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Abstract—Herb recommendation plays a crucial role in the
therapeutic process of Traditional Chinese Medicine (TCM),
which aims to recommend a set of herbs to treat the symptoms
of a patient. While several machine learning methods have
been developed for herb recommendation, they are limited in
modeling only the interactions between herbs and symptoms,
and ignoring the intermediate process of syndrome induction.
When performing TCM diagnostics, an experienced doctor typ-
ically induces syndromes from the patient’s symptoms and then
suggests herbs based on the induced syndromes. As such, we
believe the induction of syndromes — an overall description of
the symptoms — is important for herb recommendation and
should be properly handled. However, due to the ambiguity and
complexity of syndrome induction, most prescriptions lack the
explicit ground truth of syndromes.

In this paper, we propose a new method that takes the implicit
syndrome induction process into account for herb recommenda-
tion. Specifically, given a set of symptoms to treat, we aim to
generate an overall syndrome representation by effectively fusing
the embeddings of all the symptoms in the set, so as to mimic how
a doctor induces the syndromes. Towards symptom embedding
learning, we additionally construct a symptom-symptom graph
from the input prescriptions for capturing the relations (co-
occurred patterns) between symptoms; we then build graph
convolution networks (GCNs) on both symptom-symptom and
symptom-herb graphs to learn symptom embedding. Similarly,
we construct a herb-herb graph and build GCNs on both herb-
herb and symptom-herb graphs to learn herb embedding, which
is finally interacted with the syndrome representation to predict
the scores of herbs. The advantage of such a Multi-Graph
GCN architecture is that more comprehensive representations
can be obtained for symptoms and herbs. We conduct extensive
experiments on a public TCM dataset, demonstrating significant
improvements over state-of-the-art herb recommendation meth-
ods. Further studies justify the effectiveness of our design of
syndrome representation and multiple graphs.

Index Terms—herb recommendation, symptom-herb graph,
graph neural network, representation learning
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I. INTRODUCTION

As an ancient and holistic treatment system established over
thousands of years, Traditional Chinese Medicine (TCM) plays
an essential role in Chinese society [1]. The basis of the TCM
theory is the thinking of holism, which emphasizes the in-
tegrity of the human body and its interrelationship with natural
environments [2]. Fig. 1 takes the classic Guipi Decoction
prescription as an example to show the three-step therapeutic
process in TCM: (1) Symptom Collection. The doctor examines
the symptoms of the patient. Here the symptom set sc contains
“night sweat”, “pale tongue”, “small and weak pulse” and
“amnesia”. (2) Syndrome Induction. Corresponding syndromes
are determined after an overall analysis of symptoms. In
this case, the main syndrome is “ deficiency of both spleen
and blood” in a solid circle. As “pale tongue” and “small
and weak pulse” can also appear under “the spleen fails to
govern blood”, there is also an optional syndrome called “the
spleen fails to govern blood” in a dotted circle. (3) Treatment
Determination. The doctor chooses a set of herbs as the
medicine to cure the syndromes. The compatibility of herbs is
also considered in this step. Here the herb set hc consists of
“ginseng”, “longan aril”, “angelica sinensis” and “tuckahoe”.
As we can see, the second step of syndrome induction, which
systematically summarizes the symptoms, is very critical for
the final recommendation of herbs. However, as the above
example shows, a symptom can appear in various syndromes,
which makes the syndrome induction ambiguous and complex
[3]. Actually, for a certain symptom set, different TCM doctors
might give different syndrome sets (as shown in Fig. 1), and
thus no standard ground truth exists.

In a TCM prescription corpus, each data instance contains
two parts — a set of symptoms and a set of herbs, which means
the herb set can well cure the symptom set. To generalize to the
unseen symptom set, the herb recommendation task focuses
on modeling the interactions between symptoms and herbs,
which is analogous to the traditional recommendation task that
models the interactions between users and items [4]. Notably,
one key difference is that in traditional recommendation, the



Herb Set
hc={         }Syndromes

Symptom Set
sc={            }

Patient

  Symptom 
   Collection

   Syndrome       
Induction

  Treatment     
Determination

   night sweat

      pale tongue

   small & 
weak pulse

   amnesia

deficiency of 
both spleen 
and blood

  angelica 
sinensis

longan 
aril

  ginseng

    tuckahoe

the spleen 
fails to 

govern blood

Fig. 1. An example of the therapeutic process in TCM.

prediction is mostly performed on the level of a single user,
whereas in the herb recommendation, we need to jointly
consider a set of symptoms to make prediction. Due to the
lack of ground truth syndromes, existing efforts on herb
recommendation [5]–[8] treat the syndrome concept as latent
topics. However, they only learn the latent syndrome topic
distribution given a single symptom. Particularly, they focus
on modeling the interaction between one symptom and one
herb; and then the interactions from multiple symptoms are
aggregated to rank the herbs. As such, the set information of
symptoms is overlooked.

In this paper, we propose to incorporate the implicit syn-
drome induction process into herb recommendation, which
conforms to the intuition that syndrome induction is a key
step to summarize the symptoms towards making effective
herb recommendations, as shown in Fig. 1. Specifically, given
a set of symptoms to treat, we aim to learn an overall implicit
syndrome representation based on the constituent symptoms,
before interacting with herbs for recommendation generation.
Through this manner, the prescription behavior of doctors
could be mimicked.

To this end, we propose a new method named Syndrome-
aware Multi-Graph Convolution Network (SMGCN), a multi-
layer neural network model that performs interaction modeling
between syndromes and herbs for the herb recommendation
task. In the interaction modeling component (top layer of
SMGCN), we first fuse the embeddings of the symptoms in
a target symptom set via a Multi-Layer Perceptron (MLP) to
directly obtain the overall implicit syndrome representation,
which is later interacted with herb embeddings to output
prediction scores. In the embedding learning component (bot-
tom layers of SMGCN), we learn symptom embedding and
herb embedding via GCN on multiple graphs. Specifically,
in addition to the input symptom-herb graph, we further
build symptom-symptom and herb-herb graphs based on the
co-occurrence of symptoms (herbs) in prescription entries.
Intuitively, some symptoms are frequently co-occurred in
patients (e.g., nausea and vomit), modeling which is beneficial
to symptom representation learning; similarly, the herb-herb
graph evidences the frequently co-occurred herbs, which are

useful for encoding their compatibility. We conduct experi-
ments on a public TCM dataset [5], demonstrating the effec-
tiveness of our SMGCN method as a whole and validating the
rationality of each single purposeful design.

The main contributions of this work are as follows.
• We highlight the importance of representing syndromes

and modeling the interactions between syndromes and
herbs for herb recommendation.

• We propose SMGCN, which unifies the strengths of MLP
in fusion modeling (i.e., fusing symptom embeddings into
the overall implicit syndrome embedding) and GCN in
relational data learning (i.e., learning symptom and herb
embeddings) for herb recommendation.

• We build herb-herb and symptom-symptom graphs to
enrich the relations of herbs and symptoms, and extend
GCN to multiple graphs to improve their representation
learning quality.

The rest of the paper is organized as follows: Section
2 describes the problem definition. Section 3 describes our
overall framework. Section 4 introduces our proposed method.
Section 5 evaluates our method. Section 6 surveys the related
work. Finally, section 7 provides some concluding remarks.

II. PROBLEM DEFINITION
The task of herb recommendation aims to generate a herb set

as the treatment to a specific symptom set. Herb recommender
systems usually learn from the large prescription corpus. Let
S={s1, s2, ..., sM} and H={h1, h2, ..., hN} denote all symp-
toms and herbs, respectively. Each prescription consists of a
symptom set and a herb set, e.g., p=〈{s1, s2, ...}, {h1, h2, ...}〉.
In the syndrome induction process, an overall syndrome pre-
sentation needs to be induced for each symptom set, which is
later used to generate an appropriate herb set. Hereafter we
represent symptom set and herb set by sc={s1, s2, ...} and
hc={h1, h2, ...}, respectively. In this way, each prescription is
denoted by p=〈sc, hc〉.

Given a symptom set sc, our task is to compute an N-
dimensional probability vector, where the value of dimension
i represents the probability that herb i can cure sc. This is
achieved by a learned prediction function ŷsc=g(sc,H; θ),
where ŷsc represents the probability vector, and θ indicates
the trainable parameters of function g. The input and output
are defined as follows:
• Input: Herbs H , Symptoms S, Prescriptions P .
• Output: A learned function g(sc,H; θ), which generates

the probability vector ŷsc for all herbs from H given the
symptom set sc.

III. OVERVIEW OF PROPOSED APPROACH
In this section, we discuss the proposed Syndrome-aware

Multi-Graph Convolution Network framework in detail,
which is depicted in Fig. 2. Our proposed model takes a symp-
tom set sc = {s1, s2, ..., sk} and all herbs H = {h1, ..., hN}
as input, and outputs the predicted probability vector ŷsc in
dimension |H|. In ŷsc, the value at position i indicates the
probability that hi is appropriate to cure sc.
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Fig. 2. The overall architecture of our proposed model (including Bipar-GCN, Synergy Graph Encoding (SGE) and Syndrome Induction (SI) ). Symptom
nodes are in blue and herb nodes are in gray. Notably, the nodes with oblique lines are target nodes.

To complete this task, it mainly consists of two layers: the
Multi-Graph Embedding Layer and Syndrome-aware Predic-
tion Layer.

Multi-Graph Embedding Layer. This layer aims to obtain
expressive representations for all symptoms from S and all
herbs from H . Considering the complex interrelations between
symptoms and herbs in TCM, we first develop a Bipartite
Graph Convolutional Neural Network (Bipar-GCN) to process
the bipartite symptom-herb graph. To capture the intrinsic
difference between symptoms and herbs, Bipar-GCN performs
symptom-oriented embedding propagation for the target symp-
tom node, and herb-oriented embedding propagation for the
target herb node, respectively. Through this way, symptom
embedding bs and herb embedding bh are learned. Second,
a Synergy Graph Encoding (SGE) component is introduced to
encode the synergy information of symptom pairs and herb
pairs. For symptom pairs, it constructs a symptom-symptom
graph according to the concurrent frequency of symptom pairs
and performs the graph convolution on the symptom-symptom
graph to learn symptom embedding rs. Analogously, it also
learns herb embedding rh from a herb-herb graph. Third,
for each symptom (herb), two types of embeddings b and r
from the Bipar-GCN and SGE are fused to form integrated
embeddings e∗.

Syndrome-aware Prediction Layer. In this layer, bearing
the importance of syndrome induction process in mind, the
Syndrome Induction (SI) component feeds the embeddings of

all symptoms in the symptom set sc into an MLP to generate
the overall syndrome representation esyndrome(sc). Second, all
herb embeddings are stacked into eH , an N ×d matrix where
d is the dimension of each herb embedding. The syndrome
representation esyndrome(sc) interacts with eH to predict ŷsc,
the probability score vector for all herbs from H .

Considering that a set of herbs will be recommended as
a whole, a multi-label loss function is utilized to optimize
our proposed model. All notations used in this paper are
summarized in Tab. I.

IV. METHODOLOGIES

A. Bipartite Graph Convolution Network

Recent works like [4] have demonstrated the convincing per-
formance of performing graph convolutions on the user-item
graph in recommender systems. Despite their effectiveness,
we argue that they ignore the intrinsic difference between the
two types of nodes (users and items) in the bipartite graph
and employ a shared aggregation and transformation function
across the graph, which may restrict the flexibility of infor-
mation propagation and affect the embedding expressiveness
to some extent. To model the intrinsic difference between
herbs and symptoms, we leverage Bipar-GCN, which is shown
in Fig. 3. When the type of the target node is “symptom”,
the left Symptom-oriented GCN will be used to obtain the
representation for this target node. Otherwise, the right Herb-
oriented GCN is adopted to learn the node embedding. These



TABLE I
SUMMARY OF ALL NOTATIONS

eh, es initial embeddings for herbs, symptoms
S,H symptom collection and herb collection

SC,HC
collection of symptom sets
and collection of herb sets

P prescription collection

Ns, Nh
neighborhood of symptom, herb
on the bipartite graph

SH symptom-herb graph

SS,HH
symptom-symptom graph and
herb-herb graph

xs, xh threshold for constructing SS and HH

NSS
s , NHH

h
neighborhood of symptom on SS
neighborhood of herb on HH

Tks , T
k
h

message construction function for symptom, herb
at k-th Bipar-GCN layer

Wk
s ,W

k
h

message aggregation function for symptom, herb
at k-th Bipar-GCN layer

Vs, Vh
aggregation function for symptom on SS
aggregation function for herb on HH

bkNs
, bkNh

symptom, herb neighborhood embedding
at k-th Bipar-GCN layer

bks , b
k
h

symptom, herb output embeddings at
k-th Bipar-GCN layer

rs, rh
symptom output embeddings on SS
herb output embeddings on HH

e∗h, e
∗
s herb, symptom final embedding after fusion

Wmlp, bmlp
the MLP weight matrix and bias parameter
used in Syndrome Induction

Watt, z the attention network parameters in HeteGCN

esyndrome(sc)
the induced syndrome embedding
for symptom set sc

ŷ(sc)
the predicted probability vector
for sc in dimension |H|

two parts share the same topological structure of the symptom-
herb graph but adopt different aggregation and transformation
functions. In this way, different types of nodes can develop
their own propagation flexibility and therefore learn more
expressive representations. Next we will introduce Bipar-GCN
in detail.

1) Symptom-Herb Graph Construction: Taking a TCM
prescription p=〈sc={s1, s2, ..., sk}, hc={h1, h2, ..., hm}〉
as an example, symptoms and herbs in the same
prescription are related to each other. Therefore,
{(s1, h1), ..., (s1, hm), ..., (sk, h1), ..., (sk, hm)} constitute
graph edges. We take the symptom-herb graph as an
undirected graph which is formulated as follows:

SHs,h, SHh,s =

{
1, if (s, h) co-occur in prescriptions;
0, otherwise,

wherein SH indicates the symptom-herb graph.
2) Message Construction: In order to propagate informa-

tion from each neighbor node to the target node, there are two
operations to be defined: how to generate information that each
node transfers to the target node and how to merge multiple
neighbor messages together.

For symptom s, the message its one-hop neighbor herb h
transfers to it is defined as mh,

m0
h = eh · T 1

s , (1)

Symptom-oriented 
GCN

Herb-oriented 
GCN

Fig. 3. Bipartite GCN. Blue edges and gray edges denote different graph
convolution functions. The nodes with oblique lines are target nodes.

where eh is the initial embedding of herb h. T 1
s is the trans-

formation weight matrix of the first-layer (symptom). After
collecting messages from all neighbors, we choose average
operation to merge them, which is defined as follows,

b0Ns
= tanh(

1

|Ns|
∑
h∈Ns

m0
h), (2)

where Ns is the one-hop neighbor set of s and we choose
tanh as the activation function. Analogously, for herb h, the
merged one-hop neighbor message can be represented by,

b0Nh
= tanh(

1

|Nh|
∑
s∈Nh

m0
s), (3)

where m0
s = es · T 1

h .
3) Message Aggregation: After receiving the merged neigh-

bor representation, the next step is to update the embedding for
the target node. Here we adopt the GraphSAGE Aggregator
proposed in [9], which concatenates two representations, fol-
lowed by a nonlinear activation operation. The first-layer
symptom representation b1s and herb representation b1h are
defined as follows,

b1s = tanh(W 1
s · (es||b0Ns

)), (4)

b1h = tanh(W 1
h · (eh||b0Nh

)), (5)

where || indicates the concatenation operation of two vectors.
Ws and Wh denote the aggregation weight matrices for
symptoms and herbs, respectively.

4) High-order Propagation: We can further extend the one-
hop propagation rule to multiple layers. Specifically, in the k-th
layer, we recursively formulate the representation of herb h as,

bkh = tanh(W k
h · (bk−1

h ||bk−1
Nh

)), (6)

wherein the message from neighbors in the k-th layer for h is
defined as follows,

bk−1
Nh

= tanh(
1

|Nh|
∑
s∈Nh

bk−1
s · T k

h ), (7)



For symptom s, the formulations are similar,

bks = tanh(W k
s · (bk−1

s ||bk−1
Ns

)), (8)

wherein the message propagated within k-th layer for s is
defined as follows,

bk−1
Ns

= tanh(
1

|Ns|
∑
h∈Ns

bk−1
h · T k

s ). (9)

B. Synergy Graph Encoding Layer

Except for the symptom-herb relation, there are also some
synergy patterns within symptoms and herbs. Given a pre-
scription p=〈sc, hc〉, symptoms in sc are not independent but
related to each other, and herbs in hc also influence each other
and form a complete composition. As such, these relations
could be exploited to construct synergy graphs for symptoms
and herbs, respectively. It is worth noting that although the
two-order information propagation on the symptom-herb graph
can capture the homogeneous relations between herbs and
symptoms, the second-order symptom-symptom and herb-
herb links are not equal to the concurrent pairs in prescrip-
tions. For example, in prescriptions p1=〈{s1, s2}, {h1, h2}〉
and p2=〈{s1, s3}, {h3, h4}〉, {h2, h3, h4} are the second-order
neighbors of h1 via the connections with s1. However, h3 and
h4 do not appear with h1 in the same prescription. Thus there
will be no edges between the h1 and h3 and between h1 and
h4 in the synergy graphs. On the other hand, it is obvious that
the bipartite symptom-herb graph cannot be directly derived
from the homogeneous synergy graphs. In consequence, we
conclude that the symptom-herb graph and synergy graphs
contain their own characteristics and can complement each
other to learn more accurate node representations.

1) Synergy Graphs Construction: Generally, the herb and
symptom synergy patterns can be reflected by the high co-
occurrence frequencies. Taking the construction of herb-herb
graph as an example, we first compute the frequency of all
herb-herb pairs in prescriptions: if herb hm and herb hn
co-occur in the same hc, the frequency of pair (hm, hn)
is increased by 1. After obtaining the herb-herb frequency
matrix, we manually set a threshold xh to filter the entries.
For pairs co-occurring more than xh times, the corresponding
entries are set to 1, and 0 otherwise. It is formulated as follows,

HHhm,hn
, HHhn,hm

=

{
1, if frequency (hm, hn) > xh;

0, otherwise,

wherein HH denotes the herb-herb graph. xh is the threshold
for herb-herb pairs. By referring to the above procedures, the
symptom-symptom graph can be constructed as well.

2) Information Propagation: Given the constructed herb-
herb graph HH and symptom-symptom graph SS, we apply
an one-layer graph convolution network to generate the symp-
tom and herb embeddings:

rs = tanh(
∑

k∈NSS
s

ek · Vs),

rh = tanh(
∑

q∈NHH
h

eq · Vh),
(10)

wherein ek and eq are initial embeddings for symptom k and
herb q respectively. NSS

s indicates the neighbor set of s in SS.
NHH

h indicates the neighbor set of h in HH . Vs and Vh are
weight parameters for SS and HH , respectively. Through our
local computation, the averages of node degrees show that the
symptom-herb graph is much denser than the synergy graphs,
and the standard deviations verify that the degree distributions
of synergy graphs are smoother than that of the symptom-herb
graph. Considering that we need to fuse b and r lately, the sum
aggregator is adopted for synergy graphs to make these two
parts more balanced, which can benefit the training process to
some extent.

From the view of herb recommendation task, SS and HH
encode the synergy patterns in TCM, which further help
improve the representation quality for symptoms and herbs.
Besides, introducing additional information helps relieve the
data sparsity problem [7] of TCM prescriptions to some extent.

C. Information Fusion

Up to now we have obtained two types of embeddings from
Bipar-GCN and synergy graphs for each node. We employ the
simple addition operation to merge these embeddings,

e∗s = bs + rs,

e∗h = bh + rh,
(11)

wherein e∗s and e∗h are the merged embeddings for symptom
s and herb h, respectively.

To sum up, the above procedures clarify the proposed Multi-
Graph Embedding Layer. It is a general architecture that can
be used in other scenarios to model interactions between two
types of objects. For example, in the recommendation scenario,
Bipar-GCN can be exploited to capture the intrinsic difference
between users and items. The additional user-user graph can
be the social relation graph among users. The item-item graph
can be item relations linked by items’ content attributes.

D. Syndrome Induction

As aforementioned, syndrome induction plays an essential
role in TCM clinical practice. Considering the ambiguity and
complexity of syndrome induction, in this work, we propose
an MLP-based method to consider the implicit syndrome
induction process, which can depict the nonlinear interaction
among symptoms and generate an overall implicit syndrome
representation.

As Fig. 4 shows, we feed all symptom embeddings in
a symptom set into an MLP to induce the overall implicit
syndrome representation. Given a symptom set sc, first we
represent it with a multi-hot vector. In this vector, if sc
contains symptom s, the corresponding entry is set to 1, and
0 otherwise. Second we look up the embedding e∗s for each
symptom s in sc and stack these vectors to build a matrix
esc ∈ R|sc|×d, where d is the dimension of the single symptom
embedding. Third, to induce an overall representation from
esc, average pooling (Mean(·)) is utilized. Further, consider-
ing the complexity of syndrome induction, we apply a single-
layer MLP to transform the mean vector, which borrows the
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strength of nonlinearity in MLP to learn a more expressive
syndrome representation. The above computation procedure is
given as follows,

esyndrome(sc) = ReLU(Wmlp ·Mean(esc) + bmlp), (12)

wherein esyndrome(sc) means the induced syndrome embed-
ding for sc.

E. Training and Inference

In the herb recommendation scenario, given a symptom set,
a herb set is generated to cure these symptoms. For each
prescription, we need to evaluate the distance between the
recommended herb set and the ground truth herb set, which is
similar to the multi-label classification task. As Fig. 5 shows,
the frequencies different herbs appear in prescriptions are
imbalanced. Therefore, we need to resolve the label imbalance
problem.

Here, we use the following objective function (13) to
characterize the above features in the herb recommendation
scenario, where eH is the learned embedding matrix for the
herb collection H .

Loss = arg min
θ

∑
(sc,hc

′
)∈P

WMSE(hc
′
, g(sc,H)) + λΘ||Θ||22

g(sc,H) = esyndrome(sc) · eTH
(13)

Given the input sc, the ground truth herb set hc is represented
as a multi-hot vector hc

′
in dimension |H|. g(sc,H) is the

output probability vector for all herbs. λΘ controls the L2

regularization strength to prevent overfitting. WMSE [10] is
weighted mean square loss between hc

′
and g(sc,H), which

is defined as follows,

WMSE(hc
′
, g(sc,H)) =

|H|∑
i=1

wi(hc
′

i − g(sc,H)i)
2 (14)

The dimensions of hc
′

and g(sc,H) are both |H|. hc′i and
g(sc,H)i indicate the i-th entries in vectors respectively. wi

is the weight for herb i,

wi =
maxkfreq(k)

freq(i)
(15)

wherein freq(i) is the frequency of herb i appearing in
prescriptions. The adaptive weight setting is to balance the
contribution of herbs with various frequencies. As we can see,
the more frequently herb i appears, the lower its weight is. We
adopt Adam [11] to optimize the prediction model and update
the model parameters in a mini-batch fashion.

Some researches argue that there are some patterns among
different labels that can be exploited to improve the perfor-
mance in multi-label classification. Zhang et al. [12] introduces
a regularization term to maximize the probability margin be-
tween the labels belonging to a set and the ones not belonging
to the set. However, the pair-wise margin is not reasonable in
our scenario. The detailed discussion is in the experiments
part.

Inference: Following the setting in [10], we also adopt the
greedy strategy to generate the recommended herb set. Specif-
ically, we select the top k herbs with the highest probabilities
in g(sc,H) as the recommended herb set for sc.

V. EXPERIMENTS

In this section, we evaluate our proposed SMGCN on
the benchmark TCM dataset [5]. There are several important
questions to answer:

RQ1: Can our proposed model outperform the state-of-art
herb recommendation approaches?

RQ2: Can our proposed model outperform the state-of-the-
art graph neural network-based recommendation approaches?

RQ3: How effective are our proposed components (Bipar-
GCN, Synergy Graph Encoding (SGE), and Syndrome Induc-
tion (SI))?

RQ4: How does our model performance react to different
hyper-parameter settings (e.g., hidden layer dimension, depth
of the GCN layers, and regularization strength)?

RQ5: Can our proposed SMGCN provide reasonable herb
recommendation?



Fig. 6. The prescription example.

TABLE II
STATISTICS OF THE EVALUATION DATA SETS

Dataset #prescriptions #symptoms #herbs
All 26,360 360 753

Train 22,917 360 753
Test 3,443 254 558

We first introduce the TCM data set, baselines, metrics,
and experimental setup. Then the experimental results are
demonstrated in detail. Last, we will discuss the influence of
several critical hyperparameters.

A. Dataset

To be consistent with work [13], we conduct experiments on
the benchmark TCM data set [5]. The TCM data set contains
98,334 raw medical prescriptions and 33,765 processed medi-
cal prescriptions (only consisting of symptoms and herbs). As
Fig. 6 shows, each prescription contains several symptoms and
the corresponding herbs. Among 33,765 processed medical
cases, Wang et al. [13] further selects 26,360 prescriptions.
The 26,360 medical cases are divided into 22,917 for training
and 3,443 for testing. The statistics of the experimental data
set is summarized in Tab. II.

B. Evaluation

Given a symptom set, our proposed model generates a herb
set to relieve the symptoms. To evaluate the performance
of our approach, we adopt the following three measures
commonly used in recommender systems. For all prescriptions
(sc, hc) in the test data set, they are defined by,

Precision@K =
|Top(sc,K)

⋂
hc|

K
(16)

Recall@K =
|Top(sc,K)

⋂
hc|

|hc|
(17)

NDCG@K =
DCG@K

IDCG@K
(18)

wherein Top(sc,K) is the top K herbs with the highest
prediction scores given sc. The Precision@K score indicates
the hit ratio of top-K herbs as true herbs. In the experiments,
we use Precision@5 to decide the optimal parameters. The
Recall@K describes the coverage of true herbs as a result
in top-K recommendation. The NDCG@K (Normalized Dis-
counted Cumulative Gain) accounts for the position of the hit
herbs in the recommended list. If the hit herb ranks higher in
the list, it gains a larger score. We truncate the ranked list at

20 for all three measures and report the average metrics for
all prescriptions in the test set.

C. Baselines

We adopt the following approaches for comparison.
Topic model
• HC-KGETM [13]: It integrates the TransE [14] em-

beddings obtained from a TCM knowledge graph into
the topic model, to consider not only the co-occurrence
information in TCM prescriptions but also comprehensive
semantic relatedness of symptoms and herbs from the
knowledge graph.

Graph neural network-based Models
• GC-MC [15]: This model leverages GCN [16] to obtain

the representations of users and items. To be consistent
with the original work, we set one graph convolution
layer in the experiment, and the hidden dimension equals
the embedding size.

• PinSage [17]: PinSage is an industrial application of
GraphSAGE [9] on item-item graph. In our setting, we
apply it on the symptom-herb interaction graph. Specif-
ically, we adopt two graph convolution layers following
[17], and the hidden dimension is the same as the
embedding size.

• NGCF [4]: NGCF is the state-of-the-art graph-based
collaborative filtering method. It explicitly constructs a
bipartite user-item graph to model the high-order con-
nectivity and obtain more expressive representations for
users and items.

Our proposed models
• HeteGCN: It is our proposed baseline which is built

based on the heterogeneous graph-based GCN [18]. We
integrate the symptom-herb graph, herb-herb graph, and
symptom-symptom graph into one heterogeneous graph.
For each node, there are two types of neighbors, symptom
neighbors and herb neighbors. We apply the type-based
attention mechanism to perform message construction.
For symptom s, the one-hop neighbor message is in
(19) and (20), where tp = {symptom, herb} denotes the
neighbor type set, m is defined in (1), and || indicates
the concatenation operation. W att and z are the attention
network parameters. The information propagation is the
same as (4). To notice that, symptom and herb nodes
share the same network parameters. The formulas for herb
nodes are similar. HeteGCN adopts the average pooling
to do syndrome induction, and multi-label loss is defined
similar to (13). The depth of GCN is set to 1 with hidden
dimension of 128 for better performance.
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TABLE III
OPTIMAL PARAMETERS OF COMPARATIVE MODELS

Approaches Best parameter settings
HC-KGETM α = 0.05 βs = βh = 0.01 γ = 1
GC-MC lr = 9e-4 dropout = 0.0 λ = 1e-6
PinSage lr = 9e-4 dropout = 0.0 λ = 1e-3
NGCF lr = 3e-3 dropout = 0.0 λ = 1e-5

HeteGCN lr = 3e-3 dropout = 0.0 λ = 1e-3
xs =5 xh=40

SMGCN lr = 2e-4 dropout = 0.0 λ = 7e-3
xs =5 xh=40

• SMGCN: The proposed approach learns multiple graphs
(i.e., the symptom-herb bipartite graph, symptom-
symptom graph, and herb-herb graph), and performs
graph convolution on them to describe the complex
relations between symptoms and herbs from TCM. In
the prediction layer, we design an MLP-based method to
induce the overall implicit syndrome representation for
each symptom set. As a result, it is significantly different
compared with existing herb recommendation methods.

D. Parameter Settings

We implement our approach and the comparative meth-
ods using Tensorflow. For the topic model HC-KGETM,
we follow the parameter settings in [13]. Grid search is
conducted to search the optimal learning rate lr, the reg-
ularization coefficient λΘ and the dropout ratio. Specifi-
cally, lr is varied in {10−5, 10−4, 10−3}, λΘ is tuned in
{0, 10−6, 10−5, 10−4, 10−3}, and the dropout rate is searched
in {0, 0.1, ..., 0.8}. We use Xavier initializer [19] and Adam
optimizer [11] to train models with the batch size of 1024.

For graph neural network baselines, the embedding size and
the latent dimension are both set to 64. For our proposed
SMGCN and HeteGCN, the embedding size is fixed to 64, and
the dimension of the first output layer is 128. The last layer
dimension is searched in {64, 128, 256, 512}. The GCN layer
depth is tuned in {1, 2, 3}. The optimal parameter settings are
summarized in Tab. III. Without specification, the following
performances of our SMGCN model are with 2 GCN layers
and the last layer dimension of 256.

E. Performance Comparison

In this part, we firstly demonstrate the overall results among
different methods, with their optimal parameter settings. Next,
we conduct some ablation analysis to verify the effectiveness
of different model components. Then we discuss the influence
of hyperparameters in detail.

1) Overall Result: (RQ1&RQ2)
Tab. IV demonstrates the overall performances. To notice

that, the original graph neural network-based baselines do not
apply Syndrome Induction (SI) and multi-label loss functions.
For a fair comparison, we modify GC-MC, PinSage and NGCF
by adding the SI part and employing multi-label loss function
defined in (13). We can observe that:

• Our proposed SMGCN performs the best among the com-
parative approaches. Specifically, SMGCN outperforms
the topic-model HC-KGETM in terms of p@5 by 5.22%,
r@5 by 5.95% and ndcg@5 by 5.55%. Besides, as for the
strongest baseline HeteGCN, SMGCN outperforms it in
terms of p@5 by 2.24%, r@5 by 2.87%, and ndcg@5 by
2.24%. For the second best baseline PinSage, SMGCN
surpasses it in terms of p@5 by 3.09%, r@5 by 4.02%,
and ndcg@5 by 2.13%.

• HC-KGETM almost performs the worst for all met-
rics. The reasons may contain two aspects: 1) at the
interaction-modeling stage, it only ranks the candidate
herbs based on each single symptom and ignores the
symptom set information; 2) at the embedding learning
step, it adopts TransE [14] to capture the information in
a TCM knowledge graph. Compared to the translation-
based graph embedding method, the graph neural net-
works are superior in explicitly exploiting the high-order
connectivity.

• Among GC-MC, PinSage, and NGCF, NGCF performs
the worst, and PinSage performs the best. Comparing GC-
MC with NGCF, GC-MC performs slightly better than
NGCF. Considering that GC-MC only utilizes the first-
order neighbors, the multiple graph convolution layers of
NGCF may cause overfitting and hurt the performance.
Further, PinSage, GC-MC, and NGCF have various prop-
agation functions: PinSage concatenates representations
of the target node and the neighbor nodes, GC-MC
sums these two representations, and NGCF additionally
integrates the element-wise product part of the target node
and the neighbor node when constructing messages. It
seems that the concatenation operation is more effective
in capturing the rich relations in prescriptions, compared
with the element-wise product or sum-up operations.

• HeteGCN outperforms PinSage, which shows that addi-
tionally integrating the herb-herb and symptom-symptom
concurrent relations can introduce more information.
However, SMGCN is still superior to HeteGCN, which
verifies that the Multi-Graph GCN framework can learn
a more flexible and expressive model to some extent
compared with the unified heterogeneous-graph based
GCN, and the choice of MLP is appropriate to depict
the complex syndrome induction process.

2) Ablation Analysis: (RQ3)

To better understand our proposed SMGCN model, we split
the whole model into three components: Bipar-GCN, SGE, and
Syndrome Induction (SI) to evaluate their contribution to the
unified herb recommender system, respectively. To notice that,
in Bipar-GCN, we only use average pooling to do syndrome
induction for each symptom set. In the SI part, we adopt the
average pooling followed by an MLP transformation. Tab. V
shows the performance of the ablation analysis. Here the
output embedding size is set to 256, and the graph convolution
layer is set to 2. Among the submodels, Bipar-GCN and
Bipar-GCN w/ SI do not contain the synergy graphs. Thus



TABLE IV
THE OVERALL PERFORMANCE COMPARISON. HC-KGETM UTILIZES LOG-LOSS BUT WITHOUT SI. HETEGCN UTILIZES MULTI-LABEL LOSS BUT

WITHOUT SI. THE OTHER MODELS ARE WITH SI AND ADOPT MULTI-LABEL LOSS. THE SECOND BEST RESULTS ARE UNDERLINED. P@K AND R@K ARE
SHORT FOR PRECISION@K AND RECALL@K

Approaches p@5 p@10 p@20 r@5 r@10 r@20 ndcg@5 ndcg@10 ndcg@20
HC-KGETM 0.2783 0.2197 0.1626 0.1959 0.3072 0.4523 0.3717 0.4491 0.5501

GC-MC 0.2788 0.2223 0.1647 0.1933 0.3100 0.4553 0.3765 0.4568 0.5610
PinSage 0.2841 0.2236 0.1650 0.1995 0.3135 0.4567 0.3841 0.4613 0.5647
NGCF 0.2787 0.2219 0.1634 0.1933 0.3085 0.4505 0.3790 0.4571 0.5599

HeteGCN 0.2864 0.2268 0.1676 0.2018 0.3192 0.4667 0.3837 0.4620 0.5665
SMGCN 0.2928 0.2295 0.1683 0.2076 0.3245 0.4689 0.3923 0.4687 0.5716

%Improv. by HC-KGETM 5.22% 4.44% 3.52% 5.95% 5.63% 3.67% 5.55% 4.36% 3.90%
%Improv. by PinSage 3.09% 2.61% 2.02% 4.02% 3.49% 2.68% 2.13% 1.60% 1.23%

%Improv. by HeteGCN 2.24% 1.17% 0.44% 2.87% 1.66% 0.46% 2.24% 1.45% 0.90%

TABLE V
PERFORMANCE OF DIFFERENT SUBMODELS

Submodels p@5 r@5 ndcg@5
PinSage 0.2841 0.1995 0.3841

Bipar-GCN 0.2859 0.2003 0.3820
Bipar-GCN w/ SGE 0.2916 0.2064 0.3900

Bipar-GCN w/ SI 0.2914 0.2060 0.3885
SMGCN 0.2928 0.2076 0.3923

instead of the heterogeneous graph-based HeteGCN, we adopt
the simpler baseline PinSage to be compared with all the
submodels. We have the following observations:

• From a whole perspective, all the three components of
our proposed model, i.e., Bipar-GCN, SGE, and SI, are
verified to be effective for their better performance in
comparison.

• Comparing Bipar-GCN with Bipar-GCN w/ SI, it is
observed that the choice of MLP is superior to only
employing average pooling, which verifies that the non-
linear transformation in MLP helps model the complex
relations among symptoms and further generate a high-
quality implicit syndrome representation.

• For both Bipar-GCN and Bipar-GCN w/ SI, integrating
Synergy Graph Encoding (SGE) leads the further im-
provement, which shows that the architecture of multiple
graphs in the embedding learning layer not only is
beneficial for learning more expressive representations
but also assist in predicting herbs.

• SMGCN, the combination of Bipar-GCN, SGE, and SI,
achieves the best performance, indicating that modeling
the nonlinearity in the syndrome inducing process and
unifying complex relations through multiple graphs is
effective in the herb recommendation scenario.

3) Influence of Hyperparameters: (RQ4)
In this part, we will discuss the key factors in detail.

• Effect of Layer Numbers

To explore whether our proposed model can benefit from a
larger number of embedding propagation layers, we tune the
number of GCN layers on the submodel Bipar-GCN w/ SI,

TABLE VI
EFFECT OF LAYER NUMBERS ON BIPAR-GCN W/ SI

depth p@5 p@20 r@5 r@20 ndcg@5 ndcg@20
1 0.2898 0.1688 0.2044 0.4702 0.3864 0.5684
2 0.2914 0.1690 0.2060 0.4695 0.3885 0.5699
3 0.2882 0.1684 0.2030 0.4684 0.3869 0.5693

which is varied in {1, 2, 3}. The dimension of the last layer is
set to 256. We have the following observations from Tab. VI:

- Our proposed Bipar-GCN w/ SI is not very sensitive to
the depth of propagation layers. The two-layer model
performs marginally better compared to one-layer’s per-
formance.

- When further increasing the layer number to three, it
seems that the performance drops a little compared to
one layer. The reason may be overfitting caused by large
propagation depth.

- When varying the depth of propagation layers, our Bipar-
GCN w/ SI consistently outperforms the strongest base-
line HeteGCN. It again verifies the effectiveness of the
SI part, empirically showing that the nonlinearity of MLP
can help depict the complex syndrome induction process.

• Effect of Final Embedding Dimension
The dimension of the embedding layer can influence the per-

formance a lot. We conduct the experiments on our proposed
SMGCN approach, and the depth of embedding propagation
is set to 2. Tab. VII shows the experimental results according
to various dimensions of the last output layer. With the output
dimension increasing, there is a consistent improvement with
a larger embedding dimension until dimension to be 256.
When the dimension rises at 512, the performance drops
slightly but is still superior to the second strongest baseline
PinSage. However, when the dimension drops to 64, our
model underperforms PinSage in terms of r@20 and ndcg@20
slightly. This observation denotes that our proposed model
depends on a reasonably large embedding dimension to have
sufficient flexibility for constructing useful embeddings.
• Effect of Frequency Thresholds in Synergy Graphs
The Synergy Graph Encoding (SGE) component containing

symptom-symptom graph and herb-herb graph contributes a



TABLE VII
EFFECT OF LAST LAYER DIMENSIONS ON SMGCN

dimension p@5 p@20 r@5 r@20 ndcg@5 ndcg@20
64 0.2857 0.1651 0.1999 0.4554 0.3847 0.5627
128 0.2882 0.1670 0.2018 0.4631 0.3853 0.5660
256 0.2928 0.1683 0.2076 0.4689 0.3923 0.5716
512 0.2922 0.1673 0.2068 0.4632 0.3930 0.5700
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Fig. 7. Performance for different thresholds on SMGCN.

lot to our proposed SMGCN. These two graphs are used
to reflect the concurrency patterns between herb-herb pairs
and symptom-symptom pairs, which play an important role in
TCM theory. There are two hyperparameters controlling the
construction of synergy graphs, threshold xh for herb-herb
co-occurrence and xs for symptom-symptom co-occurrence.
For instance, if the symptom-symptom pair (sm, sn) occurs
in prescriptions more than xs times, then edge (sm, sn) is
added into the symptom-symptom graph. We fix xs to 5 and
tune xh varied in {10, 20, 40, 50, 60, 80}. Fig. 7 shows the
experimental results for different thresholds. We show the
metrics in terms of topk=5, and the slightly better performance
is achieved at xh=40. When the threshold is low, the herb-
herb graph is relatively dense, but it may contain some noise.
As the threshold increases, the graph becomes sparse, and
some useful information may be filtered. Therefore, finding
an appropriate threshold seems to affect the construction of
synergy graphs.

• Effect of Regularization

Due to the strong expressiveness of neural networks, it is
easy to overfit the training data. The typical approaches to
prevent overfitting contain regularization term and the dropout
of neurons. In our setting, λ controls the regularization strength
on parameters, and the dropout ratio controls the ratio of re-
moved neurons in the training process. Fig. 8 demonstrates the
influence of λ and Fig. 9 depicts the influence of the dropout
ratio, where the dimension is set to 256, and the depth is set
to 2. From Fig. 8, we observe that our model achieves slightly
better performance when λ equals 7e-3. Larger λ might result
in under-fitting and hurt the performance. Smaller λ might be
weak to prevent the overfitting trend in the training process.
As for the dropout technique, instead of dropping out some
nodes completely with a certain probability, we only employ
message dropout on the aggregated neighborhood embeddings,
making our model more robust against the presence or absence
of single edges. It can be observed that the performance drops
with the increasing dropout ratio, which indicates that the
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above regularization term is sufficient enough to prevent the
overfitting trend.
• Effect of Loss Function
In Tab. IV, we align GNN based baselines (i.e., GC-

MC, PinSage, and NGCF) with our proposed SMGCN by
adding the SI component and employing multi-label loss on
them. Therefore, the performance comparison only verifies the
effectiveness of the embedding learning layer in our model.
We are also curious about the effectiveness of the different
embedding layer and prediction layer combinations. We select
NGCF from the baselines as a representative method, and the
comparative loss function is the common-used pair-wise BPR
[20]. The experimental results are summarized in Tab. VIII.
As for BPR loss, Bipar-GCN w/ SI performs better. For multi-
label loss, Bipar-GCN w/ SI is superior in all the metrics. It
verifies that separately learning symptom and herb represen-
tations can help obtain more expressive embeddings. Besides,
multi-label loss also outperforms BPR loss, which tells that
multi-label loss is more appropriate for herb-recommendation
task than BPR loss. We will give the reasons in detail. In
a TCM prescription, the herb set is generated according to
herb compatibility rules, which heavily depend on the TCM
doctors’ individuals experiences. For the same symptom set,
there may be multiple herb sets as the remedy. Therefore,
when herb A occurs in a prescription, it does not mean that A
is more appropriate than every missing herb B. It just indicates
that herb B is not reasonable to join the current herb set due
to some herb compatibility rules. Different from BPR, multi-
label loss computes the distance between the recommended
herb set with the ground truth herb set, which evaluates the
results from the set view. It is also the reason we do not add
the positive-negative label margin constraint [12] into our loss
function in (13).



TABLE VIII
COMPARISON OF DIFFERENT LOSS FUNCTIONS

Approaches p@5 p@20 r@5 r@20 ndcg@5 ndcg@20
NGCF w/ SI

BPR 0.2760 0.1606 0.1953 0.4472 0.3825 0.5624

Bipar-GCN w/ SI
BPR 0.2774 0.1623 0.1951 0.4479 0.3762 0.5565

NGCF w/ SI
multi-label 0.2787 0.1634 0.1933 0.4505 0.3790 0.5599

Bipar-GCN w/ SI
multi-label 0.2914 0.1690 0.2060 0.4695 0.3885 0.5699

Fig. 10. The herb recommendation cases.

4) Case Study: (RQ5)
In this part, we conduct a case study to verify the rationality

of our proposed herb recommendation approach. Fig. 10 shows
two real examples in the herb recommendation scenario. Given
the symptom set, our proposed SMGCN generates a herb set to
cure the syndrome with the listed symptoms. In the Herb Set
column, the bold red font indicates the common herbs between
the herb set recommended by SMGCN and the ground truth.
According to the herbal knowledge, the missing herbs actually
have similar functions with the remaining ground-truth herbs
and can be alternatives in clinical practice. Through the above
comparative analysis, we can find that our proposed SMGCN
has the ability to provide reasonable herb recommendations.

VI. RELATED WORK

A. Herb Recommendation

Prescriptions play a vital role in TCM inheritance of clinical
experience and practice. The development history of TCM
prescription mining contains three stages: 1) traditional fre-
quency statistic and data mining techniques, mainly including
association analysis, simple clustering, and classification meth-
ods; 2) topic models. Existing researches [5], [6], [13], [21]–
[25] compute the conditional probability of the co-occurred

symptom and herb words to capture the relations among symp-
toms and herbs; and 3) graph model-based methods. Studies
[7], [8], [26], [27] organize TCM prescriptions into graphs to
capture the complex regularities. Because the methods in the
first category are only suitable for a single disease, we mainly
focus on the second and third categories.

Topic Model Based Herb Recommendation. Topic mod-
els are applied to process prescriptions in natural languages,
where TCM prescriptions are documents containing herbs and
symptoms as words. The beneath motivation is that herbs and
symptoms occurring under the same topic are similar. Ma et al.
[21] proposes a “symptom-syndrome” model to mine the cor-
relation between symptoms and latent syndrome topics. Ji et
al. [6] considers “pathogenesis” as the latent topics to connect
symptoms and herbs. Lin et al. [22] jointly models symptoms,
herbs, diagnosis, and treatment in prescriptions through topic
models. Wang et al. [23] designs an asymmetric probability
generation model to model symptoms, herbs, and diseases
simultaneously. Yao et al. [5] integrates TCM concepts such as
“syndrome”, “treatment,” and “herb roles” into topic modeling,
to better characterize the generative process of prescriptions.
Chen et al. [24] and Wang et al. [13] introduce TCM domain
knowledge into topic models to capture the herb compatibility
regularities.

Unfortunately, standard topic models are not very friendly
to short texts. Thus, the sparsity of prescriptions [7] will limit
the performance of topic models on large-scale prescriptions
to some extent. Besides, they cannot analyze the complex
interrelationships among various entities comprehensively.

Graph Based Herb Recommendation. A graph is an
effective tool to model complex relation data. Graph represen-
tation learning-based herb recommendation is a hot research
topic nowadays, which mainly focuses on obtaining the low-
dimensional representations of TCM entities, and then rec-
ommends herbs based on the embeddings. Some researches
have introduced deep learning techniques into graph-based
prescription mining. Li et al. [26] utilizes the attentional
Seq2Seq [28] to design a multi-label classification method,
in order to automatically generate prescriptions. Li et al. [27]
adopts the BRNN [29] to do text representation learning for
the herb words in the TCM literature for treatment complement
task. [7], [8] integrate the autoencoder model with meta-path
to mine the TCM heterogeneous information network.

The weak point of the above graph-based models is that the
applied deep learning techniques are initially designed for the
euclidean space data and lack the interpretability and reasoning
ability for the non-euclidean space graph data.

B. Graph Neural Networks-based recommender systems

Graph neural networks (GNNs) are the extension of neural
networks on the graph data, which can handle both node
features and edge structures of graphs simultaneously. Due
to its convincing performance and high interpretability, GNNs
have been widely applied in recommender systems recently.
GNNs are applied to different kinds of graphs as follows:
1) User-item Interaction Graphs: Berg et al. [15] presents



a graph convolutional matrix completion model based on
the auto-encoder framework. Wang et al. [4] encodes the
collaborative signal in the embedding process based on GNN,
which can capture the collaborative filtering effect sufficiently;
2) Knowledge Graphs: Wang et al. [30] proposes the Ripple
Network, which iteratively extends a user’s potential interests
along edges in a knowledge graph to stimulate the propagation
of user preferences. Wang et al. [31] proposes Knowledge
Graph Attention Network, which recursively propagates the
embeddings from a node’s neighbors to obtain the node em-
bedding, and adopts the attention mechanism to discriminate
the importance of the neighbors; 3) User Social Networks: Wu
et al. [32] and Fan et al. [33] apply GCNs to capture how users’
preferences are influenced by the social diffusion process in
social networks; 4) User Sequential Behavior Graphs: Wu et
al. [34] and Wang et al. [35] apply GNN for session-based
recommendation by capturing complex transition relations
between items in user behavior sequences.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigate the herb recommendation
task from the novel perspective of taking implicit syndrome
induction into consideration. We develop a series of GCNs
to simultaneously learn the symptom embedding and herb
embedding from the symptom-herb, symptom-symptom, and
herb-herb graphs. To learn the overall implicit syndrome em-
bedding, we feed multiple symptom embeddings into an MLP,
which is later integrated with the herb embeddings to generate
herb recommendation. The extensive experiments carried out
on a public TCM dataset demonstrate the superiority of the
proposed model, validating the effectiveness of mimicking the
syndrome induction by experienced doctors.

In future work, for embedding learning, we will improve
the embedding quality of the TCM entities by adopting ad-
vanced techniques such as the attention mechanism. For graph
construction, we will introduce more TCM domain-specific
knowledge, including dosage and contraindications of herbs
into the TCM graphs.
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