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Abstract

A key to knowledge graph embedding (KGE) is to choose a
proper representation space, e.g., point-wise Euclidean space
and complex vector space. In this paper, we propose a uni-
fied perspective of embedding and introduce uncertainty into
KGE from the view of group theory. Our model can incorpo-
rate existing models (i.e., generality), ensure the computation
is tractable (i.e., efficiency) and enjoy the expressive power
of complex random variables (i.e., expressiveness). The core
idea is that we embed entities/relations as elements of a sym-
metric group, i.e., permutations of a set. Permutations of dif-
ferent sets can reflect different properties of embedding. And
the group operation of symmetric groups is easy to compute.
In specific, we show that the embedding of many existing
models, point vectors, can be seen as elements of a symmetric
group. To reflect uncertainty, we first embed entities/relations
as permutations of a set of random variables. A permutation
can transform a simple random variable into a complex ran-
dom variable for greater expressiveness, called a normalizing
flow. We then define scoring functions by measuring the sim-
ilarity of two normalizing flows, namely NFE. We construct
several instantiating models and prove that they are able to
learn logical rules. Experimental results demonstrate the ef-
fectiveness of introducing uncertainty and our model. The
code is available at https://github.com/changyi7231/NFE.

1 Introduction
A knowledge graph (KG) contains a large number of triplets
with form (h, r, t), where h is a head entity, r is a relation
and t is a tail entity. Existing KGs often suffer from the in-
completeness problem. To complement the KGs, knowledge
graph embedding (KGE) models map entities and relations
into low-dimensional distributed representations and define
scoring functions to measure the likelihood of the triplets.

A key to KGE is to choose a proper representation space
such that the embedding can make good use of the proper-
ties of the space (Ji et al. 2021). For example, point-wise Eu-
clidean space is widely applied for representing entities/rela-
tions due to its simplicity yet effectiveness(Yang et al. 2014).
Complex vector space is then proposed to learn sophisticated
logical rules (Sun et al. 2018; Toutanova et al. 2015). More-
over, the usage of quaternion space brings more degree of
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freedom of rotation than complex space (Zhang et al. 2019).
Besides, hyperbolic space is used to capture hierarchical log-
ical rules (Chami et al. 2020). Motivated by the group theory,
non-Abelian group is exploited to find the hidden group al-
gebraic structure of relations (Yang, Sha, and Hong 2020).
However, the above works hardly consider the uncertainty
information of embedding, which limit the expressiveness.

To reflect uncertainty, a common method is to embed en-
tities/relations as random variables (He et al. 2015). How-
ever, it has two drawbacks. First, it is difficult to parame-
terize a complex random variable directly due to the diffi-
culty of computing the partition function (Goodfellow, Ben-
gio, and Courville 2016). Second, it is intractable to com-
pute the probability density function (PDF) of the sum of
two random variables due to the difficulty of computing the
convolution of two PDFs (Bertsekas and Tsitsiklis 2008).

In this paper, we propose a unified perspective of embed-
ding and introduce uncertainty into KGE from the view of
group theory. Our model makes the embedding more gen-
eral and ensures the computation is tractable. We embed en-
tities/relations as elements of a symmetric group, i.e., per-
mutations of a set. (A permutation of a set X is an invertible
function from X to X .) On one hand, since point vectors
can be seen as elements of a symmetric group, our proposed
embedding is a generalization of point vectors. Moreover,
Cayley’s theorem (Hungerford 2012), every group is iso-
morphic to a subgroup of a symmetric group, also shows the
generality of our proposed embedding. On the other hand,
the group operation of symmetric groups, the composition
of functions, is easy to compute. We can embed entities/re-
lations as permutations of different sets to reflect different
properties of embedding. For example, if the set is a vector
space (or a random variable space), then the permutations of
that set reflect the certainty (or uncertainty) property.

In specific, to reflect uncertainty, we embed entities/re-
lations as permutations of a set of random variables. The
permutation or invertible function can transform a simple
random variable into a complex random variable for greater
expressiveness, which is called a normalizing flow (Papa-
makarios et al. 2021; Kobyzev, Prince, and Brubaker 2020).
We can easily parameterize a complex invertible function
(instead of a complex random variable), and compute the
PDF of a random variable obtained by an invertible func-
tion acting on a simple random variable (Papamakarios et al.



2021; Kobyzev, Prince, and Brubaker 2020). Our method
can be seen as a generalized reparameterization method
(Kingma and Welling 2013; Rezende, Mohamed, and Wier-
stra 2014). We then define the scoring function by measuring
the similarity of two normalizing flows, namely Normaliz-
ing Flows Embedding (NFE). Finally, we instantiate several
NFE models by choosing different invertible functions. We
further prove that NFE is able to learn logical rules.

The main contributions of this paper are listed below:

1. We propose a unified perspective of embedding from the
view of group theory, which offers a rigorous theoretical
understanding of KGE.

2. We proposed NFE to introduce uncertainty into KGE,
which enjoys generality, efficiency and expressiveness.

3. Experimental results demonstrate the effectiveness of in-
troducing uncertainty into KGE and our model.

2 Background
In this section, we introduce the related background of our
model, knowledge graph embedding, normalizing flows and
group theory.

2.1 Knowledge Graph Embedding
Let E and R denote the sets of entities and relations, respec-
tively. A KG contains a set of triplets F = {(h, r, t)} ⊂
E × R × E . KGE aims at learning the distributed represen-
tations or embeddings for entities and relations. It defines
a scoring function f(h, r, t) to measure the likelihood of a
triplet (h, r, t) based on the embeddings (h, r, t). Existing
KGE models include translation-based models, multiplica-
tive models and so on (Zhang et al. 2021).

Translation-based models learn embeddings by translat-
ing a head entity to a tail entity through a relation. TransE
(Bordes et al. 2013), a representative model of translation-
based models, defines the scoring function as the negative
distance between h+ r and t, i.e.,

f(h, r, t) = −∥h+ r − t∥

where h, r, t ∈ Rn and ∥ · ∥ is a norm of a vector.
Multiplicative models measure the likelihood of a triplet

by product-based similarity of entities and relations. Dist-
Mult (Yang et al. 2014), a representative model of multi-
plicative models, defines the scoring function as the inner
product of h, r and t, i.e.,

f(h, r, t) = ⟨h, r, t⟩ :=
n∑

i=1

hiriti

where h, r, t ∈ Rn and ⟨·, ·, ·⟩ is the inner product of three
vectors.

2.2 Normalizing Flows
A normalizing flow is a sequence of invertible and differen-
tiable functions, which transforms a simple probability dis-
tribution (e.g., a standard normal) into a more complex dis-
tribution (Papamakarios et al. 2021; Kobyzev, Prince, and
Brubaker 2020). Let Z be a random variable in Rn with a

known and tractable PDF pZ(z) and X = g(Z) be an in-
vertible function which transforms Z into X . The PDF of
the random variable X follows

pX(x) = pZ(g
−1(x))|det(∂g

−1(x)

∂x
)| (1)

where g−1 is the inverse of g and det(∂g
−1(x)
∂x ) is the deter-

minant of the Jacobian of g−1 evaluated at x. We next show
an example of normalizing flows.

Example 1 (Pushing uniform to normal). Let z ∼ U [0, 1]
be uniformly distributed and x ∼ N (µ, σ2) be normally dis-
tributed. The invertible function

x = S(z) = µ+
√
2σ · erf−1(2z − 1)

pushes z into x, where erf(z) = 2√
π

∫ z

0
e−s2ds is the error

function.

2.3 Group Theory
A group is a set G together with a group operation on G,
here denoted ·, that combines any two elements a and b to
form an element of G, denoted a · b, such that the following
three requirements are satisfied:

1. Associativity ∀a, b, c ∈ G, (a · b) · c = a · (b · c).
2. Identity element ∃e ∈ G such that ∀a ∈ G, e · a = a

and a · e = a.

3. Inverse element ∀a ∈ G,∃b ∈ G such that a · b = e and
b · a = e.

A permutation group is a group G whose elements are per-
mutations of a given set X and whose group operation is the
composition of functions in G, where permutations are in-
vertible functions from the set X to itself. The group of all
permutations of a set X is the symmetric group of X , de-
noted as Sym(X). The term permutation group thus means
a subgroup of the symmetric group. By Cayley’s theorem
(Hungerford 2012), every group is isomorphic to a permuta-
tion group, which characterizes group structure as the struc-
ture of a set of invertible functions.

3 Normalizing Flows Embedding
In this section, we first propose a unified perspective of em-
bedding and extend to the general form of normalizing flows
embedding (NFE). We then define the concrete forms of
NFE and prove that they are able to learn logical rules. Fi-
nally, we show the loss function.

3.1 Unified Perspective of Embedding
Most KGE models embed entities/relations as point vectors
in a low-dimensional space. We propose a unified perspec-
tive of embedding from the view of symmetric groups and
show that point vectors can be seen as elements of a symmet-
ric group. We take the representative KGE models, TransE
and DistMult, as examples to illustrate. We show the results
for other models in Appendix B.



TransE Let G = X = Rn, TransE embeds every enti-
ty/relation as a vector in G. We show that every vector can
correspond to a permutation of X , i.e., an element of the
symmetric group Sym(X). We define a map α from G to
Sym(X):

α : G → Sym(X)

α(g) = fg

where g ∈ G and the definition of fg is as follows:

fg : X → X

fg(x) = g + x

where x ∈ X . The image of α is a permutation group, i.e.,
a subgroup of Sym(X). For every triplet (h, r, t), we have:

fh(x) = h+ x, fr(x) = r + x, ft(x) = t+ x

then TransE can be represented as:

f(h, r, t) = −∥h+ r − t∥
= −∥r + (h+ 0)− (t+ 0)∥
= D(fr(fh(x0)), ft(x0))

= D(fr ◦ fh(x0), ft(x0))

where x0 = 0 ∈ X , ◦ denotes functional composition and
D(a, b) = −∥a − b∥,a, b ∈ Rn. D(·, ·) is a similarity
metric, which outputs a real value.

DistMult Let G = (R\{0})n and X = Rn, DistMult em-
beds every entity/relation as a vector in G. We can similarly
define a map α from G to Sym(X):

α : G → Sym(X)

α(g) = fg

where g ∈ G and the definition of fg is as follows:

fg : X → X

fg(x) = g ⊙ x

where x ∈ X and ⊙ is Hadamard product. The image of α
is another subgroup of Sym(X). For every triplet (h, r, t),
we have:

fh(x) = h⊙ x, fr(x) = r ⊙ x, ft(x) = t⊙ x

then DistMult can be represented as:

f(h, r, t) = ⟨h, r, t⟩
= ⟨r ⊙ (h⊙ 1), t⊙ 1⟩
= D(fr(fh(x0)), ft(x0))

= D(fr ◦ fh(x0), ft(x0))

where x0 = 1 ∈ X and D(a, b) = aT b,a, b ∈ Rn.

Unified Representation Therefore, we get a unified rep-
resentation of TransE and DistMult from the view of sym-
metric groups:

f(h, r, t) = D(fr ◦ fh(x0), ft(x0)) (2)

The unified representation is defined by measuring the sim-
ilarity of fr ◦ fh evaluated at x0 and ft evaluated at x0. It

is composed of three parts, the initial object x0 ∈ X , the
permutations {fh, fr, ft} and the similarity metric D(·, ·).
Thus, we can define scoring functions in terms of permuta-
tions of a set.

TransE and DistMult embed entities/relations into dif-
ferent subgroup of the same symmetric group Sym(Rn)
to get different scoring functions. Since every point vec-
tor corresponds to an element of Sym(Rn), the elements of
Sym(Rn) can reflect the certainty property of point vectors.
Thus, we can reflect different properties of embedding and
define different scoring functions by choosing different sym-
metric groups. Next, we introduce the uncertainty of embed-
ding by choosing a suitable symmetric group.

3.2 General Form of NFE
To introduce uncertainty, we let X be the set of random
variables on Rn and embed entities/relations as elements
of Sym(X). For every triplet (h, r, t), we have the corre-
sponding permutations or invertible functions {fh, fr, ft}.
Our NFE is defined in the form of Eq.(2), where x0 ∈ X is
a random variable and D(·, ·) is a similarity metric between
two random variables or two PDFs. fr ◦ fh(x0) or ft(x0)
is a normalizing flow, which transforms a random variable
x0 into another random variable, this reflects uncertainty in-
formation of {fh, fr, ft}. Thus, NFE is to measure the sim-
ilarity of two normalizing flows. We can easily compute the
PDFs of fr ◦ fh(x0) and ft(x0) by Eq.(1), then the general
form of NFE is represented as

f(h, r, t) = D(fr ◦ fh(x0), ft(x0))

= D(px0(f
−1
h ◦ f−1

r (x))|det(
∂f−1

h ◦ f−1
r (x)

∂x
)|,

px0(f
−1
t (x))|det(∂f

−1
t (x)

∂x
)|) (3)

In Section 3.3, we define concrete x0, {fh, fr, ft} and
D(·, ·) to get the concrete forms of NFE.

Comparison of KG2E and NFE KG2E (He et al. 2015)
embeds entities/relations as random variables and defines
the scoring function as f(h, r, t) = D(h − t, r), where
h, r and t are random variables with normal distributions.
However, it has two drawbacks to represent entities/rela-
tions as random variables to model uncertainty. First, it is
difficult to parameterize a complex random variable directly
due to the difficulty of computing the partition function
(Goodfellow, Bengio, and Courville 2016). We get a com-
plex random variable by using a complex invertible func-
tion to act on a simple random variable. It is easy to pa-
rameterize a complex invertible function and compute the
PDF of a random variable obtained by an invertible function
acting on a simple random variable by Eq.(1) (Papamakar-
ios et al. 2021; Kobyzev, Prince, and Brubaker 2020). Thus,
our method can be seen as a generalized reparameterization
method (Kingma and Welling 2013; Rezende, Mohamed,
and Wierstra 2014). Second, KG2E involves computing the
PDF of the sum/difference of two random variables, i.e., the
PDF of h − t, which is intractable in most cases due to the
difficulty of computing the convolution of two PDFs (Bert-
sekas and Tsitsiklis 2008). For example, if we embed a head



entity h and a relation r as random variables with Beta dis-
tribution, then it is hard to compute the PDF of h − t. In
contrast, Eq.(3) requires computing the PDF of fr ◦ fh(x0),
which is still a normalizing flow because a composition of
invertible functions remains invertible. It is easy to compute
the composition of fh and fr and the PDF of fr ◦ fh(x0)
by Eq.(1). In conclusion, NFE is more general and compu-
tationally simple.

3.3 Concrete Form of NFE
Based on the general form of NFE, Eq.(3), we define the
concrete initial random variables x0, invertible functions
{fh, fr, ft} and similarity metrics D(·, ·) to get the concrete
forms of NFE.

For the initial random variable x0, we can choose it to be
a simple random variable for the convenience of computing
Eq.(3), such as a random variable with uniform distribution
U [−

√
3,
√
3]n or a random variable with standard normal

distribution N (0, I).
The invertible functions fg can be chosen as fg(x) =

g + x as in TransE or fg(x) = g ⊙ x as in DistMult. We
use the composition of the two functions:

fg(x) = gσ ⊙ x+ gµ (4)

where gσ ∈ Rn, the entries of gσ are non-zero, and gµ ∈
Rn. Thus, for every triplet (h, r, t), we have that

fh(x) = hσ ⊙ x+ hµ, fr(x) = rσ ⊙ x+ rµ

fr ◦ fh(x) = rσ ⊙ hσ ⊙ x+ rσ ⊙ hµ + rµ

ft(x) = tσ ⊙ x+ tµ (5)

We denote the PDF of fr ◦ fh(x0) as prh(x0) and the PDF
of ft(x0) as qt(x0). If x0 ∼ N (0, I) and fg is a lin-
ear (affine) function fg(x) = gσ ⊙ x + gµ, then prh(x0)
and qt(x0) are still normal distributions. A more expressive
choice of fg than Eq.(4) can be piecewise linear functions:

fg(x)i =

{
gσ1i ⊙ xi + gµi if xi ≤ 0

gσ2i ⊙ xi + gµi if xi > 0
(6)

where gσ1
, gσ2

, gµ ∈ Rn. For simplicity, we denote Eq.(6)
as

fg(x) =

{
gσ1

⊙ x+ gµ if x ≤ 0

gσ2 ⊙ x+ gµ if x > 0

To ensure Eq.(6) is invertible, we need to constraint gσ1 ⊙
gσ2

> 0. Since the composition of two piecewise linear
functions with two pieces is a piecewise linear function with
three pieces, we still implement fr as a linear function. This
ensures that for any fh(x) and fr(x), there exists a ft(x)
such that ft(x) = fr ◦ fh(x) for any x. Thus, for every
triplet (h, r, t), we have that

fh(x) =

{
hσ1

⊙ x+ hµ if x ≤ 0

hσ2
⊙ x+ hµ if x > 0

, fr(x) = rσ ⊙ xi + rµ,

fr ◦ fh(x) =
{
rσ ⊙ hσ1 ⊙ x+ rσ ⊙ hµ + rµ if x ≤ 0

rσ ⊙ hσ2
⊙ x+ rσ ⊙ hµ + rµ if x > 0

,

ft(x) =

{
tσ1

⊙ x+ tµ if x ≤ 0

tσ2 ⊙ x+ tµ if x > 0
(7)

The similarity metric D(·, ·) can be chosen as the negative
Kullback–Leibler (KL) divergence between the PDFs, p(x)
and q(x),

D(p, q) = −KL(p, q) = −
∫

p(x) log
p(x)

q(x)
dx (8)

or negative Wasserstein distance between the PDFs (Peyré,
Cuturi et al. 2019), p(x) and q(y),

D(p, q) = −W (p, q) = − inf
γ∈Γ(p,q)

∫∫
∥x− y∥22γ(x,y)dxdy

(9)

where Γ denotes the set of all joint distributions of (x,y).
Wasserstein distance is still valid if the support sets of
p(x) and q(y) are not overlapped, while the KL diver-
gence is not valid. For example, W (p(x), q(y)) = 4 and
KL(p(x), q(y)) = ∞ if x ∼ U [0, 1] and y ∼ U [2, 3].
Therefore, we use Wasserstein distance instead of KL diver-
gence. However, Wasserstein distance is difficult to compute
in most cases (Peyré, Cuturi et al. 2019). It has a tractable
solution when n = 1:

W (p, q) =

∫ 1

0

(F−1(z)−G−1(z))2dz

where F−1(z) and G−1(z) are the inverse cumulative distri-
bution function of p(x) and q(y), respectively. Our idea is
to decompose the n-dimensional Wasserstein distance into
a sum of 1-dimensional Wasserstein distances. We have the
following proposition to realize it.
Proposition 1. For two PDFs, p(x) and q(y), W (p, q) =∑n

i=1 W (pi, qi) iff p(x) and q(y) share the same copula,
where pi and qi are the marginal distributions of xi and
yi, respectively (Cuestaalbertos, Ruschendorf, and Tuero-
diaz 1993).

See Appendix C for the proofs. Thus, we can get the fol-
lowing corollary.
Corollary 1. For two PDFs, p(x) and q(y), W (p, q) =∑n

i=1 W (p(xi), q(yi)) if p(x) =
∏n

i=1 p(xi) and q(y) =∏n
i=1 q(yi).
We design proper scoring functions such that prh(x0) and

qt(x0) satisfy the conditions in Corollary 1. In summary, we
can define the concrete forms of NFE. We have the following
propositions.
Proposition 2. If x0 ∼ U [−

√
3,
√
3]n or x0 ∼ N (0, I),

the invertible functions are Eq.(5) and similarity metric is
Eq.(9), then the scoring function is
f(h, r, t) = −∥rσ ⊙ hµ + rµ − tµ∥22 − ∥|rσ ⊙ hσ| − |tσ|∥22

(10)

Proposition 3. If x0 ∼ U [−
√
3,
√
3]n, the invertible func-

tions are Eq.(7) and similarity metric is Eq.(9), then the
scoring function is

f(h, r, t) = −∥rσ ⊙ hµ + rµ − tµ∥22 −
1

2
∥|rσ ⊙ hσ1 | − |tσ1 |∥22

− 1

2
∥|rσ ⊙ hσ2

| − |tσ2
|∥22 −

√
3

4
(rσ ⊙ hµ + rµ − tµ)

T

(|rσ ⊙ hσ2
| − |rσ ⊙ hσ1

|+ |tσ1
| − |tσ2

|) (11)



Proposition 4. If x0 ∼ N (0, I), the invertible functions
are Eq.(7) and similarity metric is Eq.(9), then the scoring
function is

f(h, r, t) = −∥rσ ⊙ hµ + rµ − tµ∥22 −
1

2
∥|rσ ⊙ hσ1 | − |tσ1 |∥22

− 1

2
∥|rσ ⊙ hσ2

| − |tσ2
|∥22 −

√
2

π
(rσ ⊙ hµ + rµ − tµ)

T

(|rσ ⊙ hσ2 | − |rσ ⊙ hσ1 |+ |tσ1 | − |tσ2 |) (12)

The first term of Eq.(10) is to measure the difference of
the mean of prh(x0) and pt(x0), the second term is to
measure the difference of the standard deviation of prh(x0)
and pt(x0). If hσ = rσ = tσ = 1, Eq.(10) reduces to
f(h, r, t) = −∥hµ + rµ − tµ∥22, which is the same as
TransE, and the second term of Eq.(10) is equal to 0, i.e.,
the standard deviations of prh(x0) and qt(x0) are the same.
If hµ = rµ = tµ = 0, Eq.(10) reduces to f(h, r, t) =
−∥|rσ ⊙ hσ| − |tσ|∥22. Eq.(11) and Eq.(12) are similar, the
only difference is the coefficient of the fourth terms, one is

−
√

3
4 , the other is −

√
2
π . If hσ1

= hσ2
and tσ1

= tσ2
,

Eq.(11) or Eq.(12) reduces to Eq.(10).
If we choose x0 to be a random variable with Dirac delta

distribution (i.e. a point vector), then Eq.(3) do not model
uncertainty. Thus, NFE can be seen as a generalization of
conventional models. We have the following proposition to
illustrate this:

Proposition 5. Let k > 0, if xk ∼ U [−
√
3

k ,
√
3

k ]n or xk ∼
N (0, I

k2 ), the invertible functions are Eq.(5) and similarity
metric is Eq.(9), denote the scoring function as fk(h, r, t),
then xk tends to a random variable with Dirac distribution
as k tends to infinity and

lim
k→∞

fk(h, r, t)

= lim
k→∞

−∥rσ ⊙ hµ + rµ − tµ∥22 −
1

k2
∥|rσ ⊙ hσ| − |tσ|∥22

=− ∥rσ ⊙ hµ + rµ − tµ∥22 (13)

Proposition 5 shows that 1/k2 in fk(h, r, t) reflects the
degree to which fk(h, r, t) focuses on uncertainty. Higher
value of 1/k2 indicates fk(h, r, t) focusing more on un-
certainty. If 1/k2 = 0, the second term of fk(h, r, t) is
dropped. Thus, the second term of fk(h, r, t) or the second
term of Eq.(10) is to model uncertainty. Eq.(11) or Eq.(12)
has the similar result as Eq.(10). In conclusion, our proposed
model is more general than conventional models.

3.4 Logical Rules
The inductive ability of a scoring function is reflected in
its ability to learn logical rules (Zhang et al. 2021). The
symmetry, antisymmetry, inverse and composition rules are
defined as follows:
Symmetry Rules: A relation r is symmetric if
∀h, t, (h, r, t) ∈ F → (t, r, h) ∈ F .
Antisymmetry Rules: A relation r is antisymmetric if
∀h, t, (h, r, t) ∈ F → (t, r, h) /∈ F .
Inverse Rules: A relation r1 is inverse to a relation r2 if

∀h, t, (h, r1, t) ∈ F → (t, r2, h) ∈ F .
Composition Rules: A relation r3 is the com-
position of a relation r1 and a relation r2 if
∀h, t̃, t, (h, r1, t̃) ∈ F ∧ (t̃, r2, t) ∈ F → (h, r3, t) ∈ F .
We have the following proposition about our proposed
scoring functions and logical rules.
Proposition 6. Scoring functions Eq.(10), Eq.(11) and
Eq.(12) can learn symmetry, antisymmetry, inverse and com-
position rules.

3.5 Loss Function
We use the same loss function, binary classification loss
function with reciprocal learning, as in (Dettmers et al.
2018). For every triplet (h, r, t), our loss function is

ℓ(h, r, t) =
∑
t′∈E

log(1 + exp(−yt′ (γ − f(h, r, t
′
))))

where γ is a fixed margin and yt′ = 1 if t
′
= t, otherwise

yt′ = −1.

4 Discussion
Normalizing Flows We implement the invertible func-
tions as linear functions or piecewise linear functions, which
are spline functions. To construct more expressive invertible
functions for better performance, piecewise-quadratic func-
tions (Durkan et al. 2019) or cubic splines (Durkan et al.
2019) or even invertible neural networks (Huang et al. 2018)
can be an option. In addition to designing invertible func-
tions, Dinh et al. (2019) generalize Eq.(1) to piecewise in-
vertible functions and Grathwohl et al. (2018) propose a con-
tinuous version of normalizing flows. This is also a potential
research direction.

Normalizing Flows Embedding The similarity of two
random variables can be measured by f -divergence (Gibbs
and Su 2002) or Wasserstein distance. However, these met-
rics all involve computing a definite integral, which may
have no closed form. This may limit the introduction of un-
certainty. Since the 1-dimensional Wasserstein distance of
two piecewise linear distributions always has a closed form,
one solution is to approximate any distribution with a piece-
wise linear distribution (Petersen and Voigtlaender 2018).
For example, we can approximate a normal distribution with
a triangular distribution.

In order to compute the Wasserstein distance efficiently,
we decompose n-dimensional Wasserstein distance into a
sum of 1-dimensional Wasserstein distance by Corollary 1,
a sufficient condition of Proposition 1. We can design other
invertible functions such that prh(x0) and pt(x0) share the
same copula.

We choose the initial random variable x0 as a continuous
random variable, x0 can also be a discrete distribution. How
to choose a suitable x0 is also worth exploring.

The unified representation Eq.(2) is derived from TransE
and DistMult and NFE is an instantiation of Eq.(2). Thus,
NFE can be seen as a uncertainty version of TransE and
DistMult. We may get better results if we derive NFE from
other models. We can generalize Eq.(2) to equation with



Figure 1: We define permutations α of different sets X with the same form, α(g)(x) = g + x, which translates one object to
another. From left to right, the first corresponds to the translation of points, the second corresponds to the translation of random
variables, the third corresponds to the translation of hyper-rectangles, and the fourth corresponds to the translation of manifolds.

form f(h, r, t) = D(f1 ◦ · · · ◦ fn1
(x0), g1 ◦ · · · ◦ gn2

(x1)).
This scoring function is defined by measuring the similarity
of a function f1 ◦ · · · ◦ fn1 acting on an object x0 and a
function g1 ◦ · · · ◦ gn2 acting on an object x1.

Symmetric Groups The view of symmetric groups gives
us a unified perspective of embedding. We unify embed-
ding as permutations of a set. On one hand, we can easily
parameterize a complex permutation and obtain a complex
object by leveraging a permutation to act on a simple ob-
ject. On the other hand, the group operation of symmetric
groups, the composition of functions, is easy to compute.
To introduce different properties, we can choose symmetric
groups of different sets. For example, the set of points, ran-
dom variables, hyper-rectangles (Abboud et al. 2020), man-
ifolds (Xiao, Huang, and Zhu 2016a) and groups (Ebisu and
Ichise 2018). Figure 1 shows an example.

5 Related Work
Group Embedding TorusE (Ebisu and Ichise 2018) de-
fines embedding in an n-dimensional torus space which
is a compact Lie group. MobiusE (Chen et al. 2021) em-
beds entities/relations to the surface of a Mobius ring. Cai
et al. (2019) show that logical rules have natural correspon-
dence to group representation theory. DihEdral (Xu and Li
2019) models the relations with the representation of dihe-
dral group. NagE (Yang, Sha, and Hong 2020) finds the hid-
den group algebraic structure of relations and embeds rela-
tions as group elements. NFE embeds entities/relations as
elements of a permutation group.

Uncertainty To model uncertainty in KGs, KG2E (He
et al. 2015) represents entities/relations as random vari-
ables with multivariate normal distributions. TransG (Xiao,
Huang, and Zhu 2016b) embeds entities as random variables
with normal distributions and draws a mixture of normal dis-
tribution for relation embedding to handle multiple semantic
issue. NFE introduces uncertainty by embedding entities/re-
lations as permutations of a set of random variables.

Normalizing Flows Normalizing Flows should satisfy
two conditions in order to be practical, the invertible func-
tion has tractable inverse and the determinant of Jacobian
is easy to compute. A basic form of normalizing flows can

be element-wise invertible functions. NICE (Dinh, Krueger,
and Bengio 2014) and RealNVP (Dinh, Sohl-Dickstein, and
Bengio 2016) utilize affine functions to construct coupling
layers. Müller et al. (2019) propose a powerful generaliza-
tion of affine functions, based on monotonic piecewise poly-
nomials. Ziegler and Rush (2019) introduce an invertible
non-linear squared function. Durkan et al. (2019) model the
coupling function as a monotone rational-quadratic spline.
Jaini, Selby, and Yu (2019) propose a strictly increasing
polynomial and prove such polynomials can approximate
any strictly monotonic univariate continuous function.

6 Experiments
In this section, we first introduce the experimental settings
and compare NFE with existing models. We then show the
effectiveness of introducing uncertainty. Finally, we conduct
ablation studies. Please see Appendix D for more experi-
mental details.

6.1 Experimental Settings
Datasets We evaluate our model on three popular knowl-
edge graph completion datasets, WN18RR (Dettmers et al.
2018), FB15k-237 (Toutanova et al. 2015) and YAGO3-10
(Dettmers et al. 2018).

Evaluation Metric We use the filtered MR, MRR and
Hits@N (H@N) (Bordes et al. 2013) as evaluation metrics
and choose the hyper-parameters with the best filtered MRR
on the validation set.

Baselines We compare the performance of NFE with sev-
eral translational models, including TransE (Bordes et al.
2013), RotatE (Sun et al. 2018), bilinear models, includ-
ing DistMult (Yang et al. 2014), ComplEx (Toutanova et al.
2015), QuatE (Zhang et al. 2019), TuckER (Balažević,
Allen, and Hospedales 2019a), neural networks models, in-
cluding ConvE (Dettmers et al. 2018), HypER (Balažević,
Allen, and Hospedales 2019b), and group embedding mod-
els, including DihEdral (Xu and Li 2019), NagE (Yang, Sha,
and Hong 2020)

6.2 Results
Due to the great generality, our proposed NFE is able to have
different instantiations, Eq.(10) and Eq.(11) and Eq.(12). We



WN18RR FB15k-237 YAGO3-10

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

TransE 0.218 0.036 0.506 0.335 0.240 0.526 0.539 0.455 0.691
RotatE 0.476 0.428 0.571 0.338 0.241 0.533 0.495 0.402 0.670

DistMult 0.396 0.379 0.427 0.289 0.206 0.452 0.536 0.471 0.652
ComplEx 0.428 0.440 0.410 0.247 0.158 0.510 0.360 0.260 0.550
QuatE 0.481 0.436 0.564 0.311 0.221 0.495 — — —
TuckER 0.470 0.443 0.526 0.358 0.266 0.544 — — —

ConvE 0.430 0.440 0.520 0.325 0.237 0.501 0.440 0.350 0.620
HypER 0.465 0.436 0.522 0.341 0.252 0.520 0.533 0.455 0.678

DihEdral 0.480 0.452 0.536 0.325 0.237 0.501 0.440 0.350 0.620
NagE 0.477 0.432 0.574 0.340 0.244 0.530 — — —

NFE-2 0.476 0.431 0.569 0.352 0.256 0.542 0.563 0.489 0.699
NFE-1 0.483 0.438 0.576 0.355 0.261 0.543 0.570 0.498 0.697
NFE-w/o-uncertainty 0.475 0.430 0.568 0.352 0.257 0.542 0.563 0.490 0.693
NFE-1-µ 0.218 0.036 0.506 0.335 0.240 0.526 0.539 0.455 0.691
NFE-1-σ 0.286 0.126 0.522 0.342 0.247 0.531 0.519 0.429 0.676

Table 1: Knowledge graph completion results on WN18RR, FB15k-237 and YGAO3-10 datasets.

1/k2 0 1/16 1/8 1/4 1/2 1 2 4 8 16

MRR 0.475 0.475 0.476 0.476 0.476 0.483 0.483 0.483 0.484 0.482
H@1 0.430 0.427 0.430 0.430 0.431 0.438 0.435 0.436 0.438 0.438
H@10 0.568 0.574 0.574 0.573 0.572 0.576 0.575 0.578 0.577 0.569

Table 2: The performance of NFE-1 with different 1/k2 on WN18RR dataset. Higher value of 1/k2 indicates the model focusing
more on uncertainty.

denote Eq.(10) as NFE-1. Eq.(11) and Eq.(12) achieve al-
most same result, we denote them as NFE-2. We compare
the performance of NFE-1 and NFE-2 with baseline mod-
els. See Table 1 for the results. NFE-1 and NFE-2 achieve
state-of-the-art performance on three datasets, especially on
YAGO3-10, which is the largest dataset. NFE-2 is slightly
inferior to NFE-1. Although NFE-2 is more expressive than
NFE-1, NFE-2 may be more difficult to optimize. NFE-1
are derived from TransE and DistMult, but NFE-1 outper-
forms TransE and DistMult significantly on all metrics on
three datasets. NFE-1 is better than neural networks models,
ConvE and HypER, and group embedding models, DihEdral
and NagE. The results show the effectiveness of our model.

6.3 Uncertainty
Here we focus on the NFE-w/o-uncertainty in Table 1 and
Table 2. Proposition 5 shows that NFE-1 can be seen as
a generalization of existing models to model uncertainty.
NFE-1 can reduces to Eq.(13), which do not model uncer-
tainty. We denote Eq.(13) as NFE -w/o-uncertainty. Table 1
shows that NFE-1 achieves better performance than NFE-
w/o-uncertainty on all metrics on three datasets. Thus, the
results show the effectiveness of introducing uncertainty.

Proposition 5 shows that 1/k2 in Eq.(13) reflects the de-
gree to which Eq.(13) focuses on uncertainty. Higher value
of 1/k2 indicates the model focusing more on uncertainty.

Table 2 shows the performance of Eq.(13) with different
1/k2 on WN18RR dataset. The results show that the perfor-
mance of Eq.(13) generally gets worse as 1/k2 gets smaller.
This also shows the effectiveness of introducing uncertainty.

6.4 Ablation Study

The invertible functions of NFE-1 is Eq.(4), the composition
of function of TransE and function of DistMult. We conduct
ablation studies to analyze the performance of NFE-1 only
using one of the functions. We denote Eq.(10) using function
of TransE as NFE-1-µ, Eq.(10) using function of DistMult
as NFE-1-σ. Table 1 shows that the performance of NFE-1 is
better than NFE-1-µ and NFE-1-σ. The reason is that NFE-1
is more expressive than NFE-1-µ and NFE-1-σ.

7 Conclusion

In this paper, we propose a unified perspective of embedding
and introduce uncertainty into KGE from the view of group
theory. We embed entities/relations as elements of a suitable
symmetric group to introduce uncertainty. Based on the em-
bedding, NFE is defined by measuring the similarity of two
normalizing flows. NFE. Experimental results demonstrate
the effectiveness of introducing uncertainty and NFE.
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MöbiusE: Knowledge Graph Embedding on Möbius Ring.
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between multivariate normal distributions. Journal of multi-
variate analysis, 12(3): 450–455.

Durkan, C.; Bekasov, A.; Murray, I.; and Papamakarios, G.
2019. Neural spline flows. Advances in neural information
processing systems, 32.
Ebisu, T.; and Ichise, R. 2018. Toruse: Knowledge graph
embedding on a lie group. In Thirty-second AAAI conference
on artificial intelligence.
Gibbs, A. L.; and Su, F. E. 2002. On choosing and bounding
probability metrics. International statistical review, 70(3):
419–435.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press.
Grathwohl, W.; Chen, R. T.; Bettencourt, J.; Sutskever, I.;
and Duvenaud, D. 2018. FFJORD: Free-Form Continuous
Dynamics for Scalable Reversible Generative Models. In
International Conference on Learning Representations.
He, S.; Liu, K.; Ji, G.; and Zhao, J. 2015. Learning to rep-
resent knowledge graphs with gaussian embedding. In Pro-
ceedings of the 24th ACM international on conference on
information and knowledge management, 623–632.
Huang, C.-W.; Krueger, D.; Lacoste, A.; and Courville, A.
2018. Neural autoregressive flows. In International Confer-
ence on Machine Learning, 2078–2087. PMLR.
Hungerford, T. W. 2012. Abstract algebra: an introduction.
Cengage Learning.
Jaini, P.; Selby, K. A.; and Yu, Y. 2019. Sum-of-squares
polynomial flow. In International Conference on Machine
Learning, 3009–3018. PMLR.
Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; and Philip, S. Y.
2021. A survey on knowledge graphs: Representation, ac-
quisition, and applications. IEEE Transactions on Neural
Networks and Learning Systems.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114.
Kobyzev, I.; Prince, S. J.; and Brubaker, M. A. 2020. Nor-
malizing flows: An introduction and review of current meth-
ods. IEEE transactions on pattern analysis and machine
intelligence, 43(11): 3964–3979.
Müller, T.; McWilliams, B.; Rousselle, F.; Gross, M.; and
Novák, J. 2019. Neural importance sampling. ACM Trans-
actions on Graphics (TOG), 38(5): 1–19.
Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2011. A three-way
model for collective learning on multi-relational data. In
Proceedings of the 28th International Conference on Inter-
national Conference on Machine Learning, 809–816.
Papamakarios, G.; Nalisnick, E.; Rezende, D. J.; Mohamed,
S.; and Lakshminarayanan, B. 2021. Normalizing flows for
probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57): 1–64.
Petersen, P.; and Voigtlaender, F. 2018. Optimal approxima-
tion of piecewise smooth functions using deep ReLU neural
networks. Neural Networks, 108: 296–330.
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Appendix
The Appendix is structured as follows:
1. In Appendix A, we show some remarks of our model.
2. In Appendix B, we show the models that can be represented as the unified representation.
3. In Appendix C, we show the proofs.
4. In Appendix D, we show the experimental details.

A Remarks
Remark 1 (Correspondence of group notions and the unified representation). Group theory is a language to describe the sym-
metries. We define a map from an group element g to an invertible function fg . For every fg , x and fg(x) are symmetrical
about fg , i.e., x and fg(x) belong to the same orbit.

A group is a set equipped with a binary operation, in such a way that the operation is closed and associative, an identity
element exists and every element has an inverse. The properties of groups have some correspondence to Eq.(2). The closure
property is to ensure that for any fh(x) and fr(x) there exists a ft(x) such that ft(x) = fr ◦fh(x) for any x. The associativity
corresponds to the functional composition of fr and fh. The existence of identity element corresponds to the existence of an
identity map. The existence of inverse element is ensure that the functions fh, fr and ft invertible. In the original definition of
DistMult, it is still valid if the entries of g has zero entries. We can additionally define the group action α for vectors with zero
entries. In other words, we do not need to constraint the function fg invertible.
Remark 2 (Measurement of uncertainty). The uncertainty of a continuous random variable Y ∼ p(y) can be measured by the
differential entropy:

H(Y ) = −
∫

p(y) log p(y)dy

Eq.(3) involves four random variables, x0, fh(x0), fr ◦ fh(x0) and ft(x0). Thus, H(fh(x0)) − H(x0),H(fr ◦ fh(x0)) −
H(fh(x0)) and H(ft(x0))−H(x0) measure the amount of change of uncertainty.
Remark 3 (Eq.(5) or Eq.(7) for non-invertible functions). Eq.(1) is only valid for invertible functions. Thus, we need to con-
straint the entries of g of Eq.(4) non-zero. To ensure Eq.(5) invertible, we need to constraint the entries of hσ, rσ and tσ
non-zero. If x0 ∼ N (0, I), the invertible functions are Eq.(5) and similarity metric is KL divergence, then the scoring function
is ∞ if there exists entries of hσ or rσ or tσ is zero. While the Wasserstein distance is still valid when the entries of g are zero.
Thus, another benefit of Wasserstein distance over KL divergence is that Wasserstein distance is more numerically stable.
Remark 4 (KL divergence similarity metric). If x0 ∼ U [−

√
3,
√
3]n, the invertible functions is Eq.(5) or Eq.(7) and similarity

metric is Eq.(8), then the scoring function is not valid. If x0 ∼ N (0, I), the invertible functions is Eq.(5), the similarity metric
is Eq.(8), then the scoring function is

f(h, r, t) =

n∑
i=1

log
|tσ|i

|rσ|i ⊙ |hσ|i
+

|rσ|2i ⊙ |hσ|2i + (rσi ⊙ hµi + rµi − tµi)
2

2|tσ|2i
− n

2
(14)

If x0 ∼ N (0, I), the invertible functions is Eq.(7), the similarity metric is Eq.(8), then the scoring function has no closed form.

B Unified Representation
We have proposed a unify representation of TransE and DistMult, Eq.(2). Eq.(2) can be illustrated by Figure 2. Eq.(2) is
composed of three parts, the initial object x0 ∈ X , the invertible functions (fh, fr, ft) on a set X and the similarity metric
D(·, ·). In addtion to TransE and DistMult, we show other models that can be represented as Eq.(2), RotatE (Sun et al. 2018),
TorusE (Ebisu and Ichise 2018), RESCAL (Nickel, Tresp, and Kriegel 2011), ComplEx (Toutanova et al. 2015). We summarize
in Table 3.

The scoring function of RotatE is defined as:

f(h, r, t) = −∥h⊙ r − t∥22,h, r, t ∈ Cn, |r| = 1

The scoring function of TorusE is defined as:

f(h, r, t) = −∥[h] + [r]− [t]∥22, [h], [r], [t] ∈ Tn

The scoring function of RESCAL is defined as:

f(h,R, t) = hTRt,h, t ∈ Rn,R ∈ Rn×n

The scoring function of ComplEx is defined as:

f(h, r, t) = Re(⟨h, r, t⟩),h, r, t ∈ Cn



Figure 2: An illustration of Eq.(2).

Table 3: Examples of the unify representation, Eq.(2)

Model x0 fh(x) fr(x) ft(x) D(·, ·)
TransE 0 ∈ Rn h+ x r + x t+ x −∥ · − · ∥
RotatE 1 ∈ Cn h⊙ x r ⊙ x t⊙ x −∥ · − · ∥
TorusE [0] ∈ Tn [h] + [x] [r] + [x] [t] + [x] −∥ · − · ∥
DistMult 1 ∈ Rn h⊙ x r ⊙ x t⊙ x ⟨·, ·⟩
RESCAL 1 ∈ Rn h⊙ x rTx t⊙ x ⟨·, ·⟩
ComplEx 1 ∈ Cn h⊙ x r ⊙ x t∗ ⊙ x Re(⟨·, ·⟩)
NFE-1 N (0, I) hσ ⊙ x+ hµ rσ ⊙ x+ rµ tσ ⊙ x+ tµ Eq.(9)
NFE-2 N (0, I) hσ1 ⊙ x+ hµ,x ≤ 0 rσ ⊙ x+ rµ tσ1 ⊙ x+ tµ,x ≤ 0 Eq.(9)

hσ2 ⊙ x+ hµ,x > 0 tσ2 ⊙ x+ tµ,x > 0

Balažević, Allen, and Hospedales (2019a) show that DistMult, ComplEx and QuatE are special cases of TuckER. The scoring
function of TuckER is defined as:

f(h,R, t) =

n∑
i=1

n∑
j=1

n∑
k=1

WijkHiRjTk

where W ∈ Rn×n×n is the weight tensor. We can similarly generalize Eq.(2) to the form

f(h, r, t) =

n∑
i=1

n∑
j=1

n∑
k=1

WijkD(frj
◦ fhi

(x0), ftk(x0))

C Proofs
Proposition 1. For two PDFs, p(x) and q(y), W (p, q) =

∑n
i=1 W (pi, qi) iff p(x) and q(y) share the same copula, where pi

and qi are the marginal distributions of xi and yi, respectively (Cuestaalbertos, Ruschendorf, and Tuerodiaz 1993).
See Theorem 2.9 of (Cuestaalbertos, Ruschendorf, and Tuerodiaz 1993) for the proof. A copula is a multivariate cumulative

distribution function for which the marginal probability distribution of each variable is uniform on the interval [0.1]. Copulas
are used to describe/model the dependence (inter-correlation) between random variables. The copula of (X1, X2, · · · , Xn)
is defined as the joint cumulative distribution function of (U1, U2, · · · , Un): C(U1, U2, · · · , Un) = Pr(U1 ≤ u1, U2 ≤
u2, · · · , Un ≤ un). If X1, X2, · · · , Xn are independent, then C(U1, U2, · · · , Un) =

∏n
i=1 Ui. Thus, we have the following

corollary.
Corollary 2. For two PDFs, p(x) and q(y), W (p, q) =

∑n
i=1 W (p(xi), q(yi)) if p(x) =

∏n
i=1 p(xi) and q(y) =

∏n
i=1 q(yi).

Proposition 2. If x0 ∼ U [−
√
3,
√
3]n or x0 ∼ N (0, I), the invertible functions are Eq.(5) and similarity metric is Eq.(9),

then the scoring function is
f(h, r, t) = −∥rσ ⊙ hµ + rµ − tµ∥22 − ∥|rσ ⊙ hσ| − |tσ|∥22



Proof. We first prove the case of x0 ∼ U [−
√
3,
√
3]n. We show that for two 1-dimensional normal distribution p(x) =

U [a1, b1] = U [µ1 −
√
3σ1, µ1 +

√
3σ1] and q(x) = U [a2, b2] = U [µ2 −

√
3σ2, µ2 +

√
3σ2], the Wasserstein distance is equal

to W (p, q) = ∥µ1 − µ2∥2 + ∥σ1 − σ2∥2. 1-dimensional Wasserstein distance is equal to

W (p, q) =

∫ 1

0

|F−1(z)−G−1(z)|dz

where F−1(z) and G−1(z) are the inverse cumulative distribution function of p(x) and q(x), i.e., F−1(z) = a1 + (b1 − a1)z
and G−1(z) = a2 + (b2 − a2)z. Thus we have that

W (p, q) =

∫ 1

0

|F−1(z)−G−1(z)|2dz

=

∫ 1

0

((a1 − a2) + z(b1 − b2 − a1 + a2))
2dz

=

∫ 1

0

(a1 − a2)
2dz +

∫ 1

0

z2(b1 − b2 − a1 + a2)
2dz

+

∫ 1

0

2(a1 − a2)(b1 − b2 − a1 + a2)zdz

=(a1 − a2)
2 +

1

3
(b1 − b2 − a1 + a2)

2 + (a1 − a2)(b1 − b2 − a1 + a2)

=
1

3
((a1 − a2)

2 + (b1 − b2)
2 + (a1 − a2)(b1 − b2))

=(µ1 − µ2)
2 + (σ1 − σ2)

2

For two uniform distribution U [µ1 −
√
3σ1,µ1 +

√
3σ1] and U [µ2 −

√
3σ2,µ2 +

√
3σ2] which satisfy p(x) =

∏n
i=1 p(xi)

and q(x) =
∏n

i=1 q(xi), by Corollary 1, the Wasserstein distance is equal to

W (p(x), q(x)) =

n∑
i=1

W (p(xi), q(xi)) = ∥µ1 − µ2∥2 + ∥σ1 − σ2∥2

This result is same the result in (Dowson and Landau 1982). For every triplet (h, r, t), we have that

fh(x) = hσ ⊙ x+ hµ, fr(x) = rσ ⊙ x+ rµ, ft(x) = tσ ⊙ x+ tµ

fr ◦ fh(x) = rσ ⊙ hσ ⊙ x+ rσ ⊙ hµ + rµ, ft(x) = tσ ⊙ x+ tµ

Since x0 ∼ U [−
√
3,
√
3]n, by Eq.(1), we have that fr ◦ fh(x0) ∼ U [rσ ⊙hµ + rµ −

√
3|rσ ⊙hσ|, rσ ⊙hµ + rµ +

√
3|rσ ⊙

hσ|], ft(x0) ∼ U [tµ −
√
3|tσ1 |, tµ +

√
3|tσ1 |]. Then the scoring function is equal to

f(h, r, t) = −W (fr ◦ fh(x0), ft(x0)) = −∥rσ ⊙ hµ + rµ − tµ∥22 − ∥|rσ ⊙ hσ| − |tσ|∥22

We then prove the case of x0 ∼ N (0, I). We first compute the indefinite integral of
∫
erf−1(x)dx and

∫
erf−1(x)2dx:∫

erf−1(x)dx =

∫
2√
π
e− erf−1(x)2 erf−1(x)

√
π

2
eerf

−1(x)2dx

=

∫
2√
π
e− erf−1(x)2 erf−1(x)d erf−1(x)

=

∫
− 1√

π
de− erf−1(x)2

=− 1√
π
e− erf−1(x)2



∫
erf−1(x)2dx =

∫
1√
π
erf−1(x)e− erf−1(x)22 erf−1(x)

√
π

2
eerf

−1(x)2dx

=

∫
− 1√

π
erf−1(x)de− erf−1(x)2

=− 1√
π
erf−1(x)e− erf−1(x)2 +

∫
1√
π
e− erf−1(x)2d erf−1(x)

=− 1√
π
erf−1(x)e− erf−1(x)2 +

∫
1√
π
e− erf−1(x)2

√
π

2
eerf

−1(x)2dx

=
x

2
− 1√

π
erf−1(x)e− erf−1(x)2

Then we show that for two 1-dimensional normal distribution p(x) = N (µ1, σ1) and q(x) = N (µ2, σ2), the Wasserstein
distance is equal to W (p, q) = (µ1 − µ2)

2 + (σ1 − σ2)
2. The 1-dimensional Wasserstein distance is equal to

W (p, q) =

∫ 1

0

|F−1(z)−G−1(z)|dz

where F−1(z) and G−1(z) are the inverse cumulative distribution function of p(x) and q(x), i.e., F−1(z) = µ1 +√
2σ1 erf

−1(2z − 1) and G−1(z) = µ2 +
√
2σ2 erf

−1(2z − 1). Therefore

W (p, q) =

∫ 1

0

|F−1(z)−G−1(z)|2dz

=

∫ 1

0

((µ1 − µ2) +
√
2 erf−1(2z − 1)(σ1 − σ2))

2dz

=

∫ 1

0

(µ1 − µ2)
2dz +

∫ 1

0

2 erf−1(2z − 1)2(σ1 − σ2)
2dz

+

∫ 1

0

2
√
2(µ1 − µ2) erf

−1(2z − 1)(σ1 − σ2)dz

=(µ1 − µ2)
2 + (σ1 − σ2)

2

∫ 1

−1

erf−1(z)2dz +
√
2(µ1 − µ2)(σ1 − σ2)

∫ 1

−1

erf−1(z)dz

=(µ1 − µ2)
2 + (σ1 − σ2)

2

For two normal distribution p(x) = N (µ1,σ1) and q(x) = N (µ2,σ2) which satisfy p(x) =
∏n

i=1 p(xi) and q(x) =∏n
i=1 q(xi), by Corollary 1, the Wasserstein distance is equal to

W (p(x), q(x)) =

n∑
i=1

W (p(xi), q(xi)) = ∥µ1 − µ2∥2 + ∥σ1 − σ2∥2

This result is same the result in (Dowson and Landau 1982). For every triplet (h, r, t), we have that

fh(x) = hσ ⊙ x+ hµ, fr(x) = rσ ⊙ x+ rµ, ft(x) = tσ ⊙ x+ tµ

fr ◦ fh(x) = rσ ⊙ hσ ⊙ x+ rσ ⊙ hµ + rµ, ft(x) = tσ ⊙ x+ tµ

Since x0 ∼ N (0, I), by Eq.(1), we have that fr ◦ fh(x0) ∼ N (rσ ⊙ hµ + rµ, |rσ ⊙ hσ|), ft(x0) ∼ N (tµ, |tσ|). Then the
scoring function is equal to

f(h, r, t) = −W (fr ◦ fh(x0), ft(x0)) = −∥rσ ⊙ hµ + rµ − tµ∥22 − ∥|rσ ⊙ hσ| − |tσ|∥22

Proposition 3. If x0 ∼ U [−
√
3,
√
3]n, the invertible functions are Eq.(7) and similarity metric is Eq.(9), then the scoring

function is

f(h, r, t) =− ∥rσ ⊙ hµ + rµ − tµ∥22 −
1

2
∥|rσ ⊙ hσ1

| − |tσ1
|∥22 −

1

2
∥|rσ ⊙ hσ2

| − |tσ2
|∥22

−
√

3

4
(rσ ⊙ hµ + rµ − tµ)

T (|rσ ⊙ hσ2
| − |rσ ⊙ hσ1

|+ |tσ1
| − |tσ2

|)



Proof. We first show that for two 1-dimensional normal distribution

p(x) =

{
U [a1, b1] = U [µ1 −

√
3σ1, µ1] if a1 ≤ x ≤ b1

U [b1, c1] = U [µ1, µ1 +
√
3σ2] if b1 < x ≤ c1

,

q(x) =

{
U [a2, b2] = U [µ2 −

√
3σ3, µ2] if a2 ≤ x ≤ b2

U [b2, c2] = U [µ2, µ2 +
√
3σ4] if b2 < x ≤ c2

the Wasserstein distance is equal to

W (p, q) = (µ1 − µ2)
2 +

1

2
(σ1 − σ3)

2 +
1

2
(σ1 − σ3)

2 +

√
3

4
(µ1 − µ2)(σ2 − σ1 + σ3 − σ4)

1-dimensional Wasserstein distance is equal to

W (p, q) =

∫ 1

0

|F−1(z)−G−1(z)|dz

where F−1(z) and G−1(z) are the inverse cumulative distribution function of p(x) and q(x), i.e.,

F−1(z) =

{
a1 + (b1 − a1)2z if 0 ≤ z ≤ 1

2

2b1 − c1 + (c1 − b1)2z if 1
2 < z ≤ 1

G−1(z) =

{
a2 + (b2 − a2)2z if 0 ≤ z ≤ 1

2

2b2 − c2 + (c2 − b2)2z if 1
2 < z ≤ 1

Thus we have that

W (p, q) =

∫ 1

0

|F−1(z)−G−1(z)|2dz

=

∫ 1
2

0

((a1 − a2) + 2z(b1 − b2 − a1 + a2))
2dz

+

∫ 1

1
2

((2b1 − 2b2 − c1 + c2) + 2z(c1 − c2 − b1 + b2))
2dz

=

∫ 1
2

0

(a1 − a2)
2dz +

∫ 1

1
2

(2b1 − 2b2 − c1 + c2)
2dz

+

∫ 1
2

0

4z2(b1 − b2 − a1 + a2)
2dz ++

∫ 1

1
2

4z2(c1 − c2 − b1 + b2)
2dz

+

∫ 1
2

0

4z(a1 − a2)(b1 − b2 − a1 + a2)dz

+

∫ 1

1
2

4z(2b1 − 2b2 − c1 + c2)(c1 − c2 − b1 + b2)dz

=
1

2
(a1 − a2)

2 +
1

2
(2b1 − 2b2 − c1 + c2)

2

+
1

6
(b1 − b2 − a1 + a2)

2 +
7

6
(c1 − c2 − b1 + b2)

2

+
1

2
(a1 − a2)(b1 − b2 − a1 + a2) +

3

2
(2b1 − 2b2 − c1 + c2)(c1 − c2 − b1 + b2)

=
1

6
((a1 − a2)

2 + 2(b1 − b2)
2 + (c1 − c2)

2 + (b1 − b2)(a1 − a2 + c1 − c2))

=(µ1 − µ2)
2 +

1

2
(σ1 − σ3)

2 +
1

2
(σ1 − σ3)

2 +

√
3

4
(µ1 − µ2)(σ2 − σ1 + σ3 − σ4)

By Corollary 1, we have that for two distribution

p(x) =

{
U [a1, b1] = U [µ1 −

√
3σ1,µ1] if a1 ≤ x ≤ b1

U [b1, c1] = U [µ1,µ1 +
√
3σ2] if b1 < x ≤ c1

,

q(x) =

{
U [a2, b2] = U [µ2 −

√
3σ3,µ2] if a2 ≤ x ≤ b2

U [b2, c2] = U [µ2,µ2 +
√
3σ4] if b2 < x ≤ c2



the Wasserstein distance is equal to

W (p(x), q(x)) =

n∑
i=1

W (p(xi), q(xi)) =∥µ1 − µ2∥2 +
1

2
∥σ1 − σ3∥2 +

1

2
∥σ2 − σ4∥2

+

√
3

4
(µ1 − µ2)

T (σ2 − σ1 + σ3 − σ4)

For every triplet (h, r, t), we have that

fr ◦ fh(x) =
{
rσ ⊙ hσ1

⊙ x+ rσ ⊙ hµ + rµ if x ≤ 0

rσ ⊙ hσ2
⊙ x+ rσ ⊙ hµ + rµ if x > 0

, ft(x) =

{
tσ1

⊙ x+ tµ if x ≤ 0

tσ2
⊙ x+ tµ if x > 0

Since x0 ∼ U [−
√
3,
√
3]n, by Eq.(1), we have that

fr ◦ fh(x0) ∼
{
U [rσ ⊙ hµ + rµ −

√
3|rσ ⊙ hσ1 |, rσ ⊙ hµ + rµ] if x ≤ rσ ⊙ hµ + rµ

U [rσ ⊙ hµ + rµ, rσ ⊙ hµ + rµ +
√
3|rσ ⊙ hσ1

|] if x > rσ ⊙ hµ + rµ

ft(x0) ∼
{
U [tµ −

√
3|tσ1

|, tµ] if x ≤ tµ
U [tµ, tµ +

√
3|tσ1 |] if x > tµ

Here, we restrict rσ ⊙ hσ1
≥ 0, rσ ⊙ hσ2

≥ 0, tσ1
≥ 0 and tσ2

≥ 0. Then the scoring function is equal to

f(h, r, t) =−W (fr ◦ fh(x0), ft(x0))

=− ∥rσ ⊙ hµ + rµ − tµ∥22 −
1

2
∥|rσ ⊙ hσ1

| − |tσ1
|∥22 −

1

2
∥|rσ ⊙ hσ2

| − |tσ2
|∥22

−
√

3

4
(rσ ⊙ hµ + rµ − tµ)

T (|rσ ⊙ hσ2
| − |rσ ⊙ hσ1

|+ |tσ1
| − |tσ2

|)

Proposition 4. If x0 ∼ N (0, I), the invertible functions are Eq.(7) and similarity metric is Eq.(9), then the scoring function is

f(h, r, t) =− ∥rσ ⊙ hµ + rµ − tµ∥22 −
1

2
∥|rσ ⊙ hσ1

| − |tσ1
|∥22 −

1

2
∥|rσ ⊙ hσ2

| − |tσ2
|∥22

−
√

2

π
(rσ ⊙ hµ + rµ − tµ)

T (|rσ ⊙ hσ2
| − |rσ ⊙ hσ1

|+ |tσ1
| − |tσ2

|)

Proof. We first show that for two 1-dimensional distributions

p(x) =

{
N (µ1, σ1) if x ≤ µ1

N (µ1, σ2) if x > µ1
, q(x) =

{
N (µ2, σ3) if x ≤ µ2

N (µ2, σ4) if x > µ2

the Wasserstein distance is equal to

W (p, q) = (µ1 − µ2)
2 +

1

2
(σ1 − σ3)

2 +
1

2
(σ2 − σ4)

2 +

√
2

π
(µ1 − µ2)(σ2 − σ1 + σ3 − σ4)

1-dimensional Wasserstein distance is equal to

W (p, q) =

∫ 1

0

|F−1(z)−G−1(z)|dz

where F−1(z) and G−1(z) are the inverse cumulative distribution function of p(x) and q(x), i.e.,

F−1(z) =

{
µ1 +

√
2σ1 erf

−1(2z − 1) if 0 ≤ z ≤ 1
2

µ1 +
√
2σ2 erf

−1(2z − 1) if 1
2 < z ≤ 1

G−1(z)

{
µ2 +

√
2σ3 erf

−1(2z − 1) if 0 ≤ z ≤ 1
2

µ2 +
√
2σ4 erf

−1(2z − 1) if 1
2 < z ≤ 1



Therefore

W (p, q) =

∫ 1
2

0

|F−1(z)−G−1(z)|2dz +
∫ 1

1
2

|F−1(z)−G−1(z)|2dz

=

∫ 1
2

0

((µ1 − µ2) +
√
2 erf−1(2z − 1)(σ1 − σ3))

2dz

+

∫ 1

1
2

((µ1 − µ2) +
√
2 erf−1(2z − 1)(σ2 − σ4))

2dz

=

∫ 1

0

(µ1 − µ2)
2dz +

∫ 1
2

0

2 erf−1(2z − 1)2(σ1 − σ3)
2dz

+

∫ 1
2

0

2
√
2(µ1 − µ2) erf

−1(2z − 1)(σ1 − σ3)dz +

∫ 1

1
2

2 erf−1(2z − 1)2(σ2 − σ4)
2dz

+

∫ 1

1
2

2
√
2(µ1 − µ2) erf

−1(2z − 1)(σ2 − σ4)dz

=(µ1 − µ2)
2 + (σ1 − σ3)

2

∫ 0

−1

erf−1(z)2dz +
√
2(µ1 − µ2)(σ1 − σ3)

∫ 0

−1

erf−1(z)dz

+(σ2 − σ4)
2

∫ 1

0

erf−1(z)2dz +
√
2(µ1 − µ2)(σ2 − σ4)

∫ 1

0

erf−1(z)dz

=(µ1 − µ2)
2 +

1

2
(σ1 − σ3)

2 +
1

2
(σ2 − σ4)

2 +

√
2

π
(µ1 − µ2)(σ2 − σ1 + σ3 − σ4)

By Corollary 1, we have that for two distributions

p(x) =

{
N (µ1,σ1) if x ≤ µ1

N (µ1,σ2) if x > µ1
, q(x) =

{
N (µ2,σ3) if x ≤ µ2

N (µ2,σ4) if x > µ2

the Wasserstein distance is equal to

W (p(x), q(x)) =

n∑
i=1

W (p(xi), q(xi)) =∥µ1 − µ2∥2 +
1

2
∥σ1 − σ3∥2 +

1

2
∥σ2 − σ4∥2

+

√
2

π
(µ1 − µ2)

T (σ2 − σ1 + σ3 − σ4)

For every triplet (h, r, t), we have that

fr ◦ fh(x) =
{
rσ ⊙ hσ1

⊙ x+ rσ ⊙ hµ + rµ if x ≤ 0

rσ ⊙ hσ2 ⊙ x+ rσ ⊙ hµ + rµ if x > 0
, ft(x) =

{
tσ1

⊙ x+ tµ if x ≤ 0

tσ2 ⊙ x+ tµ if x > 0

Since x0 ∼ N (0, I), by Eq.(1), we have that

fr ◦ fh(x0) ∼
{
N (rσ ⊙ hµ + rµ, |rσ ⊙ hσ1

|) if x ≤ rσ ⊙ hµ + rµ
N (rσ ⊙ hµ + rµ, |rσ ⊙ hσ2 |) if x > rσ ⊙ hµ + rµ

ft(x0) ∼
{
N (tµ, |tσ1

|) if x ≤ tµ
N (tµ, |tσ2

|) if x > tµ

Here, we restrict rσ ⊙ hσ1 ≥ 0, rσ ⊙ hσ2 ≥ 0, tσ1 ≥ 0 and tσ2 ≥ 0. Then the scoring function is equal to

f(h, r, t) =−W (fr ◦ fh(x0), ft(x0))

=− ∥rσ ⊙ hµ + rµ − tµ∥22 −
1

2
∥|rσ ⊙ hσ1

| − |tσ1
|∥22 −

1

2
∥|rσ ⊙ hσ2

| − |tσ2
|∥22

−
√

2

π
(rσ ⊙ hµ + rµ − tµ)

T (|rσ ⊙ hσ2 | − |rσ ⊙ hσ1 |+ |tσ1 | − |tσ2 |)



Proposition 5. Let k > 0, if xk ∼ U [−
√
3

k ,
√
3

k ]n or xk ∼ N (0, I
k2 ), the invertible functions are Eq.(7) and similarity metric

is Eq.(9), denote the scoring function as fk(h, r, t), then xk tends to a Dirac delta distribution as k tends to infinity and

lim
k→∞

fk(h, r, t) = lim
k→∞

−∥rσ ⊙ hµ + rµ − tµ∥22 −
1

k2
∥|rσ ⊙ hσ| − |tσ|∥22

=− ∥rσ ⊙ hµ + rµ − tµ∥22
Proof. Since kxk ∼ U [−

√
3,
√
3]n, by Proposition 2, we have that

fk(h, r, t) =− ∥rσ ⊙ hµ + rµ − tµ∥22 − ∥|rσ ⊙ 1

k
hσ| − |1

k
tσ|∥22

=− ∥rσ ⊙ hµ + rµ − tµ∥22 −
1

k2
∥|rσ ⊙ hσ| − |tσ|∥22

then

lim
k→∞

fk(h, r, t) = −∥rσ ⊙ hµ + rµ − tµ∥22

Proposition 6. Scoring functions Eq.(10), Eq.(11) and Eq.(12) can learn symmetry, antisymmetry, inverse and composition
rules.

Proof. Since Eq.(11) or Eq.(12) reduces to Eq.(10) if hσ1 = hσ2 and tσ1 = tσ2 , we only proof for Eq.(10):

f(h, r, t) = −∥rσ ⊙ hµ + rµ − tµ∥22 − ∥|rσ ⊙ hσ| − |tσ|∥22
Symmetry Rules: If (h, r, t) ∈ F ∧ (t, r, h) ∈ F hold, we have

rσ ⊙ hµ + rµ = tµ, |rσ ⊙ hσ| = |tσ|
rσ ⊙ tµ + rµ = hµ, |rσ ⊙ tσ| = |hσ|

then we have

rσ ⊙ rσ = 1

rσ ⊙ rµ + rµ = 0

Antisymmetry Rules: If (h, r, t) ∈ F ∧ ¬(t, r, h) ∈ F hold, we have

rσ ⊙ hµ + rµ = tµ, |rσ ⊙ hσ| = |tσ|
rσ ⊙ tµ + rµ ̸= hµ, or |rσ ⊙ tσ| ≠ |hσ|

then we have

rσ ⊙ rσ ̸= 1, or
rσ ⊙ rµ + rµ ̸= 0

Inverse Rules: If (h, r1, t) ∈ F ∧ (t, r2, h) ∈ F hold, we have

r1σ ⊙ hµ + r1µ = tµ, |r1σ ⊙ hσ| = |tσ|
r2σ ⊙ tµ + r2µ = hµ, |r2σ ⊙ tσ| = |hσ|

then we have

r2σ ⊙ r1σ = 1

r2σ ⊙ r1µ + r2µ = 0

Composition Rules: If (h, r1, t̃) ∈ F ∧ (t̃, r2, t) ∈ F ∧ (h, r3, t) ∈ F hold, we have

r1σ ⊙ hµ + r1µ = t̃µ, |r1σ ⊙ hσ| = |t̃σ|
r2σ ⊙ t̃µ + r2µ = tµ, |r2σ ⊙ t̃σ| = |tσ|
r3σ ⊙ hµ + r3µ = tµ, |r3σ ⊙ hσ| = |tσ|

then we have

r1σ ⊙ r2σ = r3σ

r2σ ⊙ r1µ + r2µ = r3µ



D Experimental Details
Datasets We evaluate our model on three popular knowledge graph completion datasets, WN18RR (Dettmers et al. 2018),
FB15k-237 (Toutanova et al. 2015) and YAGO3-10 (Dettmers et al. 2018). WN18RR is a subset of WN18, with inverse relations
removed. WN18 is extracted from WordNet, a database containing lexical relations between words. FB15k-237 is a subset of
FB15k, with inverse relations removed. FB15k is extracted from Freebase, a large database of real world facts. YAGO3-10 is a
subset of YAGO3 that only contains entities with at least 10 relations. The statistics of the datasets are shown in Table 4.

Table 4: The statistics of the datasets.

Dataset #entity #relation #train #valid #test

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
YGAO3-10 123,188 37 1,079,040 5,000 5,000

Evaluation Metrics MR= 1
N

∑N
i=1 ranki, where ranki is the rank of ith triplet in the test set and N is the number of the

triplets. Lower MR indicates better performance.
MRR= 1

N

∑N
i=1

1
ranki

. Higher MRR indicates better performance.

Hits@N = 1
N

∑N
i=1 I(ranki ≤ N ), where I(·) is the indicator function. Hits@N is the ratio of the ranks that no more than

N , Higher Hits@N indicates better performance.

Hyper-parameters We used Adam (Kingma and Ba 2014) with exponential decay as the optimizer. We set the embed-
ding dimension to 1024 for all models. We search the learning rate in {0.0005, 0.001, 0.003, 0.005, 0.01}, decay rate in
{0.9, 0.93, 0.95, 1.0}, batch size in {128, 256, 512, 1024}, margin in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}. We first
search the best margin, then search other hyperparameters. Denote Eq.(14) as NFE-3. We further show the result of NFE-3 in
Table 5. See Table 6, Table 7 and Table 8 for the best hyper-parameters we searched.

Table 5: The results of NFE-3 on WN18RR, FB15k-237 and YAGO3-10 datasets.

Dataset MRR H@1 H@10

WN18RR 0.440 0.400 0.521
FB15k-237 0.340 0.246 0.530
YGAO3-10 0.550 0.470 0.695

Table 6: The hyper-parameters of NFE-1.

Dataset learning rate decay rate batch size margin

WN18RR 0.005 0.9 128 1
FB15k-237 0.001 0.93 1024 2
YGAO3-10 0.001 0.95 1024 8

Logical Rules We have proved that NFE-1 is able to learn logical rules in Proposition 6. We compute the relevant statistics
to verify whether NFE-1 can learn symmetry, antisymmetry, inverse and composition rules.

Symmetry Rules: We investigate the embeddings of relations from a 1024-dimensional NFE-1 trained on WN18RR dataset.
Figure 3 shows the histogram of the statistic (|rσ ⊙ rσ − 1|, |rσ ⊙ rµ + rµ)| from a symmetry relation similar to. We can find
that most of the values are close to 0. This shows that NFE-1 can learn symmetry rules.

Antisymmetry Rules: We investigate the embeddings of relations from a 1024-dimensional NFE-1 trained on WN18RR
dataset. Figure 4 shows the histogram of the statistic (|rσ ⊙ rσ − 1|, |rσ ⊙ rµ + rµ|) from a antisymmetry relation
instance hypernym. We can find that many of the values are not close to 0. This shows that NFE-1 can learn antisymme-

try rules.
Inverse Rules: We investigate the embeddings of relations from a 1024-dimensional NFE-1 trained on WN18RR dataset.

Figure 5 shows the histogram of the statistic (|r2σ ⊙ r1σ − 1|, |r2σ ⊙ r1µ + r2µ|) from a relation similar to and its inverse
relation inverse similar to. We can find that most of the values are close to 0. This shows that NFE-1 can learn inverse rules.



Table 7: The hyper-parameters of NFE-2.

Dataset learning rate decay rate batch size margin

WN18RR 0.003 0.93 128 0
FB15k-237 0.001 0.9 256 1
YGAO3-10 0.001 0.95 1024 7

Table 8: The hyper-parameters of NFE-3.

Dataset learning rate decay rate batch size margin

WN18RR 0.01 0.93 512 14
FB15k-237 0.001 0.9 256 2
YGAO3-10 0.001 0.93 1024 11

Composition Rules: We investigate the embeddings of relations from a 1024-dimensional NFE-1 trained
on FB15k-237 dataset. Figure 6 shows the histogram of the statistic (|r1σ ⊙ r2σ − r3σ|, |r2σ ⊙ r1µ +
r2µ − r3µ|) of a relation /award/award nominee/award nominations./award/award nomination/nominated for,
a relation /award/award category/winners./award/award honor/award winner and their composition relation
/award/award category/nominees./award/award nomination/nominated for. We can find that most of the values are al-
most 0. This shows that NFE-1 can learn composition rules.
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Figure 3: The histogram of the statistic (|rσ ⊙ rσ − 1|, |rσ ⊙ rµ + rµ|).
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Figure 4: The histogram of the statistic (|rσ ⊙ rσ − 1|, |rσ ⊙ rµ + rµ|).
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Figure 5: The histogram of the statistic (|r2σ ⊙ r1σ − 1|, |r2σ ⊙ r1µ + r2µ|).
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Figure 6: The histogram of the statistic (|r1σ ⊙ r2σ − r3σ|, |r2σ ⊙ r1µ + r2µ − r3µ|).


