be much suitable for 3D object retrieval.

In the future work, we will explore some practical ques-
tions for GPCNN, including how to construct the group-
pair samples, which views are most informative, how many
group-pair samples are necessary for a given level of accu-
racy, how to choose the optimal number of views for each

group.
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