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•  Accuracy	


•  Scalability	


•  Explainability 	


•  Transparency	


•  Scrutability	


•  Online learning	


•  Privacy	


•  Diversity	


	

……	



Recommender System – Multifaceted 
-  Collaborative Filtering	



-  Model-based	


-  Memory-based	


-  Graph-based	



-  Content Filtering	


-  Context-aware	



-  Social	


-  Temporal	


-  Reviews	


	

……	



-  Hybrid	
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Increase 
Users’   

Trust & 
Satisfaction 	




Recap: Collaborative Filtering 
•  Predict the preference of a user by the similar users.	


•  Focus on the user-item feedback matrix. 	


E.g. matrix factorization model for CF: 
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Input: Given a sparse user-
item feedback matrix:	


User 'u' bought item 'i'	


Affinity between user 'u' and item 'i':	


Learn latent vector for each user, item:	




Main Limitation of CF 
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Items	


Hard to infer the actual rationale from the rating score only!	





Neighbors u2 and u3 have equal preference on p2 and p3 	


	


	



CF can not choose between p2 and p3!	


Example: Dilemma of CF 
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Inputs:	


<u1, p1, 5>	


<u2, p1, 5>	


<u2, p2, 4>	


<u3, p1, 5>	


<u3, p3, 4>	


<u4, p3, 4>	


<u4, p4, 5>	



p1 p2 p3 p4 

u1 5 0 0 0 

u2 5 4 0 0 

u3 5 0 4 0 

u4 0 0 4 5 

Inputs (aspects):	


<u1, p1, 5, seafood>	


<u2, p1, 5, chicken>	


<u2, p2, 4, chicken>	


<u3, p1, 5, seafood>	


<u3, p3, 4, seafood>	


<u4, p3, 4, seafood>	


<u4, p4, 5, seafood>	





Review-aware Recommendation 
•  Reviews justify a user’s rating:	



–  by discussing the specific properties of items (aspects);	


–  by revealing which aspects the user is most interested in. 
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aspects	


Noodle	


Starters	


Price 	
 Place	
Space	


Service	




Existing Works 
•  Topic models on words + item latent factors:	



–  McAuley and Leskovec, Recsys’13:  LDA + MF	


–  Ling etc, Recsys’14:  LDA + PMF (full Bayesian treatment)	


–  Xu etc, CIKM’14:  LDA + PMF + user clusters (full Bayesian)	


–  Bao etc, AAAI’14:  NMF + MF	



•  Joint modeling of aspects and ratings:	


–  Diao etc, KDD’14:  graphical model	


–  Zhang etc, SIGIR’14: collective NMF	


–  Musat etc, IJCAI’13: build user topical profiles 
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Limitations of previous works 
•  Focused on rating prediction.	



–  Top-K recommendation is more practical. 	


•  Lack explainability and transparency.	



–  Well-known drawback of latent factor model.	


•  Do not support online learning (instant personalization).	



–  New data comes in (retraining is expensive). 	


–  User updates his/her preference (scrutability). 	
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      Historical data	
            New data	


Time	

Training	
 Recommendation	




Our Solution - TriRank 
ü Review-aware recommendation. 	


ü Graph-based method.	



-  Top-K recommendation è Vertex ranking.	


ü Good accuracy. 	


ü Explainable. 	


ü Transparent. 	


ü Offline training + online learning. 	



-  Provide instant personalization without retraining. 	
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Basic Idea: Graph Propagation 
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Inputs:	


<u1, p1, 1>	


<u2, p1, 1>	


<u2, p2, 1>	


<u3, p1, 1>	


<u3, p3, 1>	


<u4, p3, 1>	


<u4, p4, 1>	



u1	


u2	


u3	


u4	


p1	


p2	


p3	


p4	


Target user : u1	


Item ranking: p2 ≈ p3 > p4 
User ranking: u2 ≈ u3 > u4	


Label propagation from the target user’s historical 
item nodes captures the collaborative filtering. 	


How to encode that mathematically? 	





Machine Learning for Graph Propagation ���
(Graph Regularization) 
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u1	


u2	


u3	


u4	


p1	


p2	


p3	


p4	


Input: 	


-  Graph structure (matrix Y)	


-  Initial labels to propagate (vectors p0)	


Output:	


-  Scores for each vertex (vectors u, p)	



X. He, M. Gao, M.-Y. Kan, Y. Liu, and K. Sugiyama. Predicting the popularity of web 
2.0 items based on user comments. In Proc. SIGIR ’14 	


	


Smoothness kernel (propagation):	


- Nearby vertices should not vary too much:	


	



	


Fitting constraint (initial labels):	


- Ranking scores should adhere to the initial labels:	



	



Optimization (coordinate descent): 	


	


	


, which exactly mimic the propagation process!	


	


	



[He etc, SIGIR 2014]	





Connection to CF models 
•  Recap: ranking loss function (for a target user):	



•  Traditional machine learning-based CF models:	


1.  Prediction model:	


     E.g., matrix factorization:	


2.  Loss function: 	
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Prediction loss on all items (include imputations).	


(important for top-K recommendation) 	


Prediction loss	
 Regularizations	




TriRank Solution 
•  Graph propagation in the tripartite graph: 

22 Oct 2015	

 13	

CIKM2015 – Review-aware Explainable Recommendation	



Inputs:	


<u1, p1, a1>	


<u2, p1, a1>	


<u2, p2, a1>	


<u3, p1, a2>	


<u3, p3, a2>	



Initial labels should encode:	


- Target user’s preference on aspects/items/users: 	


    a0:  reviewed aspects.	


    p0:  ratings on items. 	


    u0:  similarity with other users (friendship). 	





Online Learning 
•  Offline Training:	



1.  Extract aspects from user reviews 	


2.  Build the tripartite graph model (edge weights)	


3.  Label propagation from each vertex and save the scores. 	



-  i.e. store a |V|×|V| matrix f(vi, vj).	


(to save space, we can save top scores for each vertex)	



•  Online Learning (new data and updated preference applies):	


1.  Build user profile (i.e., Lu vertices to propagate from).	


2.  Average the scores of the Lu vertices: 	
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Complexity: O(Lu), almost constant! 	




Explainability 
•  Transparency:	



–  Collaborative filtering + Aspect filtering è	



–  An example of reasoned recommendation: 

22 Oct 2015	

 15	

CIKM2015 – Review-aware Explainable Recommendation	



(Similar users also 
choose the item)	


(Reviewed aspects 
match with the item)	


Item Ranking	


	


Aspect Ranking	


	


User Ranking	




Experimental Settings 
•  Public datasets (filtering threshold at 10):	



–  Yelp Challenge	


–  Amazon electronics	



•  Sort reviews in chronological order for each user :	


–  Split: 80% training + 10% validation + 10% test	



•  Top-K evaluation:	


–  For each test user, we output K items as a ranking list:	


	

Recall-based measure:	



	

Ranking-based measure: 
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Aspect Extraction 
•  A well studied task in review mining [survey: Zhang and Liu, 2014]:	



–  Unsupervised rule-based methods: 	


•  [Hu and Liu, KDD’04; Zhang etc. COLING’10]: phrase/sentence patterns.	



–  Supervised sequence labeling methods:	


•  [Jin and Ho, ICML’09; Jakob etc. EMNLP’10]: HMM, CRF …	



•  We adopt a tool developed by Tsinghua IR group 	


[Zhang etc. SIGIR’14]: rule-based system:	
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Dataset #Aspect Density
(U-A) 

Density 
(I-A) 

Top aspects (good examples) Noisy aspects 

Yelp 6,025 3.05% 2.29% bar, salad, chicken, sauce, 
cheese, fries, bread, sandwich 

restaurants, food, 
ive (I’ve), 150  

Amazon 1,617 3.80% 1.44% camera, quality, sound, price, 
battery, screen, size, lens 

product, features, 
picturemy 



Baselines 
•  Item Popularity (ItemPop)	


•  ItemKNN [Sarwar etc. 2001]	



–  Item-based collaborative filtering	


•  PureSVD [Cremonesi etc. 2010]	



–  Matrix factorization with imputations 	


–  Best factor number is 30. Large factors lead to overfitting.	



•  PageRank [Haveliwala etc. 2002]	


–  Personalized with user preference vector	



•  ItemRank [Gori etc. 2007]	


–  Personalized PageRank on item-item correlation graph	



•  TagRW [Zhang etc. 2013]	


–  Integrate tags by converting to user-user and item-item graph. 
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Yelp Results 

22 Oct 2015	

 19	

CIKM2015 – Review-aware Explainable Recommendation	



Hit Ratio (recall):   TriRank > PageRank > ItemKNN > TagRW > PureSVD > ItemRank	


NDCG (ranking): 	

TriRank > PageRank > ItemKNN > PureSVD > ItemRank > TagRW	


Hit Ratio@K	
 NDCG@K	




Amazon Results 
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Hit Ratio@K	
 NDCG@K	


The discrepancy between HR and NDCG is more obvious:	


-   TagRW is strong for HR, but weak for NDCG;	





Yelp VS Amazon 
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Yelp – Hit Ratio	
 Amazon – Hit Ratio	


1.  ItemKNN is strong for Yelp, but weak for Amazon	


-  Amazon dataset is more sparse (#reviews/item: 28 vs 4)	


2.  PageRank performs better than ItemRank (both are Personalized PageRank)	


- Converting user-item graph to item-item graph leads to signal loss. 	




Utility of Aspects 
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Dataset Yelp  Amazon 
Settings (@50) HR NDCG HR NDCG 

All Set 18.58 7.69 18.44 12.36 
No item-aspect 17.05 6.91 16.23 11.31 
No user-aspect 18.52 7.68  18.40  12.36  

1. Item-aspect relation is 
more important than 
user-aspect relation. 

2. Aspects filtering is 
complementary to 
collaborative filtering. 	



3. User-item relation is still fundamental to model 
and most important!  	



No aspects 17.00  6.90  15.97 11.16  

No user-item 11.67  4.84  10.32  5.08  



Aspect Filtering 
•  How does the noisy aspects impact the performance?	



–  Ranking aspects by their TF-IDF score in item-aspect matrix. 
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Insensitivity to noisy aspects:	


- Filtering out low TF-IDF aspects (e.g. stop words or quirks) do not improve. 	


High TF-IDF aspects carry more useful signal for recommendation.	


- Filtering out high TF-IDF aspects hurt performance significantly.   	




Case Study 
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Training reviews of a sampled Yelp user.  Rank list by TriRank:	


…	


3rd: Red Lobster	


…	


6th: Chick-Fil-A	


…	


	


	


Although the test set doesn’t 
contain Red Lobster, we found 
she actually reviewed it later.
(outside of the Yelp dataset)	





Conclusion 
•  Tripartite graph ranking solution for review-aware recommendation:	



–  Explainable and transparent	


–  Robust to noisy aspects	


–  Online learning and instant personalization without retraining. 	



•  Future work:	


–  Combine with factorization model (more effective to sparse data)	


–  Personalized (regularization) parameter settings 	


–  More contexts to model: temporal, taxonomy and sentiment.  
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Thank you! 
Thank SIGIR Student Travel Grant!	
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