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Example: Predicting Customers’ Income

* |nputs:
a) Occupatlf)n - { banl-<er, engineer, ... } Junior bankers have a lower income than
b) Level ={junior, senior } junior engineers, but this is the reverse case
c) Gender ={male, female } for senior bankers

Feature vector X

Occupation Level
#  Occupation Level B E ] S
1| Banker |Junior| Male | 1] 1] o0 1 (o] 1o 0.4
2 Engineer Junior Male 2 0 1 1 0 1 0 0.6
3 Banker Junior [ Female One-hot Encoding 3 1 0 1 (0 0 1 0.4
4 Engineer Junior Female 4 0 1 1 0 0 1 0.6
5 Banker Senior Male I > 5 1 0 0 1 1 0 0.9
6 Engineer Senior Male 6 0 1 0 1 1 0 0.7
7 Banker Senior | Female 7 1 0 0 1 0 1 0.9
8 Engineer Senior Female 8 0 1 0 1 0 1 0.7
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Linear Regression (LR)

n
* Model Equation:  {j(x) = wlx = Z WiXj
* Example: 1=1

Occupation Level

Banker Junior Male

Y(X) = Wpanker + Wiunior T Wupale

 Drawbacks: Cannot learn cross-feature effects like:

“Junior bankers have lower income than junior engineers,
while senior bankers have higher income than senior engineers”
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Factorization Machines (FM)

: JrM(X) = wo + ) wpr;+ Wi T
 Model Equation: Z 23;1

iy
v W

P
a) Wi j = Vi V] linear regression pair-wise feature interactions

b) v; € R¥: the embedding vector for feature i
c) k:the size of embedding vector

* Example:

Occupation Level

Banker Junior Male

Y(X) = Wpanker + Wiunior T Wiale

+<”Banker: v]unior) T <vBankerr vMale>+ <v]uni0r: vMale)

e Drawbacks: Model all factorized interactions with the same
weight.

* For example, the gender variable above is less important than
others for estimating the target.
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Attentional Factorization Machines (AFM)

 Our main contribution:
a) Pair-wise Interaction Layer
b) Attention-based Pooling

Same with FM Our main contribution
___________ /'\__________ A
i O Y
x| 0 I N e B i
. i ! i
X | 1 —— V2" X3 . (V2 OV4)x,x, .
H 1
1
s | O i (v20v6)x,2x6 i
i 1 1
0.2 5 Vg X o
x4 ’ il (v4OVe)xsxs Pl
xs | 0 : ) Zaij(vi@’i)xixj
i i (v20vg)x,xg 1 . ij
X | 1 : Ve - X6 . i !
% | 0 i (v4OVg)x4xg ! : i
: 1 : 1 1
xs |0.4 Vg - Xg i (v6@Vg)xsxy ] H :
i ot ]
I (I i
11!
! i P i
i . 1 A . . i| . . 1 |
Sparse Input | Embedding j Pair-wise Interaction i '|  Attention-based Pooling i Prediction Score
! Layer : Layer P .
[ - 4

Figure 1: The neural network architecture of our proposed Attentional Factorization Machine model.
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Contribution #1: Pair-wise Interaction Layer

e Layer Equation: pr(E) — {(V@ ® Vj)%l'j}(i,j)e?zm
Where:

a) © :element-wise product of two vectors
b) Ry = {(i,J)}iex jex j>i

S
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Figure 1: The neural network architecture of our proposed Attentional Factorization Machine model.
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Express FM as a Neural Network

 Sum pooling over pair-wise interaction layer:

’Q:pT Z (Vfg,@Vj)CUiCUj—Fb

(2,J) ER«
Where:
a) p’ € R¥ : weights for the .. [
prediction layer x| 1 vy %, (@20v.)x,%,
b) b: bias for the prediction ™ |° (v20ve)x,7
%y |0.2 Uy~ Xy
layer M - @02 NS (0w, @
(v20Vg)x,x5 2]
X6 | 1 Vg * Xg
e Byfixingptolandbto0, = |o (24 Ova e s
Xg . tAg © 68
we can exactly recover the ™[> T7 WeOve)7ex
FM model i . Pair-wise
Sparse | Embedding | Interaction Prediction score
Input Layer | Layer
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Contribution #2: Attention-based Pooling Layer

 The idea of attention is to allow different parts contribute
differently when compressing them to a single representation.

* Motivated by the drawback of FM, We propose to employ the
attention mechanism on feature interactions by performing a
weighted sum on the interacted vectors.

1
___________

(¢.j)€ER ¢+
______ » Attention score for
' feature interaction (i, j)
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Attention-based Pooling Layer

e Definition of attention network:

ai; =h" ReLU(W(v; ® V;)z;z; + b),
exp(aj;)

B Z(z‘,j)eRm eXP(a;;j) 7

CLf,;j

Where:
a) W e Rk be R h e R : parameters

b) t: attention factor, denoting the hidden layer size of the
attention network

* Theoutput a;; is a k dimensional vector
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Summarize of AFM

e The overall formulation of AFM:

~ T
yAFM = wWo + E w;T; + P E E azg Vi QVJ LjL 5
1=1 j=1+1

 For comparison, the overall formulation of FM in
neural network is:

1=1 5= z—|—1

e Attention factors bring AFM stronger representation
ability than FM.
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Experiments

* Task #1: Context-aware App Usage Prediction

a) Frappe data: userID, applD, and 8 context variables (sparsity:
99.81%)

* Task #2: Personalized Tag Recommendation
a) Movielens data: userlD, movielD and tag (sparsity: 99.99%)

Table 1: Statistics of the evaluation datasets.

Dataset Instance# | Feature# | User# | Item#
Frappe 288,609 5, 382 957 4,082
MovieLens 2,006,859 90, 445 17,045 | 23,743

e Randomly split: 70% (training), 20% (validation), 10%

(testing)
* Evaluated prediction error by RMSE (lower score, better
performance).
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Baselines

e 1. LibFM:
— The official implementation of second-order FM

2. HOFM:

- A 3rd party implementation of high-order FM.
- We experimented with order size 3.

3. Wide&Deep:
— Same architecture as the paper: 3 layer MLP: 1024->512-
>256
4. DeepCross:
— Same structure as the paper: 10 layer (5 ResUnits): 512-
>512->256->128->64)

k (the size of embedding feature) is set to 256 for all
baselines and our AFM model.
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l. Performance Comparison

* For Wide&Deep, DeepCross and AFM, pretraining their feature
embeddings with FM leads to a lower RMSE than end-to-end
training with a random initialization.

Frappe MovieLens , , ,
Method Param® | RMSE | Param®# | RMSE 1. Linear way of high-order modelling
- has minor benefits.
LibFM 1.38M 0.3385 | 23.24M | 0.4735 |
HOFM 2.76M 0.3331 | 46.40M | 0.4636 2. Wide&Deep slightly betters LibFM
Wide&Deep | 4.66M | 0.3246 | 24.69M | 0.4512 while DeepCross suffers from
DeepCross 8.93M 0.3548 | 25.42M | 0.5130 overfitting.
AFM 1.45M 0.3102 | 23.26M | 0.4325 o ]
3. AFM significantly betters LibFM
M means million with fewest additional parameters.
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ll. Hyper-parameter Investigation

 Dropout ratio (on embedding layer) = *Best
A (L, regularization on attention network) = ?
e Attention factor = 256 = k (size of embedding size)

Frappe Movielens
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Figure 3. Validation error of AFM w.rt. different regularization
strengths on the attention network
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ll. Hyper-parameter Investigation

 Dropout ratio = *Best

* A (L, regularization on attention network) = *Best

e Attention factor="7?
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Figure 4: Validation error of AFM w.r.t.
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ll. Hyper-parameter Investigation

 Dropout ratio = *Best
* A (L, regularization on attention network) = *Best

e Attention factor = *Best
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Figure 5: Training and test error of each epoch
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lll. Micro-level Analysis

1

* FM: Fix a;; to a uniform number —
| Rx|

*  FMH+A: Fix the feature embeddings pretrained by FM and train the attention
network only.

« AFM is more explainable by learning the weight of feature interactions

 The performance is improved about 3% in this case.

Table 1: The attention_score*interaction_score of each feature inter-
action of three test examples on Movielens.

# | Model | User-Item | User-Tag | Item-Tag U

) FM 0.33*%-1.81 | 0.33*-2.65 | 0.33%4.55 | 0.03
FM+A | 0.34*%-1.81 | 0.27%-2.65 | 0.38%4.55 | 0.39

) FM 0.33*%-1.62 | 0.33*-1.00 | 0.33*%3.32 | 0.24
FM+A | 0.38%-1.62 | 0.20*-1.00 | 0.42%3.32 [ 0.56

3 FM 0.33%-1.40 | 0.33*-1.26 | 0.33*4.68 | 0.67
FM+A | 0.33%-1.40 | 0.29%-1.26 | 0.37%4.68 | 0.89
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Conclusion

 Our proposed AFM enhances FM by learning the
importance of feature interactions with an attention
network, and achieved a 8.6% relative improvement.
— improves the representation ability
— improves the interpretability of a FM model

* This work is orthogonal with our recent work on
neural FM [He and Chua, SIGIR-2017]

— in that work we develops deep variants of FM for modelling
high-order feature interactions
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Future works

 Explore deep version for AFM by stacking multiple non-linear
layers above the attention-based pooling layer

* Improve the learning efficiency by using learning to hash and
data sampling

 Develop FM variants for semi-supervised and multi-view
learning

 Explore AFM on modelling other types of data for different
applications, such as:
a) Texts for question answering,
b) More semantic-rich multi-media content
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Thanks!

Codes:

https://github.com/hexiangnan/attentional factorization machine

W\&(
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