Group Contextualization for Video Recognition

Yanbin Hao
University of Science and Technology of China
Hefei, China
haoyanbin@hotmail.com

Hao Zhang*
Singapore Management University
Singapore
hzhang@smu.edu.sg

Chong-Wah Ngo
Singapore Management University
Singapore
cwngo@smu.edu.sg

Xiangnan He
University of Science and Technology of China
Hefei, China
xiangnanhe@gmail.com

Abstract

Learning discriminative representation from the complex spatio-temporal dynamic space is essential for video recognition. On top of those stylized spatio-temporal computational units, further refining the learnt feature with axial contexts is demonstrated to be promising in achieving this goal. However, previous works generally focus on utilizing a single kind of contexts to calibrate entire feature channels and could hardly apply to deal with diverse video activities. The problem can be tackled by using pair-wise spatio-temporal attentions to recompute feature response with cross-axis contexts at the expense of heavy computations. In this paper, we propose an efficient feature refinement method that decomposes the feature channels into several groups and separately refines them with different axial contexts in parallel. We refer this lightweight feature calibration as group contextualization (GC). Specifically, we design a family of efficient element-wise calibrators, i.e., ECal-G/S/T/L, where their axial contexts are information dynamics aggregated from other axes either globally or locally, to contextualize feature channel groups. The GC module can be densely plugged into each residual layer of the off-the-shelf video networks. With little computational overhead, consistent improvement is observed when plugging in GC on different networks. By utilizing calibrators to embed feature with four different kinds of contexts in parallel, the learnt representation is expected to be more resilient to diverse types of activities. On videos with rich temporal variations, empirically GC can boost the performance of 2D-CNN (e.g., TSN and TSM) to a level comparable to the state-of-the-art video networks. Code is available at https://github.com/haoyanbin918/Group-Contextualization.

*Hao Zhang is the corresponding author.

1. Introduction

The 3D spatio-temporal nature of video signals allows video content to be flexibly analyzed from different perspectives or axes. Specifically, the signals can be transformed along various dimensions to capture the activities underlying a video. For example, in Figure 1, the soccer highlight “Corner kick” may require projection of the 3D video signal into a 1D vector to globally summarize the quick camera movement causing scene change. The less temporal activity categories “Arm wrestling”, “Bee keeping” and “Ice skating” can be easily recognized even by a single keyframe. Whereas, the Something-Something activity examples (middle) rely much on temporal relations. The group activities, i.e., “Blocked shot” and “Layup”, require a model to localize sub-activities.

Figure 1. Perspective/axial preference of different video activities. The scene change caused by quick camera movement yearns for global context for recognizing the soccer highlight “Corner kick”. “Arm wrestling”, “Bee keeping” and “Ice skating” can be easily recognized even by a single keyframe. Whereas, the Something-Something activity examples (middle) rely much on temporal relations. The group activities, i.e., “Blocked shot” and “Layup”, require a model to localize sub-activities.
is about classifying sub-activities such as “Blocked shot” and “Layup” in a lengthy basketball video, the localized 3D spatio-temporal analysis is preferred. These observations show the necessity of adjusting the features (C channels) of a 3-dimensional $T \times H \times W$ video tensor with a perspective aligned with video activities.

Feature contextualization [13, 16, 23, 29, 47, 50] is a technique that makes full use of axial contexts (e.g., spatial, temporal) to calibrate plain video features obtained from convolutional filters of CNN models (e.g., C3D [41], I3D [3], P3D [33]). Generally, axial contexts are referred to as information aggregated from other axes towards the features. For example, the global spatial context within the whole time length can be obtained by squeezing the tensor along time axis [50], while in contrast the global temporal context is acquired through shrinking along space axes [23, 29]. However, due to the large diversity of video activities, it is obvious that a single context cannot fit all activity cases. Given the activity “Moving something and something closer to each other” in Figure 1 as an example, globally aggregating contents along the time axis will harm the time order information, underemphasizing the subtle movement between objects. Also, the global aggregation will mess up sub-activities in the basketball highlights, diminishing the characteristics localized to sub-activities such as “dunk” and “foul”. In these cases, the existing works [16,23,29,50], which focus on calibrating image/video features with only a specific global axial context, may under-perform due to the lack of versatility in representing various activities. On the other hand, projecting multiple axial contexts to a feature will increase the computation cost. Some works [13,47] try to pairwisely attend each feature point of the 3D video tensor from local to global receptive field to adaptively decide the perspectives depending on context. Nevertheless, these works suffer from the heavy computation burden. The resulting network is not lightweight, and cannot densely plug into the existing network backbone. The most current work temporal difference network (TDN) [45] shows strong performance on activities that require both short-term and long-term dependencies through pairwisely computing the temporal differences with short and long intervals of time.

This paper addresses the limitation of feature contextualization for video recognition. Specifically, a novel feature contextualization paradigm, i.e. group contextualization (GC), is presented to derive feature representation that is generic to different activities and with lightweight computation. The GC module decomposes the channels into several paralleled groups and applies different feature contextualization operations on them respectively. As such, the calibrated feature is versatile for it integrating feature dynamics aggregated from different perspectives and potentially can recognize a wide variety of activities. The computational overload is kept to a minimum level by applying group convolution [30,42,49]. As each output channel only relates to the input channels within a group, only $\frac{1}{g} C^2$ (g is the number of divided groups) channel interactions is required, instead of C^2 of a standard convolution. Capitalizing on efficiency in computation, group convolution also allows us to analyze how a network exploits axial contexts in different layers for different activities.

The workflow of GC module is illustrated in Figure 2. Particularly, the input CNN feature $X \in \mathbb{R}^{T \times H \times W \times C}$ is split into four groups (group-1/2/3/4 with the size of $T \times H \times W \times \frac{1}{4} C$) along the channel dimension. To achieve separate contextualization, we accordingly design four element-wise calibrators (ECals) to calibrate the four channel groups globally along space-time (ECal-G), globally along space (ECal-S), globally along time (ECal-T), and locally (ECal-L) in a small neighborhood in parallel. In this architecture, all ECals share the similar cascaded structure of “GAP/None+FC/Conv+Sigmoid” for efficiency, and achieve feature calibration with element-wise multiplication. Here, the global feature calibrations (ECal-G/S/T) perform feature pooling along a specific axis and contextualization on the different axis with the customized operators. In fact, the feature aggregation compresses the global information in an axis onto the other so that it enlarges the receptive field to the entire axial range. For example, ECal-T squeezes the input $T \times H \times W \times \frac{1}{4} C$ feature along the space axes, resulting in a $T \times 1 \times 1 \times \frac{1}{4} C$ contextual feature. In this case, when conducting temporal convolution on the resulted context feature, the global spatial content contributes the attention weight computation of each timestamp, which can benefit the recognition of video activities requiring long-range temporal relation (e.g., the video clips in Figure 1(middle)). In contrast, if we directly convolve the given feature map without any pooling operation, the global view narrows to a local neighbourhood (ECal-L). This perspective is particularly useful to localize sub-activities in lengthy video, e.g., “Blocked shot”, “Layup” in the basketball video shown in Figure 1. Finally, by separately per-

\footnote{In this paper, feature adjustment, refinement and calibration, as well as their noun and verb forms, are used interchangeably.}
forming feature refinement with ECAL-G/S/T/L on those decomposed channel groups, we can reweight the input feature with multiple axial perspectives, resulting in a more discriminative representation Y.

We summarize our contributions as below:

- **Group contextualization.** We propose a new regime named group contextualization (GC) for video feature refinement. GC encompasses a set of element-wise calibrators (ECAL-G/S/T/L) to explicitly model multi-axial contexts and separately refine video feature groups in parallel.

- **Computation-efficient.** All ECAL variants are designed in an efficient manner, and the channel decomposition in group convolution moderates the extra computational cost incurred in feature calibration. For example, when averagely splitting the channels into four groups, GC only introduces 5.3%/1.3% extra parameters/FLOPs to the original TSN backbone.

- **Significant performance gain.** We verify that our GC module not only significantly improves the video recognition performance for several feedforward video networks (i.e., TSN, TSM and GST), but also can work together with the temporal difference network (TDN) leading to a notable performance gain.

2. Related Work

Since our work is mainly relevant to feature contextualization and group convolution techniques, we will separately review the related works from these two aspects.

Feature contextualization. Feature contextualization has been successfully demonstrated to be effective in image and video processing tasks, such as image retrieval/classification/segmentation [8, 11, 12, 16, 32, 43, 53, 57, 58], video/action recognition/classification [10, 13, 23, 29, 40, 47, 50]. Contextualization operation can enlarge the local receptive filed of a spatio-temporal filter to a global view with the support of perspective contexts. For example, the non-local neural network [47] recomputes the output of a local filter as a weighted sum of features of all points in the whole spatio-temporal video space. Since this operation needs pairwise comparison, its power is limited by the heavy computation burden. SSAN [10] factorizes the 3D pairwise attention into three separable spatial, temporal and channel attentions for efficiency. Another similar work is CBA-QSA [13] which omits the pairwise comparison and instead introduces a learnable query to guide the attention weight computing. To achieve more efficient feature contextualization, some approaches have studied modeling axial contexts through squeezing along specific axes. For example, SE-Net firstly proposes the squeeze-and-excitation mechanism to work as a self-gating operator to elementwisely refine image features with global context.

The gather-excite network (GE-Net) [15] generalizes SE-Net by investigating various levels of spatial context granularity. 3D-G [50] brings the feature refinement idea of SE-Net [16] to calibrate the features of 3D with the global axial context. TEA [23] introduces a motion excitation module to calculate pixel-wise movement of subsequent frames and a multiple temporal aggregation module to enlarge the temporal receptive field with the aggregated temporal axial context. TANet [29] also performs average pooling to collapse spatial information towards time axis but additionally considers long-range temporal modeling by having a feedforward neural network as a separate branch to refine the features. Compared to prior works, GC not only takes the global/temporal axial context into account for long-range temporal modeling but also considers the underlying video activities for feature contextualization.

Group convolution. The group convolution [14, 21, 30, 42, 49, 55] divides the feature maps into small groups and uses multiple kernels to separately compute their channel outputs. This leads to not only much lower computation loads but also wider networks helping to learn a varied set of low level and high level features. In video processing area, the work [14], which directly replaces the spatial 2D convolutional kernels of 2D-CNNs such as ResNext [49] and DenseNet [18] with 3D counterparts, explores the potential of 3D group convolutions for video recognition. The channel-separated convolutional network (CSN) [42] studies various settings of 3D group convolution as well as its extreme version depthwise convolution on C3D [41] for efficient video classification. More recently, the grouped spatial-temporal network (GST) [30] proposes to decompose the feature channels into two asymmetric groups and uses 2D and 3D convolutions to separately learn the spatial and temporal information. The gate-shift module (GSM) [37] extends temporal shift module used in [26, 52] with learnable shift parameters and uses the channel decomposition to further reduce parameters. The above group convolution works focus on designing generic models, while our proposed group contextualization is to recalibrate the plain video feature with multiple axial contexts for enhancing the off-the-shelf neural network models for video recognition.

3. Group Contextualization

The group contextualization module is constructed as a plug-and-play module, which can be used to calibrate any given $4D T \times H \times W \times C$ video tensor. In this section, we first elaborate the details of GC module, as well as four designed element-wise calibrators, in a general manner. Then, we integrate it into four representative video CNN models for enhancing their capacity of representation learning and give analysis to model complexity. Finally we examine the impact of varying channel positions in the backbones.

GC aims to calibrate a portion of channels of a video fea-
nature using a specific axial context at a time. The schema of GC module is illustrated in Figure 3. Suppose that a 4D feature tensor is $X \in \mathbb{R}^{T \times H \times W \times C}$ yielded by a convolutional operator or counterpart, where T, H, W, C denote time-length, space-height, space-width and channel-size, respectively. Firstly, GC splits the feature tensor into two groups with a partition ratio p along the channel dimension, resulting in $X^1 \in \mathbb{R}^{T \times H \times W \times pC}$ and $X^2 \in \mathbb{R}^{T \times H \times W \times (1-p)C}$.

Then, four feature calibrators are customized to focus on four different axial perspectives and separately refine the four feature channel subgroups of X^1, i.e., $X_{G/S/T/L} \in \mathbb{R}^{T \times H \times W \times \frac{p}{2}C}$ in parallel, resulting in four corresponding outputs $Y_{G/S/T/L}^1 \in \mathbb{R}^{T \times H \times W \times \frac{C}{2}}$. Finally, the calibrated feature parts and the non-calibrated feature part are concatenated along channel dimension, and the output of GC is

$$Y = \text{Concat}(Y_{G}^1, Y_{S}^1, Y_{T}^1, Y_{L}^1, Y^2),$$

(1)

where $Y \in \mathbb{R}^{T \times H \times W \times C}$. Next, we present the designs of four element-wise calibrators in detail.

3.1. Element-wise Calibrators

Global-wise Calibrator (ECal-G). The ECal-G block instantiates the global axial context through globally pooling the 4D X^1_G across time and space, yielding a contextual vector with the size of $\frac{C}{2}$. Then, to make use of the aggregated contextual information, a fully-connected (FC) layer is to compute the interactions among channels of the vector. Finally, a Sigmoid function is employed to calculate the channel-wise gating weights and an Expand operation further inflates the weight vector to the same size of X^1_G by element copying. Formally, the calculation flow can be as follows

$$Y^1_G = \text{Expand}(\text{Sigmoid}(\text{FC}(\frac{1}{T \times H \times W} \sum_{t,h,w} X^1_G[t,h,w]))) \odot X^1_G,$$

(2)

Spatial-wise Calibrator (ECal-S). ECal-S block shrinks the input tensor along the temporal axis using an average pooling operation, resulting in a $1 \times H \times W \times C$ contextual feature. A 2D convolution with 3×3 kernel is then adopted to compute the impact to a local spatial neighbor. Similarly, the Sigmoid and Expand operations are for the element-wise weighting tensor generation. Finally, we have

$$Y^1_S = \text{Expand}(\text{Sigmoid}(\text{Conv2d}(\frac{1}{T} \sum_{t} X^1_S[t,:,:,::]))) \odot X^1_S.$$

(3)

Temporal-wise Calibrator (ECal-T). In contrast to ECal-S, ECal-T pools the input along the spatial axes, aggregating the global spatial content into $T \times 1 \times 1 \times C$ statistics. Feature contextualization is achieved by using a temporal 1D convolution, which can mix the global spatial information within a local temporal receptive field. Further passing to the Sigmoid and Expand functions, the refined output tensor Y^1_T is computed as

$$Y^1_T = \text{Expand}(\text{Sigmoid}(\text{Conv1d}(\frac{1}{H \times W} \sum_{h,w} X^1_T[:,h,:,w]))) \odot X^1_T.$$

(4)

Local-wise Calibrator (ECal-L). Since ECal-L focuses on capturing local contexts within a neighboring field, we directly utilize a convolutional unit to achieve the local interaction computation. In the implementation, a 1D temporal convolution with $3 \times 1 \times 1$ kernel is adopted. This is because that a simple 1D convolution requires much lighter computational load than a 3D convolution, and temporal modeling is more critical in video feature learning. Without the use of global average pooling operation, the size of input tensor in ECal-L is kept during the weight calculation. Hereby, we have

$$Y^1_L = \text{Sigmoid}(\text{Conv1d}(X^1_L)) \odot X^1_L.$$

(5)

The above four ECals work individually and follow the self-gating regime for feature calibration. They compute the element-wise gating weights by contextualizing a specific axial perspective of interest. The element-wise gating weights could be global-wise (ECal-G), spatial-wise (ECal-S), temporal-wise (ECal-T), and local-wise (ECal-L). As a result, the proposed GC module can achieve multiple perspectives of feature contextualization in parallel for a single input.

3.2. Network Architecture and Model Complexity

We integrate the GC module into three basic video networks, i.e., TSN [46] (a standard 2D spatial model),
3.3. Does Channel Position Make Any Difference?

Table 1. Comparison of parameters for different calibrator blocks.

<table>
<thead>
<tr>
<th>Block</th>
<th>Params</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual block (TSN)</td>
<td>$17 \times C^2$</td>
<td>100.0%</td>
</tr>
<tr>
<td>ECal-G</td>
<td>$p^2 \times p^2 \times C^2$</td>
<td>0.09%</td>
</tr>
<tr>
<td>ECal-S</td>
<td>$p^2 \times p^2 \times C^2$</td>
<td>0.83%</td>
</tr>
<tr>
<td>ECal-T</td>
<td>$p \times p \times C^2$</td>
<td>0.28%</td>
</tr>
<tr>
<td>ECal-L</td>
<td>$p \times p \times C^2$</td>
<td>0.28%</td>
</tr>
<tr>
<td>Total</td>
<td>$p^3 \times C^2$</td>
<td>1.47%</td>
</tr>
</tbody>
</table>

The partition ratio p controls the portion of channels to be calibrated and hence governs the complexity of GC module. Table 1 lists the number of parameters of each ECal as well as their sums. To make a clearer comparison, we also show the number of parameters of the original residual block of TSN. It is worth noting that TSN and TSM have the same model complexity as the temporal shift operation in TSM is computationally free. Specifically, the parameters introduced by GC module is as low as 1.47% of the original 2D Residual block when $p = \frac{1}{2}$.

![Figure 5. Loop version of GC. The standard 2D ResNet-50 is adopted as the backbone. The partition ratio p is set to $\frac{1}{2}$. G, S, T, L denotes ECal-G, ECal-S, ECal-T and ECal-L units respectively.](image)

(e.g., spatial information in TSN, spatio-temporal information in TSM and short/long-term temporal difference in TDN). Whereas, in GST the spatial and temporal features are separately learnt without any channel interaction between groups. Since the channel groups in GST provide different types of features, keeping on utilizing the same calibrator to adjust fixed channels may be not optimal. For example, when setting $p = \frac{1}{2}$, the spatio-temporal feature group ($\frac{3}{4}C$) outputted by the Conv3d in GST will not participate in the feature calibration in the standard version. If we change p to 1, the spatial feature group ($\frac{3}{4}C$) is fixed to perform the calibration with ECal-G/S/T and the other spatio-temporal feature group is only involved in ECal-L. Differently, the loop version skillfully allows both the two feature groups of GST to achieve feature calibration with all the four ECals. Based on this, we apply the standard version on TSN/TSM/TDN and the loop version on GST in implementation. It is worth mentioning that both the standard and loop versions have the same model complexity.

4. Experiment

We conduct experiments on different benchmarks, including Something-Something V1&V2 [9, 31] and Kinetics-400 [20] for video recognition. The four video datasets cover a broad range of activities. Specifically, the Something-Something V1&V2 datasets show 174 fine-grained humans performing pre-defined activities and are more focused on modeling the temporal relationships. The Kinetics-400 dataset covers 400 human action classes with less motion variations. Due to space limitation, we include the results on EGTGA Gaze+ [25], which is a dataset offering first-person videos, Diving48 [24] with unambiguous dive sequence, and Basketball-8&Soccer-10 [13] with group activities in the supplementary document.

4.1. Experimental Setup

We insert the GC module into four different 2D and 3D ResNets, including TSN, TSM, GST and TDN. Most experiments are based on the backbone of ResNet-50 pretrained on ImageNet [34]. Notably, we additionally add a "Batch-
Norm” layer after each convolutional/FC layer in the ECals for TSN, TSM and TDN. We implement GC-Nets in Pytorch and run them on servers with 4×2080Ti or 4/8×3090.

Training & Inference. The training protocol mainly follows the work [46]. Specifically, we use uniform sampling for all datasets. The spatial short side of input frames is resized to 256 maintaining the aspect ratio and then cropped to 224×224. Data augmentation also follows [46]. Training configurations for GC-TSN/TSM/GST are set as follows: a batch-size of 8/10 per GPU, an initial learning rate of 0.01 for 50 epochs and decayed at epoch 20 and 40, the SGD optimizer. GC-TDN follows the training protocol of TDN [45]. The dropout ratio is set to 0.5. During the inference, we uniformly sample 8 frames per video and use the 224×224 center crop for performance report in the ablation study. In the final performance comparison, we sample multiple clips per video and take no more than three crops per clip. Specifically, the test protocols are: 2 clips × 3 crops (224×224) for Something-Something V1&V2, and 1 clip × 1 center crop (224×224) for others. We will also specify the sampled frames in the tables.

4.2. Ablation Study

We present ablation study to investigate the effect of hyperparameters, including the channel partition ratio p, channel position, calibrator variants and backbones, on Something-Something V1 dataset.

p and calibrators. We first compare different ECals on TSN with p = 1/2, 1. The four types of ECals are designed to calibrate video feature with different axial context concerns. And the channel partition ratio p is introduced to control the number of channels to be calibrated by ECals. As shown in Table 2, we observe that ECal variants, regardless of their types, consistently improve the recognition performance of the backbone TSN, indicating their effectiveness. Although varying the value of p from 1/2 to 1 will result in slight increase of model size and computational cost, the performance boost is noticeable (e.g., 26.3%→27.3% for ECal-G and 35.9%→36.4% for ECal-T).

Channel position and backbones. Secondly, we test both the standard and loop GC versions on the four backbones. Here, we also set p = 1/2, 1. Table 2 shows their results. Compared to the single calibrator, the GC module, which combines the four ECals in parallel, achieves much better performance on TSN. The GC-TSM, GC-GST and GC-TDN also gain significant performance improvement (45.6%→48.9% for TSM, 44.4%→46.7% for GST, 52.3%→53.7% for TDN) to their original backbones. Consistently, the models with larger p = 1 outperform their counterparts with p = 1/2. Based on the above results, we fix p = 1 for the GC-Nets in this work. For the channel position, we observe different performance tendencies on the four backbones, i.e., the result of loop version is clearly better than the standard version on GST, and their performances are about the same on TSN, TSM and TDN. As analysed in Section 3.3, this is because that feature channels in TSN, TSM and TDN are entangled together during the feature learning while the group convolution method GST separately models the spatial and temporal features.

Comparison with other calibrators

Thirdly, we integrate the 3D variants of SE-Net [16] and GE-Net [15], i.e., SE3D and GE3D-G/C, S3D-G and NLN, into the TSN and TSM backbones. Their hyperparameters are set as the same to their original papers. The NLN-Nets follows the implementation of [26]. From Table 2, we can find that our GC module far outstrips SE3D, GE3D-G and S3D-G which only consider the global context and the pairwise self-attention NLN when using TSN as backbone. Since GE3D-C uses three 3D depthwise convolution layers to model local spatio-temporal context, relatively good performance (44.2% Top-1 accuracy) is attained on TSN but still lower than our GC (47.9%). On TSN, our GC can outper-
form the five other calibrators by the margins of 1.7%-3.2%. Moreover, compared to the self-attention NLN module that results in 31% extra parameters and 50% extra FLOPs to the backbones, our GC only introduces as low as 5% extra parameters and 1.2% extra FLOPs.

4.3. Example Demonstration

We show the per-category results of TSN-ECal variants and GC-TSN to understand the impact of axial contexts on different kinds of video activities in Figure 6. Specifically, ECAL-G can boost the recognition of activities that need global contexts, e.g., “label-106: Putting something in front of something” in Figure 6(a). ECAL-S focuses on enhancing the feature spatial-wisely with the context aggregated along temporal dimension and thus can improve the performance for activities that require more spatial than temporal information, for example “label-26: Lifting a surface with something on it but not enough for it to slide down” in 6(b). TSN-ECAL-T and TSN-ECAL-L, which naturally calibrate the feature globally and locally along temporal dimension respectively, can significantly improve the recognition performance for activities that require temporal reasoning, as shown in the first 5 categories in figures 6(c) and (d). However, those failure cases in the four subfigures (last 4 terms) provide evidence that one kind of axial contexts is not suitable for all activity categories. For example, TSN-ECAL-G fails to model the activities that involve rich spatial-temporal interactions between objects, e.g., “label-61: Pouring something into something until it overflows”, and TSN-ECAL-S under-performs on “label-73: Pretending to put something into something” and “label-81: Pretending to squeeze something” which require strong temporal reasoning. Encouragingly, the GC module that aggregates all the four ECals indeed alleviates these shortcoming of individual ECAL, leading to performance improvement for a variety of activities.

4.4. Comparison with the State-of-the-Arts

We compare GC-Nets with state-of-the-art networks in this section. The result comparison follows the same protocol of using RGB frames as input and adopting ResNet50 unless otherwise specified.

Something-Something V1 & V2. A comprehensive comparison between our GC-Nets and SOTAs on Something-Something V1&V2 datasets are presented. Tables 3 and 4 list the comparison in terms of Top-1/5 accuracy, FLOPs and model complexity. GC-TDN achieves the highest Top-1 accuracies of 56.4% and 67.8% with (8+16) frames × 1 clip on Something-Something V1&V2, respectively, which outperform all the CNN-based SOTAs by large margins (1.3%-36.7% for V1 and 0.8%-37.8% for V2). Moreover, all GC-Nets, including GC-GST, GC-TSN, GC-TSM and GC-TDN, consistently outperform their backbone networks with significant performance gains, demonstrating the capacity of GC module in recognizing diverse activities and the strong versatility against various deep video networks. For example, GC-TSN boosts the original TSN model with an absolute improvements of 28.2% (19.7%-47.9%) on V1 and 32.4% (30.0%-62.4%) on V2 with the same 8-frame input. Equipping TSN, which is an image-based CNN, with GC empowers the modeling of temporal relationship between objects on V1&V2. The GC module can also improve the more advanced TDN by 1.3% on V1 and 0.8% on V2 with the same 8+16 frames. This demonstrates that the axial contexts modeled by GC

<table>
<thead>
<tr>
<th>Method</th>
<th>Params</th>
<th>#Frame</th>
<th>FLOPs×Clips</th>
<th>Top-1 (%)</th>
<th>Top-5 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CorrNet [44]</td>
<td>2.3M</td>
<td>32</td>
<td>115.0G×10</td>
<td>49.3</td>
<td>—</td>
</tr>
<tr>
<td>TSN [36]</td>
<td>24.0M/×2</td>
<td>8+16</td>
<td>101G×1</td>
<td>49.6</td>
<td>78.3</td>
</tr>
<tr>
<td>V4D [53]</td>
<td>24.8M/×4</td>
<td>8+4</td>
<td>167.6G×30</td>
<td>50.4</td>
<td>—</td>
</tr>
<tr>
<td>SmallBig [22]</td>
<td>—</td>
<td>8+16</td>
<td>157G×1</td>
<td>50.4</td>
<td>80.5</td>
</tr>
<tr>
<td>TANet [29]</td>
<td>25.1M/×2</td>
<td>8+16</td>
<td>99.0G×1.0</td>
<td>50.6</td>
<td>79.3</td>
</tr>
<tr>
<td>STM [19]</td>
<td>24.0M</td>
<td>16</td>
<td>33.3G×30</td>
<td>50.7</td>
<td>80.4</td>
</tr>
<tr>
<td>TIA [23]</td>
<td>—</td>
<td>70.0G×30</td>
<td>52.3</td>
<td>81.9</td>
<td></td>
</tr>
<tr>
<td>TEINet [27]</td>
<td>30.4M/×2</td>
<td>8+16</td>
<td>99.0G×1</td>
<td>52.5</td>
<td>—</td>
</tr>
<tr>
<td>RNL-TSM [17]</td>
<td>35.5M/×2</td>
<td>8+16</td>
<td>123.5G×2</td>
<td>52.7</td>
<td>—</td>
</tr>
<tr>
<td>GC-TSN</td>
<td>21.0M</td>
<td>16</td>
<td>48.6G×1</td>
<td>48.2</td>
<td>79.0</td>
</tr>
<tr>
<td>GST* [30]</td>
<td>21.0M/×2</td>
<td>8+16</td>
<td>87.6G×2</td>
<td>48.6</td>
<td>78.3</td>
</tr>
<tr>
<td>TSM [26]</td>
<td>23.9M</td>
<td>16</td>
<td>65.8G×2</td>
<td>48.4</td>
<td>78.1</td>
</tr>
<tr>
<td>TSM [26]</td>
<td>23.9M/×2</td>
<td>8+16</td>
<td>98.7G×2</td>
<td>50.3</td>
<td>79.3</td>
</tr>
<tr>
<td>TSN [45]</td>
<td>26.1M</td>
<td>16</td>
<td>72.0G×1</td>
<td>53.9</td>
<td>82.1</td>
</tr>
<tr>
<td>TDN [45]</td>
<td>26.1M/×2</td>
<td>8+16</td>
<td>108.0G×1</td>
<td>55.1</td>
<td>82.9</td>
</tr>
<tr>
<td>GC-TSN</td>
<td>25.1M</td>
<td>8</td>
<td>33.3G×2</td>
<td>49.7</td>
<td>78.2</td>
</tr>
<tr>
<td>GC-TSN</td>
<td>25.1M</td>
<td>16</td>
<td>66.5G×2</td>
<td>51.3</td>
<td>80.0</td>
</tr>
<tr>
<td>GC-TSN</td>
<td>25.1M/×2</td>
<td>8+16</td>
<td>99.8G×2</td>
<td>53.7</td>
<td>81.8</td>
</tr>
<tr>
<td>GC-TSN</td>
<td>25.1M</td>
<td>8</td>
<td>33.3G×2</td>
<td>51.1</td>
<td>79.4</td>
</tr>
<tr>
<td>GC-TSM</td>
<td>25.1M</td>
<td>16</td>
<td>66.5G×2</td>
<td>53.1</td>
<td>81.2</td>
</tr>
<tr>
<td>GC-TSM</td>
<td>25.1M/×2</td>
<td>8+16</td>
<td>99.8G×6</td>
<td>55.3</td>
<td>82.7</td>
</tr>
<tr>
<td>GC-TCN</td>
<td>27.4M</td>
<td>8</td>
<td>36.7G×1</td>
<td>53.7</td>
<td>82.2</td>
</tr>
<tr>
<td>GC-TCN</td>
<td>27.4M/×2</td>
<td>8+16</td>
<td>110.1G×1</td>
<td>56.4</td>
<td>84.0</td>
</tr>
</tbody>
</table>

Table 3. Comparison of performance on Something-Something V1 dataset. "*" indicates that the result is obtained by ourselves.
which is about 11.4 times cheaper than MViT-B (1,365G FLOPs). GC-TDN requires 110.1G FLOPs, and model complexity. GC-TSM and GC-TDN obtain lower Top-1 accuracies. The texts used by TDN. Compared to the more sophisticated V2 dataset. "*" indicates that the result is obtained by ourselves. Table 4. Comparison of performance on Something-Something V2 dataset. "*" indicates that the result is obtained by ourselves.

5. Conclusion

We have presented the regime of group contextualization, which aims at deriving robust representations generic to various video activities by calibrating plain features computed from off-the-shelf networks with multiple contexts. The family of element-wise calibrators is designed to work on different grouped feature channels independently. The group operation results in a much lower computation cost (5.3%/1.3% extra parameters/FLOPs) and substantial performance improvements (0.4%-32.4%) to backbones. More surprisingly, when GC module is integrated into the 2D spatial TSN model, GC-TSN achieves absolute 28.2%/32.4% performance improvements on Something-Something V1/V2 and even performs much better than the advanced 3D spatio-temporal GST and TSM models. We conclude that since the videos in Something-Something datasets contain rich global/local human-object interactions, GC module that explores various global/local spatial/temporal axial contexts to calibrate the original feature exhibits excellent performance. Similar results are also observed from the other datasets (e.g., Diving and Kitchen Activities). Moreover, compared to the other feature calibration methods, such as SE3D, GE3D, S3D-G, TEA and TANet that only use a single context, GC-Nets consistently achieve better performances, which further proves the feasibility and advantages of the proposed group contextualization. The significant performance improvement of GC-TDN further demonstrates that our GC can also work together with the other temporal difference context (TDN).

Acknowledgements

The work was supported in part by the National Natural Science Foundation of China (No. 62101524), by the National Key Research and Development Program of China under Grants 2020YFB1406703, and by the Singapore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 1 grant.
References

