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Abstract
Most existing recommender systems leverage the
primary feedback data only, such as the purchase
records in E-commerce. In this work, we addi-
tionally integrate view data into implicit feedback
based recommender systems (dubbed as Implicit
Recommender Systems). We propose to model
the pairwise ranking relations among purchased,
viewed, and non-viewed interactions, being more
effective and flexible than typical pointwise ma-
trix factorization (MF) methods. However, such
a pairwise formulation poses efficiency challenges
in learning the model. To address this problem,
we design a new learning algorithm based on the
element-wise Alternating Least Squares (eALS)
learner. Notably, our algorithm can efficiently learn
model parameters from the whole user-item ma-
trix (including all missing data), with a rather low
time complexity that is dependent on observed data
only. Extensive experiments on two real-world
datasets demonstrate that our method outperforms
several state-of-the-art MF methods with an im-
provement of 10% ∼ 28.4%. Our implemen-
tation is available at: https://github.com/
dingjingtao/View_enhanced_ALS.

1 Introduction
Recent research on recommendation has shifted from explicit
ratings [Koren, 2010; Zhang et al., 2016] to implicit feed-
back, such as purchases, clicks, and watches [Bayer et al.,
2017; He et al., 2017]. Distinct from explicit feedback like
ratings, in implicit feedback data, the negative signal about
user preference over items is naturally scarce, resulting in a
one-class learning problem [Pan et al., 2008]. Therefore, to
learn from implicit feedback, it is crucial to account for both
observed and missing data. A state-of-the-art MF method for
implicit feedback is the eALS [He et al., 2016], which treats
all missing data as the negative feedback but with a lower
weight. This whole-data based formulation has been shown
to be superior to the prevalent sampling-based method [Ren-
dle et al., 2009] that models partial missing data only.

In an online information system, in addition to the pri-
mary feedback data that is directly related with the business
∗Xiangnan He is the corresponding author.

KPI, there are also other kinds of user feedback data avail-
able [Tang et al., 2016; Ding et al., 2018]. For example, in
E-commerce sites, a user must view a product (i.e., click the
product page) before purchasing it. This kind of view data
provides valuable signal on user preference, which can com-
plement the purchase data in two folds. First, if a user views
an item, regardless of whether purchasing or not, it at least
reflects that the user is interested in the item (i.e., positive
signal, compared to the non-viewed items). Second, if a user
views a product but does not purchase it afterward, it means
that the item is of less interest to the user (i.e., negative signal,
compared to the purchased items). As such, view data can
be seen as an intermediate feedback between purchase and
missing data, which enriches the two-level implicit feedback
with multiple levels that better distinguish user preference. In
this work, we aim to integrate the valuable view data into the
state-of-the-art eALS method, so to enhance the performance
of implicit recommender systems.

Nevertheless, it is non-trivial to integrate such intermediate
feedback into eALS, which is designed for learning from bi-
nary 0/1 data only. Specifically, it performs regression by
treating purchased interactions as having a label of 1, and
other missing interactions as having a label of 0. While an
intuitive solution to assign the view interactions with an “in-
termediate label”, i.e., a value between 0 and 1, it is difficult
to set a proper value for each interaction. Setting a uniform
value for all intermediate interactions oversimplifies the prob-
lem, which is sub-optimal or may even adversely degrade the
performance if the value is set improperly.

In this work, we make a novel technical contribution in
integrating intermediate feedback into eALS. Instead of as-
signing a specific label value to do point-wise learning [He
et al., 2017], we propose a new solution that models the rel-
ative preference orders among different interactions. Specifi-
cally, to encode the twofold semantics of view data, we con-
sider the pairwise ranking relations between 1) purchased and
viewed interactions, and 2) viewed and non-viewed interac-
tions. The idea is to regularize eALS by enforcing that the
predictions of a user over purchased items should be larger
than that of viewed items; and the same regularization applies
to viewed and non-viewed items. Despite soundness, this so-
lution poses strong challenges to the learning efficiency. In
particular, the large number of non-viewed interactions (i.e.,
missing entries) makes even point-wise regression over them
become unaffordable [He et al., 2016], not to mention the
pairwise comparisons between viewed and non-viewed inter-



actions. To make the learning tractable, we develop a fast al-
gorithm that leverages the bilinear structure of MF to achieve
speedups. Through rigorous mathematical analysis, we iden-
tify computational bottlenecks in optimization, and resolve
the bottlenecks via clever designs of memoization strategies.

We summarize the contributions of the paper as follows.
1. We improve implicit recommender systems by incorporat-

ing view data, proposing a View-enhanced eALS (VALS)
method that models the pairwise relations among pur-
chased, viewed, and non-viewed interactions.

2. We propose a fast algorithm that solves the challenging
VALS problem with a controllable time complexity that is
determined by the number of observed interactions only.

3. We conduct extensive experiments on two real datasets,
demonstrating that our method outperforms state-of-the-art
view-aware recommender systems by a large margin.

2 Related Work
To improve implicit recommender systems with multiple
feedback, two types of methods have been proposed.

Model-based. A typical method of this type is collective
matrix factorization (CMF), which performs multiple rela-
tional learning by sharing information between models of dif-
ferent feedback [Singh and Gordon, 2008; Cheng et al., 2014;
Yuan et al., 2014]. While CMF is originated for explicit
rating prediction, it has been extended for implicit recom-
mender systems as well [Krohn-Grimberghe et al., 2012;
Cao et al., 2017]. However, as CMF-based model generates
different user-item relations, i.e., latent factors, for each type
of feedback, it is hard to differentiate their preference levels.
In contrast, our VALS method learns the same user-item rela-
tion to indicate relative preference order among purchase and
view data, which is more effective.

Learning-based. Several other methods integrate multiple
types of feedback in the negative sampler of BPR [Lerche and
Jannach, 2014]. Specifically, Multi-channel BPR (MC-BPR)
applies the strategy of assigning different preference levels to
multiple types of feedback when sampling positive and nega-
tive instances [Loni et al., 2016]. A recent proposal performs
biased sampling from viewed but non-purchased items and
observes significant performance improvements [Ding et al.,
2018]. However, these BPR-based solutions still suffer from
the shortcomings of sampling-based methods, i.e., degrada-
tion on both performance and fidelity, as well as an expensive
tuning on learning rate. Our VALS method differs from them
by integrating different preference levels based on whole-data
based learning strategy. To our knowledge, VALS is the first
attempt to exploit different preference levels of implicit feed-
back in whole-data based MF methods.

3 Preliminaries
We start by introducing some basic notations. For a user-item
interaction matrix R ∈ RM×N , M and N denote the number
of users and items, respectively, R denotes the set of user-
item pairs that have interactions. For a specific user u, vector
pu ∈ RK denotes the K-dimensional latent feature vector,
and set Ru denotes the set of items that are interacted by u.

Similarly, for an item i, notations qi and Ri are used. Ma-
trices P ∈ RM×K and Q ∈ RN×K denote the latent factor
matrix for users and items. The standard MF is used as the
predictive model. Mathematically, each entry rui of R is es-
timated as r̂ui =< pu,qi >= pT

u qi.
To learn user/item latent factors, [He et al., 2016] devel-

oped an eALS method that introduces a weighted regression
function, which assigns a zero rui value to missing entries
with a confidence variable:

J =
∑

(u,i)∈R

ωui(r̂ui−rui)2+

M∑
u=1

∑
i/∈Ru

sir̂
2
ui+λ

(
||P||2F +||Q||2F

)
, (1)

where ωui denotes the weight of entries (u, i) ∈ R. De-
termined by an item popularity-aware weighting strategy, si
denotes the confidence that item i missed by users is a true
negative assessment.

The above problems can be solved using ALS-based tech-
nique by iteratively optimizing each coordinate of the latent
vector, while leaving others fixed [Liu et al., 2016]. The
time complexity is O((M + N)K2 + |R|K) for one iter-
ation, which approaches SGD method ∼ O(|R|K) when
(M + N)K and |R| are close. Due to space limit, we leave
out the update rule for user/item factors [He et al., 2016].

Since eALS learns latent factors from the whole missing
data, it not only can retain model’s fidelity but also achieves
higher accuracy than the sampling-based methods that sample
negative instances from missing data. Considering these ad-
vantages, we choose to develop a view-enhanced whole-data
based method based on this framework (details in Section 4).

4 Our View-enhanced eALS Method
Based on eALS, we consider how to effectively learn user
preference from both purchase and view data. First of all,
in order to differentiate their preference levels using the same
user-item relation, we consider the pairwise ranking order be-
tween a viewed item and purchased (or non-viewed) item in
the objective function. More specifically, we use two margins
to describe the intermediate preference level of user’s viewed
interactions, which is lower than purchased ones but higher
than non-viewed ones. On the other hand, introducing the
above pairwise relationship in view-enhaced objective func-
tion makes the original eALS learning elgorithm become N
times slower, which is unsuitable for large-scale data. There-
fore, we further develop a fast VALS learning algorithm to ef-
ficiently optimize the view-enhanced objective function. For
readability, we summarize the major notations throughout the
paper in Table 1.

4.1 View-enhanced Objective Function
In E-commerce recommender systems, besides the purchases
as the primary feedback that is directly related to optimiz-
ing the conversion rate, the view logs of users can be intu-
itively treated as the intermediate feedback between the pur-
chased and missing data. Therefore, for user u’s viewed item
v, it should have an intermediate value of prediction r̂uv be-
tween those of non-viewed item j (i.e., missing entry) and
purchased item i, i.e., r̂uj and r̂ui. However, it is difficult to
choose an appropriate r̂uv for different users. To solve this



Table 1: List of commonly used notations.
Notation Description
M,N,K The numbers of users, items, and factors.
P, {pu} The latent factor matrix and vector for users.
Q, {qi} The latent factor matrix and vector for items.

R,Ru,Ri
The sets of all purchased (u, i) pairs, items
purchased by u, users that have purchased i.

V,Vu,Vi Similar notations for viewed interactions.

RV,RVu,RVi
Similar notations for the union ofR and V ,
i.e.,R∪ V .

r̂ui, r̂uv, r̂uj
Predictions of user u over purchased items i,
viewed items v and non-viewed items j.

ωui Weight of the purchased interaction (u, i).
sj Item-oriented weight of item j in missing data.
cv Item-oriented weight of item v in view data.

γ1, γ2 Margin value between r̂ui and r̂uv , r̂uv and r̂uj .
λ Regularization parameter.

problem, instead of assigning a uniform value ruv for r̂uv to
optimize, like the normally used squared loss (ruv−r̂uv)2, we
consider the pairwise ranking between the r̂uv and the predic-
tions over other items, including r̂uj and r̂ui. By this means,
we are able to differentiate the preference levels between view
feedback and others, in a more accurate and flexible way.

Our view-enhanced objective function is then designed as:

L = LeALS + LReg + Lview =∑
(u,i)∈R

ωui(r̂ui−rui)2+

M∑
u=1

∑
j /∈RVu

sj r̂
2
uj+λ

(
||P||2F +||Q||2F

)
+

∑
(u,v)∈V

cv
[ ∑
i∈Ru

(
γ1−(r̂ui− r̂uv)

)2
+
∑

j /∈RVu

(
γ2−(r̂uv− r̂uj)

)2]
.

(2)

Note that this objective function can be divided into three
terms, where the first two represent the prediction error and
regularizer in the former eALS solution, while the last Lview

term describes the intermediate preference level of the view
signal. For u’s viewed item v, the pairwise ranking be-
tween v and another purchased item i or non-viewed item
j is achieved through a margin-based loss [Wang et al.,
2017]. More specifically, prediction r̂uv is optimized to be
lower than r̂ui with a margin namely γ1, as indicated by
(γ1 − (r̂ui − r̂uv))2 term. Similarly, r̂uv is optimized to be
higher than r̂uj with another margin namely γ2. For each
(u, v), N − |Vu| terms are considered in pairwise ranking
loss, which has a total time cost of O(|V|(N − |Vu|)). The
sum of each (u, v)’s loss is aggregated with an v-dependent
weight namely cv , which indicates the weight of view data in
L. By varying margin values (γ1,γ2), we are able to control
possible scoring range of predictions over viewed items, and
thus search the best preference level for view signal. With-
out loss of generality, we only consider those viewed but not
purchased items, indicatingR∩ V = φ.

4.2 Fast Learning Algorithm
As we mentioned above, the pairwise ranking loss between a
viewed item and another one introduces nearly |V| ·N terms
in Lview of Eq. (2), making the time cost become N times

more if we directly use the original eALS method [He et al.,
2016]. To overcome this efficiency challenge, we develop a
fast VALS learning algorithm that can speed-up this learning
process by avoiding massive repeated computations in Lview.
We detail this for user latent factors, while the counterpart for
item factors can be achieved likewise and thus is omitted due
to space limitation.

First, following the idea of ALS technique, the user u’s f th
latent factor is updated by setting ∂L/∂puf to 0, while the
others are fixed. Since L = LeALS + LReg + Lview and the
speed-up strategies of LeALS and LReg have been discussed
in [He et al., 2016], we only present the speed-up of Lview
term. According to Eq. (2), we obtain the derivative of Lview
w.r.t. puf :

∂Lview

∂puf
= 2

∑
v∈Vu

∑
i∈Ru

cv(qif−qvf )2 · puf+ (3)

2
∑
v∈Vu

∑
j /∈RVu

cv(qjf−qvf )2 · puf+ (4)

2
∑
v∈Vu

∑
i∈Ru

cv(r̂fui−r̂
f
uv)(qif−qvf )+ (5)

2
∑
v∈Vu

∑
j /∈RVu

cv(r̂fuj−r̂
f
uv)(qjf−qvf )− (6)

2
∑
v∈Vu

{∑
i∈Ru

γ1cv(qif−qvf )−
∑

j /∈RVu

γ2cv(qjf−qvf )
}
, (7-8)

where r̂fu• = r̂u• − pufq•f , i.e., the prediction without
the component of latent factor f . Clearly, the bottleneck
lies in the (4), (6) and (8) terms that contain summations
over item pairs (v, j), introduced by the pairwise rank-
ing between viewed items and non-viewed items. It takes
O(|Vu|(N − |RVu|)) time for a raw implementation. To
solve this inefficiency issue, we first break down the summa-
tions over item pairs into two independent summations over
one item index only, which reduces the time complexity into
O(N−|RVu|). Then, we further apply memoization strategy
to avoid the massive repeated computations on non-viewed
item j, achieving an efficient learning inO(|RVu|+K) time.

We detail above process by focusing on the (6) term in
∂Lview/∂puf , as the rest can be done likewise. More specifi-
cally, we can obtain

∑
v∈Vu

∑
j /∈RVu

cv(r̂fuj−r̂
f
uv)(qjf−qvf ) =

∑
v∈Vu

cv ·
∑

j /∈RVu

r̂fujqjf−∑
v∈Vu

cvqvf ·
∑

j /∈RVu

r̂fuj−
∑
v∈Vu

cv r̂
f
uv ·

∑
j /∈RVu

qjf +
∑
v∈Vu

cv r̂
f
uvqvf ·

∑
j /∈RVu

1.
(9)

By this reformulation, we observe that each term above can
be factorized as two parts that are only dependent on one item
index, i.e., viewed item v or non-viewed item j. Then, the
original summation over item pairs (v, j) can be broken down
into two independent summations. As the summation over v
takes O(|Vu|) time, the current bottleneck falls onto those j-
dependent summations, which require a traversal of the whole
negative space, taking near O(N) time. Therefore, we move
forward to speed up the calculation of these terms,



∑
j /∈RVu

r̂fuj =

N∑
j=1

r̂fuj −
∑

j∈RVu

r̂fuj =

N∑
j=1

∑
k 6=f

pukqjk −
∑

j∈RVu

r̂fuj

=
∑
k 6=f

puk

N∑
j=1

qjk −
∑

j∈RVu

r̂fuj ;

∑
j /∈RVu

r̂fujqjf =
∑
k 6=f

puk

N∑
j=1

qjkqjf −
∑

j∈RVu

r̂fujqjf .

(10)

As shown above, the major computation lies in
∑N

j=1 qjk and∑N
j=1 qjkqjf terms, which are independent of u. Therefore,

when updating the latent factors for different users, it is un-
necessary to repeatedly compute these terms.

We define Dq cache as Dq =
∑N

i=1 qi, and Eq cache as
Eq =

∑N
i=1 qiqT

i , which can be pre-computed and used in
updating the latent factors for all users. Based on these two
caches, Eq. (10) can be further evaluated as:∑

k 6=f

pukd
q
k −

∑
j∈RVu

r̂fuj and
∑
k 6=f

puke
q
kf −

∑
j∈RVu

r̂fujqjf , (11)

which can be done in O(K + |RVu|) time.
Overall, Eq. (9) can be calculated efficiently with the help

of Dq and Eq caches. As for the rest terms of ∂Lview/∂puf ,
we can apply the same strategy of breaking down and memo-
izing summations to calculate them in O(K + |RVu|) time.
Combining with previous solution of ∂(LeALS+LReg)/∂puf ,
the time complexity for updating puf is still O(K + |RVu|).

Similarly, for updating item latent factors, we can also
achieve the time complexity of O(K + |RVi|) by applying
the above speed-up strategy. Algorithm 1 summarizes the ac-
celerated algorithm for our VALS learner. Note that solving
∂(LeALS+LReg)/∂puf and ∂(LeALS+LReg)/∂qif uses the
original eALS method. Overall, one VALS iteration takes
O((M+N)K2+(|R|+|V|)K) time, which only depends on
the number of observed interactions. Note that some previous
works [Takács and Tikk, 2012; Zhang et al., 2017] have also
used the squared form of loss function and learning method
based on ALS or coordinate descent technique. However,
compared to VALS, they only solve a sub-problem with only
one feedback type and no tunable margin to control pairwise
ranking relations.

5 Experiments
5.1 Experimental Settings
Datasets and Preprocessing. We perform experiments on
two real-world datasets of Beibei and Tmall:

Beibei1: Beibei is the largest E-commerce platform for ma-
ternal and infant products in China. We sample a subset of
user interactions that contain views and purchases within the
time period from 2017/05/25 to 2017/06/28.

Tmall2: Tmall is the largest E-commerce platform in
China. To make our results reproducible, we use a public
benchmark released in IJCAI-2015 challenge3.

1http://www.beibei.com/
2https://www.tmall.com/
3The dataset is downloaded from https://tianchi.

aliyun.com/datalab/dataSet.htm?id=5

Algorithm 1: Fast VALS Learning algorithm.
Input : R, V, K, λ, W, item confidence vector {s, c}

and margin values {γ1, γ2};
Output: Latent feature matrix P and Q;

1 Randomly initialize P and Q;
2 while Stopping criteria is not met do
3 // Update user factors
4 for u← 1 to M do
5 for f ← 1 to K do
6 Calculate each term in ∂(LeALS + LReg)/∂puf ;
7 Calculate each term in ∂Lview/∂puf ;
8 Update puf by setting ∂(LeALS+LReg+Lview)

∂puf
= 0;

9 end
10 end
11 // Update item factors
12 for i← 1 to N do
13 for f ← 1 to K do
14 Calculate each term in ∂(LeALS + LReg)/∂qif ;
15 Calculate each term in ∂Lview/∂qif ;
16 Update qif by setting ∂(LeALS+LReg+Lview)

∂qif
= 0;

17 end
18 end
19 end

We take three steps for data preprocessing. First, we merge
the repetitive purchases into one purchase with the earliest
timestamp, as we aim to recommend novel items for a user
to purchase. Second, we filter out users’ views on those pur-
chased items to avoid information leaking. Third, we filter
out users and items with less than 12 and 16 purchase interac-
tions, respectively, to alleviate the data sparsity issue. Table 2
summarizes the data statistics.

Table 2: Statistics of the evaluation datasets.
Dataset Purchase# View# User# Item# Sparsity
Beibei 2,654,467 23,668,454 158,907 119,012 99.99%/99.75%
Tmall 352,768 1,585,225 28,059 32,339 99.95%/99.83%

Evaluation Methodology. In the evaluation, we adopt the
leave-one-out protocol [Rendle et al., 2009; He et al., 2016],
where the latest purchase interaction of each user is held out
for testing and the models are trained on the remaining data.
For the metrics, we employ Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG) on the ranking of all
non-purchased items for a user. We truncate the ranked list at
the position of 100 and report the average score of all users.

Baselines. We compare with two types of methods. For
methods that only use primary purchase feedback, we choose:

- eALS [He et al., 2016]. This is a state-of-the-art MF
method for implicit recommender systems. We tuned the
weight of missing data si.

- BPR [Rendle et al., 2009]. BPR optimizes the MF model
with a pairwise ranking loss and learns model parameters
with Stochastic Gradient Descent (SGD) method. We tuned
the learning rate εBPR.

For the second type of methods that integrate both purchase
and view feedback, we choose the following methods,



Table 3: Parameter exploration for baselines and optimal settings.
Method Tuning Range Beibei Tmall

s0 eALS [1, 2, 4, 8, 16, 32, 64]× 102 1600 800
εBPR (MR/MC-)BPR [0.05, 0.1, 0.5, 1, 5]× 10−2 0.001 0.01
α MR-BPR [0.125, 0.25, 0.5, 1, 2, 4] 1 2
β1
β2

MC-BPR [0.01, 0.05, 0.1, 0.5, 1, 5, 10]
[0.01, 0.05, 0.1, 0.5, 1]

0.05
0.5

5
0.05

εMFPR MFPR [0.05, 0.1, 0.5, 1, 5]× 10−2 0.001 0.001

- MR-BPR [Krohn-Grimberghe et al., 2012]. Applying
CMF method to BPR, this method exerts the impact of view-
ing behavior on predicting purchases with a weight α.

- MC-BPR [Loni et al., 2016]. This method samples both
positive and negative instances from viewed items. Two pa-
rameters control this process: 1) β1 denotes relative weight of
viewed items when sampling positive instances; 2) β2 denotes
possibility of sampling a viewed item as a negative instance.

- MFPR [Liu et al., 2017]. This is a most recent method
that integrates multiple types of implicit feedback. We adapt
it to our case by generating training item pairs in the same
way as BPR, and use a fixed learning rate εMFPR in SGD.

Parameter settings. For the above baselines, we have
carefully explored the corresponding parameters and listed
the result in Table 3. Note that we uniformly set the weight of
missing data as si = s0/N , as the effectiveness of popularity-
biased weighting strategy is beyond the scope of this paper.
The score of purchased interactions rui and its weight ωui

are both uniformly set to 1, which are the suggested values
in the eALS implementation. For regularization, we set λ as
0.001 for all methods for a fair comparison. Since the find-
ings are consistent across the number of latent factors K, we
report the results of K = 32 only. Our experiment on the
same machine (Intel Xeon 2.10 GHz CPU) shows that the ac-
tual training time per iteration for VALS on Beibei dataset is
about 75s. When training set reduces to 1/4, 1/2 and 3/4 of
the original size, the time is 15s, 35s and 55s respectively,
corresponding to our theoretical analysis of linearity with the
size of observed data.

5.2 Hyper-parameter Investigation
Our VALS has two parameters: {γ1, γ2}, which are the
margin values to control pairwise ranking between viewed
items and other items, and ci that determines the weight of
view data. Without loss of generality, we set margin values
{γ1, γ2} uniformly as γ1 = γ2 = γ. Similar to weight of
missing data si, we set a uniform weight distribution (i.e.,
ci = c0/N ) and leave the item-dependent weighting strategy
to the future work. To find the best setting for (γ, c0), we
conduct a grid search over these two parameters and report
the mean values of both HR and NDCG in last 10 iterations.

Figure 1 plots the prediction accuracy of VALS with dif-
ferent γ and c0. First, we study the impact of margin value γ.
For Beibei (Figure 1a and b), we observe that the best γ values
are between 0.25 and 0.35 under different values of weight
c0. Since the prediction is optimized to indicate the prefer-
ence level, this highlights the necessity of using an appropri-
ate margin γ so as to control the preference level of viewed
interactions, which is lower than purchased ones but higher
than non-viewed ones. Surprisingly, for Tmall (Figure 1c
and d), we observe that a relative large margin value (λ =

γ
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Figure 1: Impact of weighting parameters c0 and margin values γ
on VALS’s performance.

Table 4: Performance improvement after integrating view data.

Methods eALS VALS Improvement
Datasets HR NDCG HR NDCG ∆HR ∆NDCG
Beibei 0.1388 0.0345 0.1443 0.0363 +3.96% +5.22%

Tmall 0.0289 0.0079 0.0675 0.0171 +133.56% +116.46%

3 ∼ 5) achieves better performance. According to our def-
inition in Eq. (2), purchased items are optimized to be pre-
dicted as 1 while optimized predictions for non-viewed items
are 0. When the margin γ between a viewed item and a
purchased/non-viewed item is large, it is more likely for a
viewed item to be predicted outside the (0, 1), while the op-
timized prediction should be inside. Therefore, a large γ ob-
served on Tmall dataset indicates higher possibility that the
preference level of viewed interactions is close to purchased
ones or non-viewed ones.

Then, we investigate the best setting of weight c0. For
Beibei (Figure 1a and b), the peak performance is achieved
when c0 is 1.6; similarly for Tmall (Figure 1c and d), the op-
timal c0 is 0.5. When c0 becomes smaller or too large, the
performance decreases in both cases, indicating the necessity
to account for viewed interactions carefully.

According to above parameter exploration, we fix γ and
c0 according to the best performance evaluated by HR, i.e.,
γ=0.3, c0=1.6 for Beibei and γ=3.5, c0=0.5 for Tmall.

5.3 Performance Gain of View Data
Table 4 displays the performance of our VALS method com-
pared with eALS, w.r.t. HR@100 and NDCG@100. We re-
port their mean values in last 10 iterations. Clearly, after in-
tegrating view data as the intermediate feedback, our method
significantly outperforms the original eALS that only lever-
ages purchase data. For Beibei, the relative improvement in
terms of HR and NDCG are 3.96% and 5.22%, respectively.
Moreover, for Tmall, we observe an improvement of over
100% on both two metrics. This indicates that users’ view-
ing behaviors in Tmall are much more valuable for learning a
more accurate preference order among different items.

To further clarify the distinct performance gain on two
datasets, we compare the predictions over viewed items be-



tween two datasets, using both eALS and VALS method to
train the model. Figure 2 plots the distribution quantiles (5%,
25%, 50%, 75%, 95%) and means of viewed item scores,
where the results of two methods are presented together.
Clearly, the viewed items are both predicted to have a near
0 score on two datasets when trained with eALS, as they are
considered as negative instances. However, compared to that
on Beibei (Figure 2a), VALS generates much higher scores
for viewed items on Tmall (Figure 2b), i.e., 0.72 v.s. 0.15
and 0.91 v.s. 0.16 in terms of median and mean value, re-
spectively. These higher scores of viewed items correspond
to the fact that viewing behavior is more related to purchasing
behavior in Tmall, which is the main reason behind the over
100% improvement of VALS method. Moreover, this also
verifies our previous discussion of γ that the VALS model
with a large γ is more likely to generate large predictions out-
side (0, 1), as γ is set as 3.5 for Tmall.

(a) γ = 0.3, c0 = 1.6 (b) γ = 3.5, c0 = 0.5

Figure 2: eALS versus VALS, in terms of quantiles (5%, 25%, 50%,
75%, 95%) and means of the predictions over viewed items.

5.4 Performance Comparison
Figure 3 shows the prediction accuracy of each method in
each training iteration. Note that we only run VALS for
200 iterations on two datasets and run other methods except
MC-BPR for 1500 iterations on Beibei dataset, which are
enough for them to converge. We have the following three
key observations. First, we see that VALS achieves the
best performance after convergence. All improvements are
statistically significant evidenced by the one-sample paired
t-test (p < 0.01). The best baseline is MC-BPR. Except
for a close HR metric on Beibei, VALS outperforms it by a
large margin (on average, the relative improvement for Beibei
and Tmall is 10.0% and 28.4%). Compared with MC-BPR,
VALS mainly benefits from 1) margin-based design that con-
trols the pairwise ranking between predictions of different
feedback and 2) the whole-data based strategy of handling
missing data. Second, MR-BPR and MFPR achieve higher
performance over the vanilla BPR that only leverages pur-
chase data, while the relative improvement is quite insignif-
icant when compared with MC-BPR and VALS. This high-
lights the necessity of exploiting different preference levels
between purchase and view data, which is lacked in MR-BPR
and MFPR. Finally, VALS maintains both accuracy and fi-
delity, which is an inherent advantage of using whole-data
based learning strategy. Comparatively, although MC-BPR
outperforms the vanilla BPR on the Beibei dataset evaluated
by both metrics, we find it obtains a higher HR but a lower
NDCG score when compared to eALS that does not integrate
view data (i.e., 0.0330 v.s. 0.0345). It means that whole-data
based strategy is a better candidate compared to sampling-
based one when improving implicit recommender systems.
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Figure 3: Prediction accuracy of VALS compared with other base-
line methods in each iteration.

We notice that BPR-based methods show unusual spike in
early iterations and performance degradation with more iter-
ations on Beibei dataset, which might be caused by some reg-
ularities in the data. For example, Beibei dataset is highly
popularity-skewed – the top-1% items contributed almost
50% of purchases. This may cause unstable performance be-
cause these popular items are ranked high in early iterations.

6 Conclusion
We study the problem of improving implicit recommender
systems by integrating both purchase and view data. Based
on the state-of-the-art eALS method we model user’s viewed
interactions as an intermediate feedback between purchased
and non-viewed interactions. To address the key efficiency
challenge in optimization, we further develop a fast learning
algorithm which efficiently learns parameters from the whole
data instead of sampling negative instances. With these de-
signs, our VALS method not only achieves higher accuracy,
but also becomes practical for large-scale data.

This work has focused on collaborative filtering setting,
which only leverages the feedback data and is mostly used in
the candidate selection stage of industrial recommender sys-
tems [Wang et al., 2018b]. In future, we will focus more on
the ranking stage, integrating view data into generic feature-
based models, such as the expressive neural factorization ma-
chines [He and Chua, 2017] and the more explainable tree-
enhanced embedding model [Wang et al., 2018a].
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