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Abstract
Most recommendation research has been concen-
trated on recommending single items to users, such
as the considerable work on collaborative filtering
that models the interaction between a user and an
item. However, in many real-world scenarios, the
platform needs to show users a set of items, e.g.,
the marketing strategy that offers multiple items for
sale as one bundle. In this work, we consider rec-
ommending a set of items to a user, i.e., the Bundle
Recommendation task, which concerns the interac-
tion modeling between a user and a set of items. We
contribute a neural network solution named DAM,
short for Deep Attentive Multi-Task model, which
is featured with two special designs: 1) We design
a factorized attention network to aggregate the item
embeddings in a bundle to obtain the bundle’s rep-
resentation; 2) We jointly model user-bundle inter-
actions and user-item interactions in a multi-task
manner to alleviate the scarcity of user-bundle in-
teractions. Extensive experiments on a real-world
dataset show that DAM outperforms the state-of-
the-art solution, verifying the effectiveness of our
attention design and multi-task learning in DAM.

1 Introduction
Recommender system [Xie et al., 2018a; Xie et al., 2018b]
has long been an effective tool to alleviate the information
overload, to improve user experience, and to increase the traf-
fic of service provider [Smith and Linden, 2017]. Similar to
classic techniques in information retrieval, recommendation
is typically cast as a matching problem [Xu et al., 2018] and
solved by estimating the matching score between a user and
an item [He et al., 2017]. Nevertheless, many real-world ap-
plications need to recommend a set of items for users to con-
sume as a whole, such as travel package [Ge et al., 2014],
music playlist [Cao et al., 2017], furniture set, and so on. We
term all such scenarios that concern recommending a set of
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Figure 1: Example of product bundles (relevant songs and comple-
mentary electronic products).

items as Bundle Recommendation, which needs to predict a
user’s preference on a bundle of items rather than a single
item [Zhu et al., 2014].

In E-commerce, product bundling is a widely used strat-
egy to support promotional campaigns — e.g., purchasing a
bundle has a discounted rate — which, in turn, can increase
the exposure of items that are seldom purchased in isolation.
To build a bundle recommendation system, a common solu-
tion pipeline is to first generate bundles based on some crite-
ria (e.g., products that form a complementary relation [Wang
et al., 2018b] as shown in Figure 1), and then build models
to predict user preference on bundles [Pathak et al., 2017].
When a bundle recommendation system is brought online to
serve users for a period, the platform can accumulate user be-
havior logs on bundles, offering opportunities to improve the
bundle recommendation service. In this work, we focus on
the second phase of building user preference models on bun-
dles, assuming that there are a certain number of user-bundle
interactions available to indicate user preference on bundles.

Intuitively, this problem can be solved by collaborative fil-
tering (CF) methods by treating bundles as “items” in tra-
ditional CF modeling. Although technically feasible, such
straightforward solutions do not work well to predict user-
bundle interactions due to the following difficulties:
• Bundles are not atomic units. Fundamentally different

from items in traditional CF, a bundle is not an atomic
unit since it is composed of multiple (at least two) items.
Intuitively, bundles that share more items should exhibit



similar patterns in attracting users. As such, it is inap-
propriate to treat bundles as separate columns in user-
bundle matrix to run CF methods like matrix factoriza-
tion.

• User-bundle interactions are more sparse. Only when
a user is mostly satisfied with items in a bundle, she will
choose the bundle to consume. Sometimes even if a user
likes all constituent items, she may dislike the bundle
because it is not a good match. As such, user-bundle in-
teractions are usually more sparse than user-item inter-
actions. Moreover, it is easy to form new bundles thus
the cold-start issue is more common in user-bundle data.

In this work, we contribute a new solution for collabo-
rative bundle recommendation named Deep Attentive Multi-
Task (DAM) model, which takes special care of the above-
mentioned two difficulties with neural network techniques:

• Handling non-atomic bundles. To account for the
compositional similarity between bundles, we aggre-
gate item embeddings to form the bundle representation,
rather than associating a bundle ID with an embedding.
Such a mechanism equips our method with the natural
ability to handle cold-start bundles. Moreover, we de-
sign a factorized attention network to take in user prefer-
ence on constituent items to represent the bundle, which
captures the intuition that different users may like the
same bundle for different reasons.

• Handling sparse user-bundle interactions. To allevi-
ate the sparsity of user interactions on bundles, we in-
tegrate user-items interactions which provide additional
CF signal on user interests and item properties. In
DAM model design, we share user embeddings to pre-
dict both user-bundle interactions and user-item interac-
tions, and share item embeddings to learn bundle repre-
sentations and to predict user-item interactions. During
model learning, we tightly couple the models for user-
bundle and user-item interactions in a multi-task man-
ner [Yosinski et al., 2014], allowing the benefits of one
task (user-item modeling) to be transferred to another
task (user-bundle modeling).

2 Problem Formulation
First we introduce the notation conventions. We use bold up-
percase letters to denote matrices (e.g., W), bold lowercase
letters to denote vectors (e.g., w), and non-bold letters to de-
note scalars or indices (e.g., w). The uppercase calligraphic
symbols (e.g.,W) stand for sets.

Suppose we have N users U = {u1, u2, ..., uN}, M items
V = {v1, v2, ..., vM}, and K bundles B = {b1, b2, ..., bK};
we use i, j, and s to represent the ID of a user, an item, and
a bundle, respectively. Each bundle bs is also represented as
a set of items, denoted as Gs = {gs,1, gs,2, ..., gs,|bs|}, where
|bs| denotes the bundle size (larger than 1), and each item in
the bundle belongs to the set V . A user can have an interac-
tion (e.g., click, purchase, or review) on an item or a bundle,
which is a binary variable — 1 means the existence of the in-
teraction and 0 otherwise. We use H = [hij ]N×M to denote
the user-item interaction matrix and R = [ris]N×K to denote

the user-bundle interaction matrix. Then, we formulate the
collaborative bundle recommendation task as:

Input: Users U , items V , bundles B, constituent items of
bundles {G1,G2, ...,GK}, user-item interactions H, and user-
bundle interactions R.

Output: A personalized scoring function that maps a bun-
dle G to a real value for each user: fu : G → R.

Note that cold-start bundles are common in bundle recom-
mendation scenarios, for example, service provider launches
new promotion packages to customers. As such, it is not nec-
essary that the bundle G inputted to the personalized scoring
function fu has appeared in B, which contains historical bun-
dles in training set only. This requires the model to score a
bundle based on its constituent items rather than the bundle’s
ID, making the problem radically different from traditional
recommendation that scores each single item.

3 Methodology
Our proposed DAM method aims to learn the personalized
bundle ranking function from user-bundle interactions R by
properly incorporating user-item interactions H. There are
two key designs in DAM: 1) bundle representation learning
which aims to obtain the latent features to represent a bundle,
and 2) jointly modeling of user interactions on bundles and
items. This section is organized to elaborate the two parts.

3.1 Bundle Representation Learning
In terms of provided data, a bundle is described by an ID and
its constituent items. However, it is prohibitive to use ID to
encode a bundle, since it will make the model less general-
izable to new bundles. As such, we consider representing a
bundle based on its constituent items only. In the paradigm of
neural network, an entity of interest is typically represented
by a real-valued vector, also called as embedding or latent
features; then the model is operated on the vector to make pre-
dictions. Here we associate each item vj with an embedding
vj , directly projecting item one-hot ID to the latent space.
Next, we aggregate the item embeddings in a bundle to ob-
tain the bundle’s embedding.

There are several predefined strategies in neural networks
to aggregate embeddings, such as concatenation [Cheng et
al., 2016], average pooling, max pooling [Wang et al.,
2018a], and bilinear interaction pooling [He and Chua, 2017].
Technically speaking, concatenation is not applicable here,
since different bundles may have different sizes thus concate-
nation may lead to variable-length vector for different train-
ing examples. While the three pooling strategies can be ap-
plied to convert a vector set to one vector, they cannot capture
the intuition in bundle recommendation. Intuitively, different
items play different roles in a bundle; e.g., for the first bun-
dle shown in Figure 1, the Mac plays a dominant role since
it is much more expensive than other accessories. Moreover,
the weighting scheme can be varied for different users; e.g.,
for the second bundle shown in Figure 1, a country music fan
will pay more attention to taylor swift’s songs.

To capture the above-mentioned intuitions in weighting
items in a bundle, we design an adaptive weighted sum opera-
tion which is inspired from the attention mechanism in neural



networks [Chen et al., 2017]. Let bs be the embedding for
bundle bs, we obtain it by:

bs =
∑
j∈Gs

α(i, j)∑
j′∈Gs α(i, j′)

vj , (1)

where α(i, j) denotes weight of item vj when user ui consid-
ers whether to interact with a bundle, and we add L1 normal-
ization on the weights to eliminate the impact of varied sizes
of different bundles. Directly learning α(i, j) from data has
generalization issue, since it cannot learn values for unseen
user-item pairs. As such, we need to parameterize α(i, j)
to increase its generalization ability. According to the de-
sign of neural attention networks [Chen et al., 2017], a com-
mon way is to place a multi-layer perceptron (MLP) above
user embedding and item embedding to estimate α(i, j) as:
α(i, j) = exp (zTσ(Pvvj + Puui)), where ui denotes the
embedding for user ui, Pu,Pv, and z are parameters of the
MLP, and σ is the activation function.

Factorized Attention Network
However, such MLP structure is inefficient to learn the low-
rank (i.e., multiplicative) relation between user and item, as
evidenced in a recent work [Beutel et al., 2018]. Since the
observed interactions between users and items are sparse in
nature, they are likely to follow a low-rank structure. As such,
we apply a low-rank model to parameterize α(i, j):

α(i, j) = exp (uT
i aj), (2)

where aj is the vector to characterize item vj in making de-
cision towards an item in a bundle. We call aj as the item at-
tention vector, which we intentionally make it different from
item embedding vj to increase the model’s capability. This
is to cover the case that a user likes a separate item, but dis-
likes it in a bundle, for example, some clothing products are
good-looking but are hard to form a good match with others.

It is worth noting that our design of the weighting strat-
egy can be seen as factorizing the attention weight matrix
A = [α(i, j)] ∈ RN×M with a low-rank model followed by
a softmax operation, being different from existing designs of
neural attention network. As such, we term it as factorized
attention network.

3.2 Joint Modeling of User-Bundle and User-Item
Interactions

After obtaining a bundle’s representation, we can easily get a
user-bundle predictive model by feeding user embedding and
bundle embedding into a matching function:

r̂is = fbundle(ui,bs), (3)

where fbundle denotes the matching function for user-bundle
prediction, and bs is the bundle embedding defined in Equa-
tion (1). Many choices of matching function explored in
collaborative filtering literature can be applied here, such as
inner product used in matrix factorization methods [Koren,
2009] and distance functions used in metric learning meth-
ods [Hsieh et al., 2017]. Here we choose the neural collab-
orative filtering (NCF) framework [He et al., 2017] for two
reasons: 1) NCF is a neural network architecture, being suit-
able to integrate the bundle representation learning module

to build an end-to-end model; 2) NCF is more flexible in de-
signing multiple nonlinear layers to learn complex matching
function. The flexibility allows us to seamlessly incorporate
user-item interaction modeling into user-bundle model.

Joint User-Bundle and User-Item Model
To transfer the information learned from more rich user-item
interactions, the user embeddings and item embeddings are
shared in the two tasks of user-bundle prediction and user-
item prediction. As such, the user-item predictive model
could be abstracted as follows:

ĥij = fitem(ui, vj), (4)

where fitem denotes the matching function for user-item pre-
diction. Next we consider how to design the two matching
functions by relating the two tasks.

A straightforward solution is to use MLP as the matching
function [He et al., 2017], and employ two separate MLP for
fbundle and fitem:

r̂is = MLPbundle(ui,bs),

ĥij = MLPitem(ui, vj),
(5)

where MLPbundle are MLPitem are the multi-layer match-
ing network for user-bundle and user-item prediction tasks,
respectively. However, this solution is insufficient to make
the two tasks benefit from each other, because the parameters
of the two MLP are totally separate without any connection.
Considering the two tasks share the same input of user em-
bedding ui, we speculate that the low layers of the two MLP
may do the same thing, i.e., extracting signal about user pref-
erence based on certain item properties, such as price, brand,
topic (or subcategory), among others. For this reason, we
propose the joint modeling architecture as shown in Figure
2, where the low layers of the two MLP are shared and high
layers are different to be task-specific. This architecture is
formulated as follows:

r̂is = MLPbundle(MLPshared(ui,bs)),

ĥij = MLPitem(MLPshared(ui, vj)),
(6)

where MLPshared denotes the shared layers to extract low-
level prediction signal from the inputs of the two tasks. The
output of MLPshared is a vector which is then fed into two
separate MLP to make task-specific predictions.

Note that this architecture is inspired from [Yosinski et
al., 2014], which transfers low-level features of convolutional
neural networks across computer vision tasks. Such an archi-
tecture, to our knowledge, is first introduced to recommen-
dation to align two related prediction tasks. Recently, [Cao
et al., 2018] presents a joint model to correlate user-item and
group-item prediction tasks. However, their method only has
shared layers, which can be seen as a special case of our
method by removing the task-specific MLP.

Multi-Task Learning
Given an observed interaction (click, purchase or review) of
user ui on bundle bs, we can know that ui is interested in
bs. However, for the opposite case that there is no interaction
between ui and bundle bt, we cannot conclude the user is
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Figure 2: Illustration of joint modeling on user-item interaction and
user-bundle interaction.

not interested in bt, since it is likely that the user does not
know the bundle before. As such, a more reasonable way is
to assume that the chosen bundle is more preferable to the
unchosen bundles for the user. This motivates the use of a
pairwise learning framework, which we adopt the Bayesian
Personalized Ranking (BPR) loss [Rendle et al., 2009]:

Lbundle =

N∑
i=1

∑
s∈Ri

∑
t/∈Ri

− lnσ(r̂is − r̂it) + λb||Θb||22, (7)

where Ri denotes all bundles interacted by user ui. We can
treat (i, s) as a positive example and (i, t) as negative, such
that minimizing the loss function forces the prediction r̂is to
be larger than r̂it. σ(·) is the sigmoid function, and Θb is the
model parameter set of bundle prediction task. L2 regulariza-
tion is applied to prevent overfitting.

Given the similar motivation of learning from user-item in-
teractions, we define the objective function for the user-item
prediction task as follows:

Litem =

N∑
i=1

∑
j∈Hi

∑
l/∈Hi

− lnσ(ĥij − ĥil) + λi||Θi||22, (8)

where Hi denotes all items interacted by user ui. Similarly,
we can treat (i, j) as a positive example and (i, l) as a negative
example for the user-item prediction task. Θi is the model
parameter set of item prediction task.

The final objective function for the joint model is the sum
of the objective functions of the two prediction tasks:

L = Lbundle + Litem. (9)
In each iteration, we first sample a user ui. We then sam-
ple the positive example (i, s) with a paired negative sample
(i, t), as well as the positive example (i, j) with a paired neg-
ative sample (i, l). Two gradient steps are then performed to
minimize Lbundle and Litem sequentially. The above steps
are iteratively executed until convergence (which is moni-
tored by the accuracy change of the user-bundle recommen-
dation task in the validation set). Note that this stochastic
learning algorithm can be easily extended to mini-batch train-
ing by sampling multiple users in a batch.

Dataset NetEase Youshu
# User 18,528 8,039

# Bundle 22,864 4,771
# Item 123,628 32,770

# User-Bundle 302,303 51,377
# User-Item 1,128,065 138,515

# Bundle-Item 1,778,838 176,667
# Avg. Bundle interactions 16.32 6.39

# Avg. Item interactions 60.88 17.23
# Avg. Bundle size 77.80 37.03

# User-Item density 0.05% 0.05%
# User-Bundle density 0.07% 0.13%

Table 1: Dataset Statistics

4 Experiments
In this section, we conduct experiments on two real-world
datasets aiming to answer following research questions:

RQ1 Can our proposed DAM outperform the state-of-the-art
bundle recommendation models?

RQ2 How is the effectiveness of factorized attention net-
work? Can it perform better than other aggregation
strategies?

RQ3 Can multi-task learning framework improve DAM’s
performance? How does the number of shared layer af-
fect model performance?

4.1 Experimental Settings
Dataset. Our proposed model is evaluated on two datasets.
The first dataset is provided by the work of EFM [Cao et al.,
2017]. The authors crawled data from the Netease Cloud Mu-
sic1, which enables users to construct a list of songs with a
specific theme. Each bundle consists of at least 5 items, i.e.,
songs, each item appears in at least 5 bundles, and users lis-
ten to at least 10 items and 10 bundles. The other dataset is
constructed by crawling data from Youshu, a Chinese book
review site2. Similar to NetEase, a user can construct a list
of books they desired. The statistics of datasets are shown in
Table 1.

Evaluation Metric. We employ leave-one-out evaluation
protocol. For each user, one of her interactions are randomly
removed for testing. To evaluate the top-K recommendation
performance of models, we employ a relevance-based metric
– Recall@K that measures the number of positive items pre-
senting within the top-K recommendation list and a ranking-
based metric – MAP@K considering the ranking positions
of the positive items within the top-K recommendation list.
Since ranking all the bundles for users is too time-consuming,
we randomly select 99 bundles that are not interacted with
users as negative samples.

Baselines. To show the effectiveness of DAM, our method
is compared to the following models:

1https://music.163.com/
2http://www.yousuu.com/



Model
Netease Youshu

d=5 d=10 d=5 d=10
Recall@5 MAP@5 Recall@5 MAP@5 Recall@5 MAP@5 Recall@5 MAP@5

BPR 0.3392 0.1967 0.3389 0.2018 0.5274 0.3523 0.5362 0.3608
NCF 0.3482 0.2005 0.3534 0.2076 0.5627 0.3723 0.5715 0.3797
BR 0.3241 0.1951 0.3318 0.1966 0.5669 0.3746 0.5752 0.3748

EFM 0.3512 0.2039 0.3654 0.2140 0.5844 0.3863 0.5930 0.3903
DAM 0.3882 0.2321 0.4016 0.2412 0.5967 0.4025 0.6109 0.4121

Improv. +10.54% +13.83% +9.91% +12.71% +2.10% +4.19% +3.02% +5.59%

Table 2: Top-K recommendation performance comparison of different methods. The last row Improv. denotes the relative improvement over
the baseline:DAM outperforms all baselines on all metrics.

• BPR [Rendle et al., 2009]: BPR is the basic pairwise
ranking algorithm based on implicit feedback. We opti-
mize the BPR ranking loss under the matrix factorization
framework.
• NCF [He et al., 2017]: This method is a state-of-the-

art neural CF model which combines element-wise and
hidden layers of the concatenation of user and item em-
bedding to capture their high-order interactions.
• BR [Pathak et al., 2017]: BR is a two-step model, where

the latent vectors of users and items are learned in the
first step, and item latent vectors are aggregated to pre-
dict the user preference of bundles.
• EFM [Cao et al., 2017]: EFM extend the traditional fac-

torization model by incorporating the item-item-bundle
co-occurrence information. It jointly factorizes the user-
item-bundle interactions matrix and item-item-bundle
co-occurrence sparse shifted positive pointwise mutual
information matrix by optimizing the BPR ranking loss.

Hyper-parameter settings. We implement all the models
based on Pytorch. For these methods, the learning rate is
searched in [0.01, 0.005, 0.001, 0.0005]. The training batch
size is fixed to 1024, and Adam algorithm is utilized to op-
timize all the baselines. The coefficient of L2 regularization
is ranged in [0.1, 0.01, 0.001, 0.0001]. The layer number of
NCF is set to 2 where the embedding size of each layer is
the same. We use dropout to prevent NCF and DAM from
overfitting where the dropout ratio is searched ranging from
0.1 to 0.9. without specification, we use three-layer structure
for DAM with two shared layer. The embedding size of each
layer remains the same.

4.2 Performance Comparison (RQ1)
Top-K performance comparison of DAM and other state-of-
the-art models under different embedding size are reported in
Table 2. BPR achieves poor performance in both datasets,
indicating that directly optimize user and bundle embedding
through inner product is insufficient to capture the user pref-
erence towards bundles. These results verify that the insuf-
ficient interaction data between user and bundle limits the
model performance. Compared to BPR, NCF achieves bet-
ter performance, demonstrating the effectiveness of applying
deep neural network to learn the nonlinear user-bundle fea-
ture interactions. By comparing BR with EFM and DAM,
we can see that co-training the user-item and user-bundle in-
teractions perform better, demonstrating that jointly utilizing
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Figure 3: The performance comparison of different fusing strategies.

these two types of interaction data for training is beneficial to
model performance.

DAM achieves the best performance under all circum-
stances. In particular, DAM achieves 9.91%, 12.71%
and 3.02%, 5.59% performance improvement against the
strongest baseline w.r.t R@5 and MAP@5 when the embed-
ding size is 10, demonstrating the effectiveness of our model.
The improvement could be attributed to the attentive model-
ing of item weights and the multi-task learning framework.

4.3 Effect of Factorized Attention (RQ2)
Factorized attention network is an important component of
DAM. Therefore, to investigate the effectiveness of factorized
attention network, we compare it with other fusing strategies,
including min pooling, max pooling, mean pooling and neu-
ral attention. Figure 3 shows the performance comparison
of different fusing strategy. MinPooling, maxPooling, mean-
Pooling and neural attention achieve similar performance, in-
dicating these methods are insufficient to capture the complex
relations among the items. Factorized attention achieves the
best performance in all cases, demonstrating the effectiveness
of capturing the user attention by the low-rank structure. Al-
though both neural attention and factorized attention learn dy-
namic weights for users, factorized attention achieves a better
performance, demonstrating that factorized attention has bet-
ter generalization performance than neural attention.

4.4 Effect of Shared Layer Number (RQ3)
To investigate whether multi-task learning improves the
model performance and how does it affect the model perfor-
mance, we vary the number of shared layers. We use DAM-k
to denote DAM with k shared layers while the hidden layer
number is fixed to 3. DAM-0 could be viewed as DAM with-
out utilizing the multi-task learning framework. The exper-



Model NetEase YouShu
Recall@5 MAP@5 Recall@5 MAP@5

DAM-0 0.3812 0.2286 0.5842 0.3980
DAM-1 0.3999 0.2397 0.6007 0.4071
DAM-2 0.4016 0.2412 0.6109 0.4121
DAM-3 0.4048 0.2427 0.6072 0.4111

Table 3: Top-K recommendation performance comparison w.r.t the
shared layer number. DAM-k represents the DAM model with k
shared layers.

imental results are shown in Table 3. By comparing DAM-
1, DAM-2 and DAM-3 with DAM-0, we can see that multi-
task learning models perform better than single-task learning
model, demonstrating that jointly utilizing the user-item and
user-bundle interactions enhance the model performance. As
we can see from the table, increasing the number of shared
layers enhances the recommendation performance. DAM-
2 achieves performance improvement over DAM-1 in both
datasets, demonstrating applying more shared layers is ben-
eficial to the model performance. The improvement could
be attributed to the better modeling of user preference over
items. When further increasing the number of shared lay-
ers, DAM-3 only achieves better performance on the NetEase
dataset. The reason is that applying too many shared layers
might introduce noises irrelevant to the bundle recommenda-
tion task.

5 Related Work
5.1 Bundle Recommendation
In recommendation domain, several efforts [Garfinkel et al.,
2006] have been made in solving the bundle recommendation
problem. Sar Shalom et al. [Sar Shalom et al., 2016] aimed
to recommend a list of items to users by optimizing the list’s
click-through rate. Liu et al. [Liu et al., 2017] estimated the
probability that a consumer would buy an item together with
the one already brought. Probabilistic models have been used
to maximize the expected revenue of a recommendation bun-
dle [Beladev et al., 2016] and incorporating the factors such
as user impact, package viability and recommendation fair-
ness [Qi et al., 2016]. Moreover, with the development of
pairwise ranking approach, some works tried to rank the bun-
dle by optimizing a pairwise ranking loss. Embedding Fac-
torization Machine (EFM) [Cao et al., 2017] and List Recom-
mendation Model (LIRE) [Liu et al., 2014] simultaneously
considered the users’ previous interactions with both individ-
ual items and lists under BPR framework. The bundle BPR
Model [Pathak et al., 2017] made use of the parameters pre-
viously learned through an item BPR model.

5.2 Deep Learning for Recommendation
Deep learning methods [He et al., 2017; Xue et al., 2017;
Wang et al., 2019] have been widely used to improve the rec-
ommendation performance. The pioneer work Neural Col-
laborative Filtering (NCF) [He et al., 2017] replaced the in-
ner product with a neural architecture to learn interactions
between users and items. Deep learning on graph for recom-
mendation is one of trending topics [Wang et al., 2019]. The

closest work of deep learning to ours was done by Yosinski
et al. [Yosinski et al., 2014]. They demonstrated an approach
for quantifying the transferability of features from each layer
of a neural network.

Multiple works [Chen et al., 2017; Cao et al., 2018;
Chen et al., 2018] incorporated the attention mechanism with
the implementation of neural networks proposed to improve
the performance of recommender systems. Attentive Col-
laborative Filtering(ACF) [Chen et al., 2017] aggregated the
item- and component-level implicit feedback with an atten-
tion network to get the representation for a multimedia item.
The AGREE model [Cao et al., 2018] learned to assign an at-
tention weight for members to solve group recommendation
problem.

Our work is orthogonal to the above mentioned work, as
we exploit the deep neural network to tackle the bundle rec-
ommendation task under the multi-task learning framework.
Moreover, we employ the attention mechanism to learn the
representation of bundle as well. However, instead of using
the neural attention network, we design a weighting strategy
which can be seen as factorizing the attention weight matrix
with a low-rank model followed by a softmax operation.

6 Conclusion and Future Work
In this paper, we present a novel deep attentive multi-task
model for bundle recommendation. We first propose a fac-
torized attention network to aggregate the item information of
each bundle. Experimental results demonstrate that our atten-
tion mechanism can effectively learn a personalized weight
for each user. To utilize user-item and user-bundle informa-
tion simultaneously, we propose a multi-task neural network
to share the knowledge of two tasks (e.g., user-item model-
ing and user-bundle modeling). We analyze the effect of each
layer and find that sharing the representation of the first three
layers could enhance the recommendation performance. The
overall comparison with start-of-the-art methods demonstrate
the effectiveness of our method.

In future, we plan to extend our work in the following
directions: (1) Modeling the item co-occurrence informa-
tion. In e-commerce, some products may have a comple-
mentary relationship, e.g., tennis racket and tennis, eyeglass
and glasses frame. (2) Realizing the bundle recommenda-
tion with temporal dynamics [Koren, 2009]. Users’ interests
evolve over time. In some real-world scenarios such as music
listening, it is worthwhile to generate dynamic bundle recom-
mendation by considering the time factor.
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