

Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks

Jun Xiao¹, **Hao Ye**¹, Xiangnan He², Hanwang Zhang², Fei Wu¹, Tat-Seng Chua²

¹College of Computer Science Zhejiang University ²School of Computing National University of Singapore

Example: Predicting Customers' Income

• Inputs:

- a) Occupation = { banker, engineer, ... }
- b) Level = { junior, senior }
- c) Gender = { male, female }

Junior bankers have a lower income than junior engineers, but this is the reverse case for senior bankers

					Feature vector X									
					ц	Oc	cupati	on	Le	vel	Ger	ider	Target y	
#	Occupation	Level	Gender		Ħ	В	E		J	S	Μ	F		
1	Banker	Junior	Male	One-bot Encoding		1	1	0		1	0	1	0	0.4
2	Engineer	Junior	Male			2	0	1		1	0	1	0	0.6
3	Banker	Junior	Female		3	1	0		1	0	0	1	0.4	
4	Engineer	Junior	Female		4	0	1		1	0	0	1	0.6	
5	Banker	Senior	Male		5	1	0		0	1	1	0	0.9	
6	Engineer	Senior	Male		6	0	1		0	1	1	0	0.7	
7	Banker	Senior	Female		7	1	0		0	1	0	1	0.9	
8	Engineer	Senior	Female		8	0	1		0	1	0	1	0.7	
									•	•	•			

Attentional Factorization Machines:

Linear Regression (LR)

• Model Equation: $\hat{y}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^n w_i x_i$ • Example:

Occupation	Level	Gender
Banker	Junior	Male

$$\hat{y}(\mathbf{x}) = \mathbf{w}_{Banker} + \mathbf{w}_{Junior} + \mathbf{w}_{Male}$$

• Drawbacks: Cannot learn cross-feature effects like:

"Junior bankers have lower income than junior engineers, while senior bankers have higher income than senior engineers"

Factorization Machines (FM)

- Model Equation:
 - a) $\widehat{\omega}_{ij} = \mathbf{v}_i^T \mathbf{v}_j$

linear regression

pair-wise feature interactions

- b) $\mathbf{v}_i \in \mathbb{R}^k$: the embedding vector for feature *i*
- c) k: the size of embedding vector
- Example:

Occupation	Level	Gender
Banker	Junior	Male

 $\hat{y}(\mathbf{x}) = \mathbf{w}_{Banker} + \mathbf{w}_{Junior} + \mathbf{w}_{Male} + \langle \mathbf{v}_{Banker}, \mathbf{v}_{Junior} \rangle + \langle \mathbf{v}_{Banker}, \mathbf{v}_{Male} \rangle + \langle \mathbf{v}_{Junior}, \mathbf{v}_{Male} \rangle$

- Drawbacks: Model all factorized interactions with the same weight.
- For example, the *gender* variable above is less important than others for estimating the target.

Attentional Factorization Machines (AFM)

Our main contribution:

Contribution #1: Pair-wise Interaction Layer

- Layer Equation: $f_{PI}(\mathcal{E}) = \{ (\mathbf{v}_i \odot \mathbf{v}_j) x_i x_j \}_{(i,j) \in \mathcal{R}_x}$ • Where:
- \odot : element-wise product of two vectors a)

b)
$$\mathcal{R}_{x} = \{(i, j)\}_{i \in \mathcal{X}, j \in \mathcal{X}, j > i}$$

$$\begin{array}{c} x_{1} & 0 \\ x_{2} & 1 \\ x_{3} & 0 \\ x_{4} & 0.2 \\ x_{5} & 0 \\ x_{5} & 0 \\ x_{5} & 0 \\ x_{6} & 1 \\ x_{7} & 0 \\ x_{8} & 0.4 \\ \vdots \\ \end{array}$$

$$\begin{array}{c} x_{1} & 0 \\ y_{2} \cdot x_{2} \\ (v_{2} \odot v_{4})x_{2}x_{4} \\ (v_{2} \odot v_{6})x_{2}x_{6} \\ (v_{2} \odot v_{6})x_{2}x_{6} \\ (v_{4} \odot v_{6})x_{4}x_{6} \\ (v_{2} \odot v_{8})x_{2}x_{8} \\ (v_{6} \odot v_{8})x_{6}x_{8} \\ \vdots \\ \end{array}$$

$$\begin{array}{c} \mathcal{E} = \{v_{i}x_{i}\}_{i \in \mathcal{X}} \\ \text{the output of the embedding layer} \\ \text{the output of the embedding layer} \end{array}$$

Figure 1: The neural network architecture of our proposed Attentional Factorization Machine model.

Sparse Input

Laver

Attentional Factorization Machines:

Express FM as a Neural Network

Sum pooling over pair-wise interaction layer:

$$\hat{y} = \mathbf{p}^T \sum_{(i,j)\in\mathcal{R}_x} (\mathbf{v}_i \odot \mathbf{v}_j) x_i x_j + b$$

Where:

a) $\mathbf{p}^T \in \mathbb{R}^k$: weights for the x_1 0 prediction layer $(\boldsymbol{v_2} \odot \boldsymbol{v_4}) x_2 x_4$ $\boldsymbol{v_2} \cdot \boldsymbol{x_2}$ 1 x_2 0 b) b: bias for the prediction x_3 $(\boldsymbol{v_2} \odot \boldsymbol{v_6}) x_2 x_6$ $v_4 \cdot x_4$ 0.2 x_4 $(v_4 \odot v_6) x_4 x_6$ layer $\sum (v_i \odot v_j) x_i x_j$ 0 x_{5} $(\boldsymbol{v_2} \odot \boldsymbol{v_8}) x_2 x_8$ $v_6 \cdot x_6$ 1 x_6 $(v_4 \odot v_8) x_4 x_8$ By fixing **p** to **1** and b to 0, 0 x_7 $(\boldsymbol{v_6} \odot \boldsymbol{v_8}) x_6 x_8$ $\boldsymbol{v_8} \cdot \boldsymbol{x_8}$ we can exactly recover the 0.4 x_8 FM model Pair-wise **Prediction score** Embedding Interaction Sparse Layer

Attentional Factorization Machines:

Layer

Input

Contribution #2: Attention-based Pooling Layer

- The idea of attention is to **allow different parts contribute differently** when compressing them to a single representation.
- Motivated by the drawback of FM, We propose to employ the attention mechanism on feature interactions by performing a weighted sum on the interacted vectors.

$$f_{Att}(f_{PI}(\mathcal{E})) = \sum_{(i,j)\in\mathcal{R}_x} \begin{bmatrix} a_{ij} (\mathbf{v}_i \odot \mathbf{v}_j) x_i x_j \\ & &$$

Attention-based Pooling Layer

• Definition of attention network:

$$a_{ij}' = \mathbf{h}^T ReLU(\mathbf{W}(\mathbf{v}_i \odot \mathbf{v}_j) x_i x_j + \mathbf{b}),$$
$$a_{ij} = \frac{\exp(a_{ij}')}{\sum_{(i,j) \in \mathcal{R}_x} \exp(a_{ij}')},$$

Where:

- a) $\mathbf{W} \in \mathbb{R}^{t \times k}$, $\mathbf{b} \in \mathbb{R}^{t}$, $\mathbf{h} \in \mathbb{R}^{t}$: parameters
- b) *t*: *attention factor*, denoting the hidden layer size of the attention network
- The output a_{ij} is a k dimensional vector

Summarize of AFM

• The overall formulation of AFM:

$$\hat{y}_{AFM}(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i + \mathbf{p}^T \sum_{i=1}^n \sum_{j=i+1}^n a_{ij} (\mathbf{v}_i \odot \mathbf{v}_j) x_i x_j$$

• For comparison, the overall formulation of FM in neural network is:

$$\hat{y}_{FM}(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i + \mathbf{p}^T \sum_{i=1}^n \sum_{j=i+1}^n (\mathbf{v}_i \odot \mathbf{v}_j) x_i x_j$$

• Attention factors bring AFM stronger representation ability than FM.

Experiments

- Task #1: Context-aware App Usage Prediction
 - a) Frappe data: userID, appID, and 8 context variables (sparsity: 99.81%)
- Task #2: Personalized Tag Recommendation
 - a) MovieLens data: userID, movieID and tag (sparsity: 99.99%)

Dataset	Instance#	Feature#	User#	Item#
Frappe	288,609	5,382	957	4,082
MovieLens	2,006,859	90, 445	17,045	23,743

Table 1: Statistics of the evaluation datasets.

- Randomly split: 70% (training), 20% (validation), 10% (testing)
- Evaluated prediction error by RMSE (lower score, better performance).

Baselines

- 1. LibFM:
 - The official implementation of second-order FM
- 2. HOFM:
 - A 3rd party implementation of high-order FM.
 - We experimented with order size 3.
- 3. Wide&Deep:
 - Same architecture as the paper: 3 layer MLP: 1024->512 >256
- 4. DeepCross:
 - Same structure as the paper: 10 layer (5 ResUnits): 512->512->256->128->64)
- k (the size of embedding feature) is set to 256 for all baselines and our AFM model.

I. Performance Comparison

• For Wide&Deep, DeepCross and AFM, **pretraining** their feature embeddings with FM leads to a lower RMSE than end-to-end training with a random initialization.

	Fra	ope	MovieLens			
Method	Param#	RMSE	Param#	RMSE		
LibFM	1.38M	0.3385	23.24M	0.4735		
HOFM	2.76M	0.3331	46.40M	0.4636		
Wide&Deep	4.66M	0.3246	24.69M	0.4512		
DeepCross	8.93M	0.3548	25.42M	0.5130		
AFM	1.45 M	0.3102	23.26M	0.4325		

M means million

1. Linear way of high-order modelling has minor benefits.

2. Wide&Deep slightly betters LibFM while DeepCross suffers from overfitting.

3. AFM significantly betters LibFM with fewest additional parameters.

II. Hyper-parameter Investigation

- Dropout ratio (on embedding layer) = *Best
- λ (L_2 regularization on attention network) = ?
- Attention factor = 256 = k (size of embedding size)

Figure 3: Validation error of AFM *w.r.t.* different regularization strengths on the attention network

II. Hyper-parameter Investigation

- Dropout ratio = *Best
- λ (L_2 regularization on attention network) = *Best
- Attention factor = ?

Figure 4: Validation error of AFM w.r.t. different attention factors

II. Hyper-parameter Investigation

- Dropout ratio = *Best
- λ (L_2 regularization on attention network) = *Best
- Attention factor = *Best

Figure 5: Training and test error of each epoch

Attentional Factorization Machines:

III. Micro-level Analysis

- **FM**: Fix a_{ij} to a uniform number $\frac{1}{|\mathcal{R}_{x}|}$
- **FM+A:** Fix the feature embeddings pretrained by **FM** and train the attention network only.
- AFM is more explainable by learning the weight of feature interactions
- The performance is improved about 3% in this case.

Table 1: The attention_score*interaction_score of each feature interaction of three test examples on MovieLens.

#	Model	User-Item	User-Tag	Item-Tag	\hat{y}
1	FM	0.33*-1.81	0.33*-2.65	0.33*4.55	0.03
	FM+A	0.34*-1.81	0.27*-2.65	0.38*4.55	0.39
2	FM	0.33*-1.62	0.33*-1.00	0.33*3.32	0.24
	FM+A	0.38*-1.62	0.20*-1.00	0.42*3.32	0.56
3	FM	0.33*-1.40	0.33*-1.26	0.33*4.68	0.67
	FM+A	0.33*-1.40	0.29*-1.26	0.37*4.68	0.89

Attentional Factorization Machines:

Conclusion

- Our proposed AFM enhances FM by learning the importance of feature interactions with an attention network, and achieved a 8.6% relative improvement.
 - improves the representation ability
 - improves the interpretability of a FM model
- This work is orthogonal with our recent work on neural FM [He and Chua, SIGIR-2017]
 - in that work we develops deep variants of FM for modelling high-order feature interactions

Future works

- Explore deep version for AFM by stacking multiple non-linear layers above the attention-based pooling layer
- Improve the learning efficiency by using learning to hash and data sampling
- Develop FM variants for semi-supervised and multi-view learning
- Explore AFM on modelling other types of data for different applications, such as:
 - a) Texts for question answering,
 - b) More semantic-rich multi-media content

Thanks!

Codes:

https://github.com/hexiangnan/attentional factorization machine

