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Abstract

Node embedding is a crucial task in graph analysis. Recently,
several methods are proposed to embed a node as a dis-
tribution rather than a vector to capture more information.
Although these methods achieved noticeable improvements,
their extra complexity brings new challenges. For example,
the learned representations of nodes could be sensitive to
external noises on the graph and vulnerable to adversarial
behaviors. In this paper, we first derive an upper bound on
generalization error for Wasserstein embedding via the PAC-
Bayesian theory. Based on this, we propose an algorithm
called Adversarial PAC-Bayesian Learning (APBL) in or-
der to minimize the generalization error bound. Furthermore,
we provide a model called Regularized Adversarial Wasser-
stein Embedding Network (RAWEN) as an implementation
of APBL. Besides our comprehensive analysis of the robust-
ness of RAWEN, our work for the first time explores more
kinds of embedded distributions. For evaluations, we conduct
extensive experiments to demonstrate the effectiveness and
robustness of our proposed embedding model compared with
the state-of-the-art methods.

Introduction
Node embedding plays an increasingly significant role in
modern graph analysis. The effectiveness of the embeddings
largely influence the results of downstream machine learn-
ing tasks, e.g. link prediction and node classification. Tra-
ditionally, node embedding is modeled as low-dimensional
vector representations of nodes in a given graph (Goyal and
Ferrara 2018), where the similarity between nodes is rep-
resented as the distance between embedded vectors, e.g.
Euclidean distance (Tang et al. 2015; Wang, Cui, and Zhu
2016).

Recently, some methods have been proposed to embed
each node with a distribution e.g. multivariate Gaussian
distribution (He et al. 2015), rather than a real vector.
In distribution-based embedding models, the similarity be-
tween nodes is represented as the distance between em-
bedded distributions such as Wasserstein distance (Zhu et
al. 2018). Compared with real vectors, distributions contain
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more information of the graph. For instance, the mean of
the distribution represents the position of the node and the
variance reflects the degree of the node (Bojchevski and
Günnemann 2018). Although empirical results prove that
these methods are more effective than the vector-based em-
bedding model, there exist two open problems.

The first problem is the certification of robustness. Ac-
cording to previous researches (Zügner, Akbarnejad, and
Günnemann 2018), small perturbations can largely influence
the embedding model. For instance, the distance between
two nodes may change sharply when few random edges are
added to the graph. In order to restore robustness against
noises, some previous efforts have been made on the vector-
based embedding model. For example, Dai et al. (2018a)
propose to regularize the node embeddings with prior infor-
mation. However, due to the complexity of how to impose
prior knowledge on distributions, the research to date has
not yet provided a robust model when embeddings of nodes
are distributions.

The second problem is, most existing distribution-based
embedding models simply used the Gaussian distribution
and little is known for the effectiveness of other distribu-
tions. Although there were several studies to extend the
vector-based embedding model to other vector space such
as hyperbolic space (Chamberlain, Clough, and Deisenroth
2017), there were rarely any attempts to examine the effec-
tiveness of other distributions such as Dirichlet distribution
which is widely applied in graph analysis (Xie, Kelley, and
Szymanski 2013). One of the main obstacles is the techni-
cal difficulty on tackling distance between distributions. For
instance, although the KL divergence or Wasserstein dis-
tance between Gaussian distributions has a closed form, it
becomes intractable when other kinds of distributions are
considered.

In this paper, to address two open problems in the
distribution-based embedding, we focus on Wasserstein em-
bedding and propose to minimize the expected loss rather
than the empirical loss to alleviate the influence of additional
noises. With the aid of the PAC-Bayesian theory, we first
derive an upper bound for the expected loss. Then we pro-
pose an algorithm called Adversarial PAC-Bayesian Learn-
ing (APBL) for minimizing the upper bound. Moreover, we



propose a neural network based instance of APBL called
Regularized Adversarial Wasserstein Embedding Network
(RAWEN), the robustness of which is further certificated by
our analytic results. Moreover, we are the first to investigate
the effectiveness of more kinds of embedded distributions
such as Dirichlet distribution and truncated Gaussian distri-
bution. Finally, we conduct extensive experiments to vali-
date the effectiveness and robustness of RAWEN, compared
with the state-of-the-art node embedding methods.

Preliminaries
In this section we briefly introduce some useful notations in
node embedding and present the framework of Wasserstein
embedding.

Node Embedding Problem
We first introduce the basic notations in node embedding.
We focus on an undirected graph G = (V, E), where V
are nodes, E are edges and N = |V|, i.e. the number
of nodes. Edges are represented by the adjacency matrix
E ∈ {0, 1}N×N such that eij = 1 means there exists an
edge between vi and vj , while eij = 0 means not.

We use yij ∈ {0, 1} to denote the linkage relation be-
tween nodes. To clarify, linkage relation is a kind of artificial
signal of supervision, which is mainly constructed from the
observed edges according to a certain predefined criterion.
For instance, Tang et al. (2015) uses the two-order proxim-
ity on graph to construct yij , i.e. if both eik = 1 and ejk = 1
are satisfied, then yij = 1. Ω is the set of observed linkage
relation yij with size M .

Given a metric space Z ⊆ RK , for zi, zj ∈ Z , the dis-
tance metric is denoted as dij . The goal of node embedding
is to relate each node vi ∈ V with a latent representation
zi ∈ Z , and learn effective Z = {z1, · · · , zN} ⊆ Z given
the observations Ω. The optimization objective is to mini-
mize the following empirical loss function

ˆ̀(Z,Ω) =
1

M

∑
yij∈Ω

`(dij , yij) (1)

where ` is a certain loss function for embedding learning. In
existing state-of-the-art models, the choice of ` is usually the
binary cross entropy (Perozzi, Al-Rfou, and Skiena 2014;
Tang et al. 2015; Grover and Leskovec 2016; Wang, Cui,
and Zhu 2016),

`(dij , yij) = −yij log σ(dij)−(1−yij) log(1−σ(dij)) (2)

where the activation function is σ(d) : R→ [0, 1].

Wasserstein Embedding
Recently, some researches attempt to use distributions to
represent embeddings rather than real vectors (He et al.
2015; Bojchevski and Günnemann 2018). Specifically, they
suppose a metric space Z ⊆ RK , where each node vi ∈ V
is related with a distribution q(z|vi) defined on Z . Then the
distance dij can be defined as the distance between two dis-
tributions q(z|vi) and q(z|vj), e.g., Kullback-Leibler (KL)
divergence and Wasserstein distance. Previous work found

that the Wasserstein distance is more effective in node em-
bedding problem (Zhu et al. 2018). Therefore in this paper
we focus on the latter kind of distance,

dij = inf
Λ∈Π(q(z|vi),q(z|vj))

E(zi,zj)∼Λ[c(zi, zj)] (3)

where Π(q(z|vi), q(z|vj)) is a set of joint distributions on
RK × RK s.t. the element of which has marginal distri-
butions equal to q(z|vi) and q(z|vj). The cost function c :
RK×RK → R+ is a predefined function, e.g. the Euclidean
distance.

Due to the complexity of the distance form, current meth-
ods only considered the embedded distributions as Gaussian.
It is mainly because distance like KL-divergence or Wasser-
stein metric has an analytic form for Guassian distributions.
Specifically, in the Gaussian approach, each node vi is re-
lated with the distribution q(z|vi) = N (µi,ΣiI), where
µi ∈ RK , Σi ∈ RK are respectively the mean and variance
vectors. Compared with the traditional vector-based embed-
ding methods, distributions contain more information. For
example, Zhu et al. (2018) interprets the mean µi as the po-
sition and the variance Σi as the degree of node vi, which
enables the model to learn more effective embeddings. How-
ever, there still exist several open problems:

• Embeddings of nodes can be easily influenced by ex-
ternal noises on observations Ω. (Zügner, Akbarnejad,
and Günnemann 2018). Currently most vector-based em-
bedding methods impose prior information on embedded
space to improve the robustness (Dai et al. 2018a). How-
ever, due to the inherent complexity of distribution-based
embedding, it is technically hard to impose such informa-
tion for distribution-based methods.

• The choice of embedding space is only the family of
Gaussian distributions. The effectiveness of Wasserstein
embedding with other kinds of distributions is far from
well-studied.

In the remainder of this paper, we present our novel meth-
ods to tackle these concerns of Wasserstein embeddings.

Proposed Method
In this section we propose to minimize the expected loss
rather than the empirical loss to alleviate the influence of ad-
ditional noises. To achieve this, we first study the expected
loss in Wasserstein embedding and derive an upper bound of
the expected loss when the optimized Wasserstein distance is
given. Then we propose an adversarial PAC-Bayesian learn-
ing strategy to infer the parameters in both the Wasserstein
distance and the embedded distributions. As a comprehen-
sive solution, we present Regularized Adversarial Wasser-
stein Embedding Network (RAWEN) with different kinds
of embedded distributions.

Optimizing the Expected Loss
If we only minimize the empirical loss in Eq. 1, addi-
tional noises or perturbance on Ω can easily let the model
learn wrong information and therefore perform poorly even
when the empirical loss is small (Zügner, Akbarnejad, and



(a) Prior on distribution based embedding. (b) Structure of proposed RAWEN.

Figure 1: Overview of the proposed framework.

Günnemann 2018). Therefore we focus on the loss calcu-
lated on the whole dataset rather than that only on the ob-
servations. Formally, we concerntrate on the following ex-
pected loss

`(Q) = Eyij∼PY
[`(dij , yij)] (4)

where PY is the unknown distribution over yij and Q =
{q(z|v1), · · · , q(z|vN )}. The expected loss measures the ef-
fectiveness of embeddings not only on observations Ω but
also on those unseen data. Therefore those noises on obser-
vations Ω will have less influence on the model if we mini-
mize the expected loss. However, the term is difficult to be
directly computed due to the unseen linkage information on
the graph. In this paper, one of our main contributions is the
following theorem that bounds the difference between the
expected loss and empirical loss for Wasserstein embedding.

We first rewrite the Wasserstein distance with its dual
form (Villani 2003):
dij = sup

‖D‖L≤1

Ez∼q(z|vi)[D(z)]− Ez∼q(z|vj)[D(z)] (5)

where functionD : RK → R is a 1-Lipschitz function. Then
we prove the following theorem under the framework of
PAC-Bayesian. A detailed proof can be found in Appendix.
Theorem 1. Given a graph with N nodes, Ω =
{(vi, vj , yij)} is the observed linkage information sampled
from PY with size M ≥ 8. Suppose Z ⊆ RK is a metric
space, and Q is a family of distribution defined on Z . Each
node vi is related with a distribution q(z|vi) ∈ Q, where
distance between embedded distributions dij is Wasserstein
distance. Loss function `(dij , yij) ∈ [0, 1] is pre-defined.
Then given optimal function D∗ defined in the dual form of
Wasserstein distance, prior distribution p(z) defined on Z
and δ ∈ (0, 1), with probability at least 1 − δ we have for
all Q = {q(z|v1), · · · , q(z|vN )} ⊆ Q:

`(Q) ≤ ˆ̀(Q,Ω) +

∑N
i=1KL(q(z|vi)‖p(z)) + lnM − ln δ

M
(6)

where ˆ̀(Q,Ω) is the empirical loss on Ω and the distance
dij between node vi and vj is calculated as,

dij = Ez∼q(z|vi)[D
∗(z)]− Ez∼q(z|vj)[D

∗(z)] (7)

Intuitively, this theorem states that, if the optimal function
D∗ in the Wasserstein distance is given, the expected loss
in the Wasserstein embedding can be approximated by the
sum of the empirical error and an additional generalization
error term, where the latter one is proportional to the KL
divergence between the embedded distribution q(z|vi) and
prior distribution p(z).

Adversarial PAC-Bayesian Learning
Based on Theorem 1, we should optimize both the general-
ization bound and the functionD in the Wasserstein distance
simultaneously. To solve this problem, we propose an adver-
sarial training strategy below

max
D

min
Q

`(Q) + λ2`(D) (8)

where

`(Q) = ˆ̀(Q,Ω) + λ1

N∑
i=1

KL(q(z|vi)‖p(z))

`(D) =
∑
yij∈Ω

Ez∼q(z|vi)[D(z)]− Ez∼q(z|vj)[D(z)] (9)

The general idea behind our adversarial learning process
is summarized as follows. On one hand, given the optimal
function D∗, we can minimize the expected loss `(Q) by
the upper bound in Theorem 1. On the other hand, we can
derive an optimal function D∗ by maximizing `(D) given
optimal q(z|vi). Therefore if we update Q and D by alter-
natively minimizing `(Q) and maximizing `(D), we can de-
rive an approximated solution to this problem. We name the
proposed adversarial learning process as adversarial PAC-
Bayesian learning (APBL).

Regularized Adversarial Wasserstein Embedding
Network
However, there still exist two challenges during implemen-
tation: (1) How to calculate the expectation term in the
Wasserstein distance? (2) How to minimize the KL diver-
gence term? To tackle, we propose a neural network based



solution called Regularized Adversarial Wasserstein Em-
bedding Network (RAWEN) as follows.

We define a function Qθ : V → Z , where for each node
vi ∈ V , the output is a distribution q(z|vi) = Qθ(vi). In
practice,Qθ is implemented as a multi-layer neural network,
whose outputs are the parameters of the distribution q(z|vi).
Then for the first challenge, the distance can be approxi-
mated by

dij ≈
1

T

T∑
t=1

[
Dφ(z

(t)
i )−Dφ(z

(t)
j )
]

(10)

where z
(t)
i and z

(t)
j are sampled independently from

q(z|vi) = Qθ(vi) and q(z|vj) = Qθ(vj). As the complexity
of the model would increase exponentially if we use inde-
pendent function D for each pair, we propose to approxi-
mate the functions by Dφ : Z → R, which is a multi-layer
neural network parameterized by φ. For sampling, we use
Stochastic Gradient Variational Bayesian (SGVB) estimator
with the reparameterization trick (Kipf and Welling 2016b).

For the second challenge brought by the intractable KL
divergence term, we propose to incorporate a GAN-like loss
(Goodfellow et al. 2014)

L1(θ, γ) =
1

NT

∑
vi∈V

T∑
t=1

log
(
1−Hγ(z

(t)
i )
)

+logHγ(z(t))

(11)
where Hγ(z) : Z → [0, 1] is a multi-layer neural network
parameterized by γ and z(t)

i and z(t) are independently sam-
pled from q(z|vi) and p(z) by SGVB respectively. Based on
the definition above, the adversarial loss function in Eq. 8
can be written as

min
θ

max
γ,φ

ˆ̀(θ) + λ1L1(θ, γ) + λ2L2(φ) (12)

where ˆ̀(θ) = 1
M

∑
yij∈Ω `(dij , yij) is the empirical loss for

θ, and L2(φ) = 1
M

∑
yij∈Ω dij . To regularize function D

as 1-Lipschitz, we add term ‖∇φdij − 1‖2 to L2. Fig. 1(b)
illustrates the overall structure of RAWEN, with the detailed
learning process in Alg. 1. In summary, there are two kinds
of adversarial learning processes in this model
• Adversarial PAC-Bayesian Learning: We can regard
Qθ as a generator and Dφ as a discriminator. The gen-
erator minimizes the approximated expected loss for em-
beddings based on the given Wasserstein distance, while
the discriminator tries to learn the correct Wasserstein dis-
tance.

• GAN Loss for KL Divergence: We can regard Qθ as a
generator and Hγ as a discriminator. The generator mini-
mizes the KL divergence term based on the given function
Hγ , while the discriminator tries to learn the correct KL
divergence.

SGVB for Different Distributions
With the aid of our approximation to the Wasserstein
distance and KL divergence, the embedding space Q in

Algorithm 1 Adversarial Training Strategy
Require: Input Ω, regularizing coefficient λ1, λ2 and learn-

ing rate
repeat

Random choose yij
Output parameters of q(z|vi), q(z|vj) by Qθ
Sample z̃(t) from prior p(z)
Sample z(t)

i , z
(t)
j from q(z|vi), q(z|vj) by SGVB

Update φ, γ by maximizing the loss function below
with the Adam optimizer (Kingma and Ba 2015),

λ2L2(φ) + λ1L1(θ, γ)

Update θ by minimizing the loss function below with
the Adam optimizer

ˆ̀(θ) + λ1L1(θ, γ)

until Convergence

RAWEN is not necessarily limited to Gaussian any longer.
In fact, the list of applicable distributions are the same as
those of SGVB (Kingma and Welling 2013). As a demon-
stration, we also implement two other kinds of Q besides
the Gaussian distribution to validate the effectiveness of
RAWEN, namely Dirichlet and truncated Gaussian distribu-
tion.

• Gaussian Distribution: For node vi, the embedded dis-
tribution can be represented as q(z|vi) = N (µi,Σi � I),
where the prior p(z) = N (0, I). The SGVB estimator
with reparameterization trick (Kingma and Welling 2013)
is derived as

z
(t)
i = µi + Σi � ψ(t), where ψ(t) ∼ N (0, I) (13)

where µi,Σi ∈ RK are outputs of Qθ(vi).

• Dirichlet Distribution: In the setting of Dirichlet dis-
tribution, the variable of q(z|vi) can be regarded as pa-
rameters of a multinomial distribution. Illustratively, in
graph analysis, it can be used to describe a node’s affilia-
tions to different communities (Xie, Kelley, and Szyman-
ski 2013). For node vi, the embedded distribution can be
represented as,

q(z|vi) = Dir(η1, · · · , ηK) (14)

where the prior p(z) = Dir( 1
K , · · · ,

1
K ). We use Logistic-

Normal distribution to approximate the sampling in
SGVB estimator, which is widely used to approximate
Dirichlet distribution (Lafferty and Blei 2006). Formally,

z
(t)
i = softmax[µi + Σi � ψ(t)] ,where ψ(t) ∼ N (0, I)

(15)
where µi,Σi ∈ RK are outputs of Qθ(vi).

• Truncated Gaussian Distribution: For truncated Gaus-
sian we set the domain of q(z|vi) as R+, which allows the
generative model to learn non-negative features (Brouwer
and Lio 2017). The prior H(z) in this case can be defined



Figure 2: Evaluation of precision and recall for link prediction on three datasets.

as the truncated Gaussian with mean 0 and the standard
variance. As for the SGVB estimator, for node vi,

z
(t)
i = σ(µi + Σi�ψ(t)), where ψ(t) ∼ N (0, I) (16)

We set φ(z) = log(1 + ez) (i.e.the softplus function) and
µi,Σi ∈ RK are outputs of Qθ(vi). Discriminators Hγ

and Dφ are all implemented as one-layer fully connected
neural networks.

Certification of Robustness
According to the above descriptions, RAWEN can be ap-
plied to more kinds of distributions besides Gaussian, which
addresses the second concerns on Wasserstein embedding.
In this section, we conduct a formal analysis on the robust-
ness of RAWEN to address the remaining one.

Let us take Ω = {(vi, vj , yij)} as samples from the true
distribution PY and M := |Ω|. The number of yij = 1 is
ρMM . By denoting the empirical distribution with its sup-
port on Ω as P̂Y , we view our node embedding framework
as a generative model for recovering the true distribution PY
with P̂Y . To introduce noises to the distribution P̃Y , we ran-
domly add noises to R samples in Ω by ỹij = 1 − yij . We
assume for each vi there exists a node vj (vj′ ) s.t. yij = 1
(ỹij′ = 1), and a node vk (vk′ ) s.t. yik = 0 (ỹik′ = 0).

Let θ∗ be the optimal solution of the mapping functionQθ
after its being trained with the observations Ω in RAWEN,
and dij(θ

∗) is the corresponding distance. Similarly, we
define θ̃∗ as the optimal solution after perturbation. Sup-
pose for each yij = 1 (ỹij = 1), we have dij(θ∗) ≤ δ1
(dij(θ̃∗) ≤ δ̃1). While for each yij = 0 (ỹij = 0), we have
di,j(θ

∗) ≥ δ0 (di,j(θ̃∗) ≥ δ̃0). Here δ1 and δ̃1 are chosen to
be sufficiently small s.t. δ1 � δ0, δ̃1 � δ̃0.

We start our analysis by providing a data-dependent def-
inition of path as an extension of its conventional notion in
classical graph theory, alongside a main assumption which
will be used during our proofs.

Definition 1 (Path w.r.t. Ω). A path of length ∆ from vi to
vj w.r.t. Ω is defined as a (∆ + 1)-length sequence of nodes
(vi0 , . . . , vi∆) (i0 := i, i∆ := j) s.t. for any 1 ≤ k ≤ ∆,
yik−1ik = 1.

Assumption 1. If yij = 1 and dij(θ∗) < δ̂1, then there
exists a path from vi to vj w.r.t. Ω.

This assumption has been supported by many reported
empirical results on graph analysis. For example, a previous
work using path-based similarity to predict potential links
on graph (Katz 1953). Another justification comes from sev-
eral experiments which states that node embeddings learned
from path-related observations can always achieve satisfy-
ing results on a wide range of graph-based tasks (Jeh and
Widom 2002; Cao, Lu, and Xu 2015; Tsitsulin et al. 2018).

With preparations above, we are now able to state our
main theorems, which provide a quantitative certification on
the robustness of our proposed node embedding framework.
Detailed proofs can be found in Appendix.

Theorem 2. Under Assumption 1, for an arbitrary pair of
nodes vi, vj s.t. yij = 1, if dij(θ∗) ≤ δ̂1, then the expecta-
tion of dij(θ̃∗) satisfies

EP̃Y
[di,j(θ̃

∗)] ≤ EPY
[∆]·

[ R

2ρMM

√
2J+(1− R

2ρMM
)·δ̃1

]
(17)

where EPY
[∆] is the expectation of the length of path in PY

and J = Ep(z)[‖z‖2] <∞.



Figure 3: Macro- and Micro-F1 value for classification task.

Figure 4: Visualization of node embeddings with t-SNE.

Theorem 3. Under Assumption 1, for an arbitrary pair of
nodes vi, vj s.t. yij = 0, if dij(θ∗) ≥ δ̂0, then the expecta-
tion of dij(θ̃∗) satisfies

EP̃Y
[dij(θ̃

∗)] ≥ δ̂0 · (1−
R

2(1− ρM )M
) (18)

Evaluations
In this section, we compare our proposed RAWEN with
the state-of-the-art node embedding methods in terms of ef-
fectiveness and robustness. In particular, our main research
questions are
• RQ1. Is RAWEN an effective node embedding method?
• RQ2. Is RAWEN a robust node embedding method?
• RQ3. What is the influence of different Q?

Experiment Settings
We validate the effectiveness of our embedding on two
benchmark tasks, i.e. multi-label node classification and
link prediction tasks. For each run of experiment, we con-
duct a 10-fold cross validation on each dataset and re-
port the average results. We validate the expressiveness
of our node embedding framework on the following pub-
lic graph datasets of various scale. For link prediction, we
use Wiki-Vote, Epinions and Google datasets, which re-
spectively contain 2846, 5488, 44000 nodes and 184376,
279480, 445618 edges. For node classification we use Email

and Wiki dataset, which respectively contain 1005, 19933
nodes and 25571, 1003686 edges.

We compare the performance of RAWEN with several
state-of-the-art node embedding methods. For vector-based
embedding model, we choose Graph Factorization (GF)
(Ahmed et al. 2013), Large-scale Information Network Em-
bedding (LINE) (Tang et al. 2015), Node2vec (Grover and
Leskovec 2016) and Structural Deep Network Embeddings
(SDNE) (Wang, Cui, and Zhu 2016) as baselines. Fur-
thermore, we compare RAWEN with Generative Adver-
sarial Network Embedding (GANE) (Hong, Li, and Wang
2018), which is a robust vector-based embedding mod-
els. For distribution-based embedding models, we choose
deep variational network embedding in Wasserstein space
(DVNE) (Zhu et al. 2018) as the baseline. We also con-
duct self-comparisons among different choices ofQ, namely
RAWEN-G, RAWEN-D and RAWEN-T which respectively
stand for Gaussian, Dirichlet and Truncated Gaussian.

Similar to the evaluations in node2vec, we construct the
observed relations for training node embeddings with the
following criterion, i.e. yij = 1 if vi, vj are in a common
random walk path; otherwise, yij = 0. For each methods,
we set the embedding size as 20, 30, 50 for Wiki-vote, Epin-
ions and Google respectively and set the batch size as 200
in each case. For our model, the learning rate is set as 0.002,
sample size T as 10 and the regularization coefficient as 0.1.



Figure 5: AUC results on link prediction tasks after repeatedly replacing an existing edge in the training set with a random edge.
We set six noise levels, i.e. by replacing 3%, 5%, 8%, 12%, 15%, 18% edges in the training set.

Empirical Results

For RQ1, we present the precision and recall results on
the link prediction tasks in Fig. 2. For baseline models,
Node2vec, LINE and GF are worse than SDNE due to their
commonly shallow architectures. With the help of adver-
sarial learning, GANE achieves a similar performance to
SDNE without deep architecture. DVNE outperforms all the
vector-based embedding models, which proves the advan-
tage of distribution-based embedding. As for the three spec-
ifications of our framework, all of them outperform the state-
of-the-art models with a noticeable margin on each dataset.
For example, RAWEN outperforms the best baseline DVNE
by 5% in precision on Google. We also evaluate each method
above on node classification tasks. Fig. 3 plots the results of
RAWEN-G because three kinds of distributions show simi-
lar performance.

For RQ2, we empirically validate the robustness of
RAWEN in Fig. 5. For the sake of clarity we omit the results
of GF and Node2vec, which show a similar performance to
LINE. For baseline models, only GANE shows slight robust-
ness against noises, probably due to the adversarial learning.
As a comparison, stronger robustness effect is observed on
RAWEN after we artificially inject noise into the ground-
truth graph with diverse noise levels. For example, on wiki-
vote dataset with noise level 6 (the largest), our framework
only degrades by 2% decrease in AUC, while other baseline
models averagely degrade by 10%. In other words, RAWEN
indeed has the ability to learn robust representations.

For RQ3, RAWEN-G achieves the best performance over
the other two specifications. Meanwhile, we visualize the
node embeddings obtained from our model in Fig. 4 using t-
SNE algorithm (Maaten and Hinton 2008). Interestingly, the
embeddings from RAWEN-D successfully capture the struc-
tural information of the given graph, as in Fig. 4. It is mainly
because, the distribution-based embedding in the Dirichlet
case can be regarded as the parameters of certain multino-
mial distribution. Therefore, q(z|v) is expected to capture
the clustering information in the graph.

Related Work
Node embedding is a crucial task in graph analysis, where
traditional methods viewed the node embedding problem as
how to represent nodes as real vectors (Hamilton, Ying, and
Leskovec 2017), e.g., by directly embedding nodes with vec-
tors (Perozzi, Al-Rfou, and Skiena 2014; Tang et al. 2015;
Grover and Leskovec 2016) and calculating vectors by link-
age relation (Wang, Cui, and Zhu 2016; Kipf and Welling
2016a). Recently, some methods were proposed to embed
nodes with distributions instead of vectors and empirical re-
sults proved the effectiveness of the embeddings (He et al.
2015; Bojchevski and Günnemann 2018; Zhu et al. 2018).
However, to the best of our knowledge, only Gaussian dis-
tribution has been studied as embedding space previously.

Robustness is a common concern in node embedding,
which can be defined as the sensitiveness of embeddings
to external noises on the graph (Ribeiro, Saverese, and
Figueiredo 2017; Bojcheski and Günnemann 2018; Dai et
al. 2018a). Efforts have been made on vector-based embed-
ding models, by e.g. imposing prior on the vector space
(Kipf and Welling 2016b). Adversarial learning on the graph
(Wang et al. 2018) is also a practical way to improve the
robustness of vector-based embeddings (Dai et al. 2018b;
Hong, Li, and Wang 2018). However, there still lacks a ro-
bust solution for distribution-based embedding.

Conclusion
In this paper, we focus on distribution-based node embed-
ding and propose a novel method for improving the robust-
ness of embedded distributions, based on a derived gen-
eralization bound for Wasserstein embedding in a PAC-
Bayesian framework (Theorem 1). Furthermore, in order to
minimize the upper bound, we propose an algorithm called
adversarial PAC-Bayesian learning. A neural network based
instance of this algorithm is RAWEN, the robustness of
which is further certificated by theoretical analysis. RAWEN
is also the first attempt to extend embedding space of distri-
butions to incorporate more kinds of distributions, including
Dirichlet distribution and truncated Gaussian distribution.
Empirical results prove the effectiveness and robustness of
our proposed method. In the future, we would like to gen-



eralize the framework to more kinds of distributions such
as Gamma distribution. We suggest it is also promising to
explore the interpretations of the embedded results.
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Appendix A: Proof of Theorem 1
In the proof we will make use of the following lemma:

Lemma 1. (Maurer 2004) Let X ∈ [0, 1] be a real-valued
random variable with expectation µ. If we i.i.d sample
x1, · · · , xn and x̄ = 1

n

∑n
i=1 xi, then for n ≥ 8:

EX [enKL(µ,x̄)] ≤ 2
√
n (19)

Theorem 1. Given a graph with N nodes, Ω =
{(vi, vj , yij)} is the observed linkage information sampled
from PY with size M ≥ 8. Suppose Z ⊆ RK is a metric
space, and Q is a family of distribution defined on Z . Each
node vi is related with a distribution q(z|vi) ∈ Q, where
distance between embedded distributions dij is Wasserstein
distance. Loss function `(dij , yij) ∈ [0, 1] is pre-defined.
Then given optimal function D∗ defined in the dual form of
Wasserstein distance, prior distribution p(z) defined on Z
and δ ∈ (0, 1), with probability at least 1 − δ we have for
all Q = {q(z|v1), · · · , q(z|vN )} ⊆ Q:

`(Q) ≤ ˆ̀(Q,Ω) +

∑N
i=1KL(q(z|vi)‖p(z)) + lnM − ln δ

M
(20)

where ˆ̀(Q,Ω) is the empirical loss on Ω and the distance
dij between node vi and vj is calculated as,

dij = Ez∼q(z|vi)[D
∗(z)]− Ez∼q(z|vj)[D

∗(z)] (21)

Proof. According to the framework of PAC-Bayesian theory
(McAllester 1999), we first define the hypothesis spaceH =
Z × · · · × Z in Wasserstein embedding, with a hypothesis
is h = (z1, · · · , zn) ∈ H, where zi ∈ Z . Given optimal
function D∗, we further define the loss function of `(h, yij)
as,

`(h, yij) = `(D∗(zi)−D∗(zj), yij) (22)

where `(D∗(zi) − D∗(zj), yij) ∈ [0, 1]. Then we de-
fine a distribution Q on the hypothesis space H by Q(h) =∏N
i=1 q(zi|vi), where q(z|vi) is the embedded distribution

as defined.
We also define a prior distribution on the hypothesis space

by P (h) =
∏N
i=1 p(zi), where p(zi) is the prior distribution

on RK as defined. Then the loss function of a distribution Q
can be written by,

`(Q, yij) =

∫
[`(D∗(zi)−D∗(zj), yij)]q(zi|vi)q(zj |vj)dzidzj

Given two Bernoulli variable a, b, the KL divergence be-
tween then can be written as,

KL(a‖b) = a ln
a

b
+ (1− a) ln

1− a
1− b

(23)

If we define a = Eh∼QEyij [`(h, yij)] and b =

Eh∼Q
[

1
M

∑
yij∈Ω `(h, yij)

]
, then according to the convex-

ity of KL divergence (Seeger 2003), we have:

KL(a‖b) ≤ Eh∼Q
[
KL(Eyij [`(h, yij)]‖

1

M

∑
yij∈Ω

`(h, yij))
]

According to Jensen inequality, for any prior P defined
onH, we have:

Eh∼Q
[
M ·KL(Eyij [`(h, yij)]‖

1

M

∑
yij∈Ω

`(h, yij))
]

≤ KL(Q‖P ) + lnEh∼P
[
e
M ·KL(Eyij

[`(h,yij)]‖ 1
M

∑
yij∈Ω `(h,yij))]

(24)

When M ≥ 8, the term has the following bound by
Lemma 1:

Eh∼P
[
e
M ·KL(Eyij

[`(h,yij)]‖ 1
M

∑
yij∈Ω `(h,yij))] ≤ 2

√
M

Therefore by Markov inequality, with probability 1− δ:

Eh∼P
[
e
M ·KL(Eyij

[`(h,yij)]‖ 1
M

∑
yij∈Ω `(h,yij))] ≤ 2

√
M

δ

Together with Eq. 24, we obtain:

KL
(
Eh∼QEyij [`(h, yij)]‖Eh∼Q

[ 1

M

∑
yij∈Ω

`(h, yij)
])

≤ KL(Q‖P ) + ln 2
√
M − ln δ

M

with probability 1− δ. Note that KL(a, b) ≥ 2(a− b)2, we
obtain,

Eh∼QEyij [`(h, yij)] ≤ Eh∼Q
[ 1

M

∑
yij∈Ω

`(h, yij)
]

+

√
KL(Q‖P ) + ln 2

√
M − ln δ

M
(25)

By taking the expectation on KL(Q‖P ):

KL(Q‖P ) =

∫ [ N∏
i=j

q(zj |vj)
]

ln
[ N∏
i=1

q(zi|vi)
p(zi)

]
dz1 · · · dzN

=

N∑
i=1

∫ [ N∏
j=1

q(zj |vj)
]

ln
q(zi|vi)
p(zi)

dz1 · · · dzN

=

N∑
i=1

∫
q(z|vi) ln

q(z|vi)
p(z)

=

N∑
i=1

KL(q(z|vi)‖p(z)) (26)

and the following inequality (Seldin and Tishby 2010),√∑N
i=1KL(q(z|vi)‖p(z)) + ln 2

√
M − ln δ

2M

≤
∑N
i=1KL(q(z|vi)‖p(z)) + ln(M + 1)− ln δ

M
(27)

we finish the proof.



Appendix B: Proof of Theorem 2 and 3
Theorem 2. Under Assumption 1, for an arbitrary pair of
nodes vi, vj s.t. yij = 1, if dij(θ∗) ≤ δ̂1, then the expecta-
tion of dij(θ̃∗) satisfies

EP̃Y
[di,j(θ̃

∗)] ≤ EPY
[∆]·

[ R

2ρMM

√
2J+(1− R

2ρMM
)·δ̃1

]
(28)

where EPY
[∆] is the expectation of the length of path in PY

and J = Ep(z)[‖z‖2] <∞.

Proof. First, if the KL term in the upper bound is minimized,
we obtain,

EP̃Y

[
inf

γ∈
∏

(q(z|vi),q(z|vj))
E(zi,zj)∼γ [‖zi − zj‖2]

]
≤ EP̃Y

Ezi∼q(z|vi)Ezj∼q(z|vj)[‖zi − zj‖2]

≤ Ep(z)[‖Z‖2 + ‖Z‖2] (29)

Therefore we obtain,

EP̃Y
[dij(θ̃

∗)] ≤
√

2J (30)

According to Assumption 1, there exists a path w.r.t
Ω from vi to vj . Then for each yuv = 1 in the path,

ỹij = 0 with probability
R

2ρMM
. If yuv is not influenced

by the noise, we have dij(θ̃∗) ≤ δ̃1. Otherwise, we have
EP̃Y

[dij(θ̃
∗)] ≤

√
2J .

For each yuv in the path, whether it is influenced by noise
or not can be regarded as an event respecting Binomial dis-

tribution with parameter
R

2ρMM
. Then with the property of

metric space, we sum duv(θ̃
∗) in the path and obtain the fol-

lowing inequality

EP̃Y

[
dij(θ

∗)
]
≤
∑
u,v

EP̃Y

[
duv(θ̃

∗)
]

(31)

For each EP̃Y

[
duv(θ̃

∗)
]

we have:

EP̃Y

[
duv(θ̃

∗)
]
≤ R

2ρMM
·
√

2J + (1− R

2ρMM
) · δ̃1 (32)

Theorem 3. Under Assumption 1, for an arbitrary pair of
nodes vi, vj s.t. yij = 0, if dij(θ∗) ≥ δ̂0, then the expecta-
tion of dij(θ̃∗) satisfies

EP̃Y
[dij(θ̃

∗)] ≥ δ̂0 · (1−
R

2(1− ρM )M
) (33)

Proof. It is straightforward to see that for vi and vj , there
is assumed to have no path w.r.t Ω. Otherwise, we have
dij(θ

∗) ≤
∑
u,v duv(θ

∗) ≤ ∆δ1 � δ̂0, which brings a con-
tradiction.

Then as a worst case analysis, there will be a path between
vi, vj with probability R

2(1−ρM )M influenced by the noise
while there is still no path between vi and vj with probabil-
ity 1 − R

2(1−ρM )M . In other words, distance between vi, vj

Figure 6: Structure of the generator

is not influenced by the noise. Thus we have dij(θ̃∗) ≥ δ̂0
and by a direct calculation of the expectation of Bernoulli
distribution,

EP̃Y
[dij(θ̃

∗)] ≥ 0 · R

2(1− ρM )M
+ δ̂0 · (1−

R

2(1− ρN )N
)

Appendix C: Detailed Implementation
For the implementation of Qθ, Dφ and Hγ , discriminator
Hγ and Dφ are one-layer full connection layer. We present
details on implementation of function Qθ and the corre-
sponding sampling process in Fig. 6. The choices of gate
layer, as we have discussed above, are listed as follows.
• If q(z|v) is Multivariate Gaussian, the gate function is

identity function.
• If q(z|v) is Dirichlet distribution, the gate function is soft-

max.
• If q(z|v) is Multivariate Truncated Normal distribution,

the gate function is softplus, where the µi is also an output
from a softplus function.


