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ABSTRACT
Recommendation methods construct predictive models to estimate
the likelihood of a user-item interaction. Previous models largely
follow a general supervised learning paradigm — treating each
interaction as a separate data instance and performing prediction
based on the “information isolated island”. Such methods, however,
overlook the relations among data instances, which may result in
suboptimal performance especially for sparse scenarios. Moreover,
the models built on a separate data instance only can hardly exhibit
the reasons behind a recommendation, making the recommendation
process opaque to understand.

In this tutorial, we revisit the recommendation problem from
the perspective of graph learning. Common data sources for
recommendation can be organized into graphs, such as user-item
interactions (bipartite graphs), social networks, item knowledge
graphs (heterogeneous graphs), among others. Such a graph-based
organization connects the isolated data instances, bringing benefits
to exploiting high-order connectivities that encode meaningful
patterns for collaborative filtering, content-based filtering, social
influence modeling and knowledge-aware reasoning. Together with
the recent success of graph neural networks (GNNs), graph-based
models have exhibited the potential to be the technologies for
next-generation recommendation systems. This tutorial provides
a review on graph-based learning methods for recommendation,
with special focus on recent developments of GNNs and knowledge
graph-enhanced recommendation. By introducing this emerging
and promising topic in this tutorial, we expect the audience
to get deep understanding and accurate insight on the spaces,
stimulate more ideas and discussions, and promote developments
of technologies.
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1 INTRODUCTION
The prime goal of recommendation is to estimate how likely a user
would adopt the target item, or more formally, the likelihood of a
user-item interaction. Existing methods [3, 4, 6, 7] largely follow a
general supervised learning paradigm with two key components —
(1) transforming each interaction and its associated side information
into a separate data instance, and (2) constructing predictive models
to perform prediction based on the instances. These methods have
achieved great success and been widely deployed in industry.

Nevertheless, the adoption of information isolated island
in such paradigm — modeling each user-item interaction as an
independent instance — overlooks the relations among instances,
which might result in suboptimal performance [11, 12, 16].
Moreover, the models built on a separate data instance largely
work as a black-box — only providing a predictive result but hardly
exhibiting the reasons behind a recommendation. Such black-box
nature makes the decision-making process opaque to understand
and hamper their further applications. Therefore, it is of crucial
significance to explore and exploit the relations among interactions.

Graph is a powerful representationwhich presents data instances
as nodes and describes their relationships as edges, instead of only
considering each instance in isolated. Recent years have witnessed a
tremendous interest in graph neural networks (GNNs) [2, 5, 10]. The
core idea is the information-propagation mechanism — aggregating
information from a node’s neighbors to enrich its representation
and improve the downstream supervised learning. Benefiting
from a such propagation effect, GNN-based methods have shown
promising results and improved the state of the art in many
challenging tasks. Inspired by the recent success of GNNs, we
believe that graph learning technologies serve as an infrastructure
for next-generation recommendation. It is thus timely to revisit the
recommendation problem from the perspective of graph learning
and introduce the recent works on GNN-based recommenders. Here
we focus on several recommendation scenarios as follows:
• Collaborative Filtering: User-item interactions are organized
as a bipartite graph between user and item nodes. Recent
efforts like GC-MC [9] and NGCF [12] recursively propagate
embeddings on the graph, so as to encode collaborative signals
along high-order connectivity into representations of users and
items and empirically yield better representations [12].

• Social Recommendation: Social networks represent social
relations among users, with connected users influencing each
other. Recent works like DANSER [14], GraphRec [1], and
DiffNet [13] employ GNNs to simulate such social influence
modeling — propagating similar interests along high-order social
connections — for better social recommendation.
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• Sequential Recommendation: Historical session sequences of
user behaviors are reorganized as a session graph, indicating
transitions of items. Recently proposed works such as DGRec [8]
and SR-GNN [15] conduct information propagation on such
graph to model the dynamic user preference in that session.

• Knowledge Graph-based Recommendation: External item
knowledge, such as commonsense knowledge and item attributes,
can be well presented as knowledge graph (also well known
as heterogeneous information network), where real-world
entities and relationships are represented as subject-property-
object triple facts. Wherein, multi-hop relational paths serve
as the support evidence of user preferences on unseen
interactions. Recent efforts like KGAT [11] utilize GNNs to
synthesize information from such connectivity, strengthening
representation ability, and enriching the relationships between a
user and an item.

By introducing this emerging and promising topic, we expect
the tutorial to facilitate researchers and practitioners in getting
deep understanding and accurate insight on the topic, exchanging
fruitful ideas, and promoting the developments of technologies.

2 RELATED TUTORIALS
Several wonderful tutorials were given at related conferences,
including but are not limited to:

• Jun Xu, Xiangnan He, and Hang Li; Deep Learning for Matching
in Search and Recommendation, at SIGIR 2018;

• Jie Tang and Yuxiao Dong; Representation Learning on Networks,
at WWW 2019.
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