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ABSTRACT
Time series prediction is an intensively studied topic in data mining.

In spite of the considerable improvements, recent deep learning-

based methods overlook the existence of extreme events, which
result in weak performance when applying them to real time series.

Extreme events are rare and random, but do play a critical role in

many real applications, such as the forecasting of financial crisis

and natural disasters. In this paper, we explore the central theme of

improving the ability of deep learning on modeling extreme events

for time series prediction.

Through the lens of formal analysis, we first find that the weak-

ness of deep learning methods roots in the conventional form of

quadratic loss. To address this issue, we take inspirations from

the Extreme Value Theory, developing a new form of loss called

Extreme Value Loss (EVL) for detecting the future occurrence of

extreme events. Furthermore, we propose to employ Memory Net-

work in order to memorize extreme events in historical records.

By incorporating EVL with an adapted memory network module,

we achieve an end-to-end framework for time series prediction

with extreme events. Through extensive experiments on synthetic

data and two real datasets of stock and climate, we empirically val-

idate the effectiveness of our framework. Besides, we also provide

a proper choice for hyper-parameters in our proposed framework

by conducting several additional experiments.

CCS CONCEPTS
•Mathematics of computing→ Probabilistic algorithms; • Com-
puting methodologies→ Neural networks;
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1 INTRODUCTION
Time series prediction as a classical research topic, has been inten-

sively studied by interdisciplinary researchers over the past several

decades. As its application increasingly ventures into safety-critical

real-world scenarios, such as climate prediction [35] and stocks
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price monitoring [16], how to obtain more accurate predictions

remains an open problem to solve.

Historically, traditional methods such as autoregressive mov-

ing average (ARMA) [46] and nonlinear autoregressive exogenous

(NARX) [31] use statistical models with few parameters to exploit

patterns in time series data. Recently, with the celebrated success

of Deep Neural Network (DNN) in many fields such as image classi-

fication [28] and machine translation [4], a number of DNN based

techniques have been subsequently developed for time-series pre-

diction tasks, achieving noticeable improvements over traditional

methods [11, 49]. As a basic component of these models, Recurrent

Neural Network (RNN) module serves as an indispensable factor

for these note-worthy improvements [31, 48]. Compared with tra-

ditional methods, one of the major advantages of RNN structure is

that it enables deep non-linear modeling of temporal patterns. In

recent literature, some of its variants show even better empirical

performance, such as the well-known Long-Short Term Memory

(LSTM) [22, 36, 50] and Gated Recurrent Unit (GRU) [10], while the

latter appears to be more efficient on smaller and simpler dataset

[10]. However, most previously studied DNN are observed to have

troubles in dealing with data imbalance [15, 42, 44]. Illustratively,

let us consider a binary classification task with its training set in-

cluding 99% positive samples and only 1% negative samples, which

is said to contain data imbalance. Following the discussion in Lin

et al., such an imbalance in data will potentially bring any classi-

fier into either of two unexpected situations: a. the model hardly

learns any pattern and simply chooses to recognize all samples as

positive. b. the model memorizes the training set perfectly while it

generalizes poorly to test set.

In fact, we have observed that, in the context of time-series pre-

diction, imbalanced data in time series, or extreme events, is also
harmful to deep learning models. Intuitively, an extreme event in

time series is usually featured by extremely small or large values,

of irregular and rare occurrences [24]. As an empirical justification

of its harmfulness on deep learning models, we train a standard

GRU to predict one-dimensional time series, where certain thresh-

olds are used to label a small proportion of datasets as extreme

events in prior (dotted line in Fig 1). As clearly shown, the learn-

ing model indeed falls into the two priorly discussed situations:

a. In Fig. 1(a), most of its predictions are bounded by thresholds

and therefore it fails to recognize future extreme events, we claim

this as underfitting phenomenon. b. In Fig. 1(b), although the model

learns extreme events in the train set correctly, it behaves poorly

on test sets, we cliam this as overfitting phenomenon. Previously,
people always tend to tolerate the underfitting phenomenon since

models would still have an averagely tolerable performance on test

sets. However from our perspective, it would be really valuable

if a time-series prediction model could recognize future extreme

events with reasonable predictions. With more accurate modeling

https://doi.org/10.1145/3292500.3330896
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(a) Under�tting Phenomenon

(b) Over�tting Phenomenon

Figure 1: The extreme event problem in time-series predic-
tion. The data are sampled from climate dataset.

of extreme events in many real-world cases, prediction models are
expected to aid in�uential decisions by providing alarms on future
incidents such as extreme winds [35] or �nancial crisis [41].

With motivations above, in this paper, we focus on improving
the performance of DNN on predicting time series with extreme
values. First, besides the empirical validation above, we present
a formal analysis on why DNN could easily fall into under�tting
or over�tting phenomenons when it is trained with time series
with extreme events. Through the lens of Extreme Value Theory
(EVT), we observe that the main reason lies in previous choices of
loss function, which inherently lacks the ability to model extreme
events in a �nd-grained way. Therefore we propose a novel form
of loss called Extreme Value Loss (EVL) to improve predictions on
occurrences of extreme events. Furthermore, Inspired by previous
studies on dynamics of extreme events, which pointed out that the
randomness of extreme events have limited degrees of freedom
(DOF) [33]. As a result, its patterns could indeed be memorized
[2, 8]. We informatively propose a neural architecture to memorize
extreme events from historical information, with the aid of Memory
Network [45]. Together with our proposed EVL, our end-to-end
framework is thus constructed for better predictions on time series
data with extreme events. Our main contributions are

� We provide a formal analysis on why deep neural network su�ers
under�tting or over�tting phenomenons during predicting time
series data with extreme value.

� We propose a novel loss function called Extreme Value Loss (EVL)
based on extreme value theory, which provides better predictions
on future occurrences of extreme events.

� We propose a brand-new Memory Network based neural architec-
ture to memorize extreme events in history for better predictions
of future extreme values. Experimental results validates the supe-
riority of our framework in prediction accuracy compared with
the state-of-the-arts.

2 PRELIMINARIES
In this section, we brie�y describe the time-series prediction prob-
lem and introduceextreme eventsin time-series data.

2.1 Time Series Prediction
Suppose there areN sequences of �xed lengthT. For thei -th se-
quence the time series data can be described as,

�
X ¹i º

1:T ;Y¹i º
1:T

�
=

�
¹x¹i º

1 ;y¹i º
1 º; ¹x¹i º

2 ;y¹i º
2 º; � � � ; ¹x¹i º

T ;y¹i º
T º

�
(1)

, wherex¹i º
t andy¹i º

t are input and output at timet respectively.

In one-dimensional time series prediction we havex¹i º
t ;y¹i º

t 2 R

andy¹i º
t := x¹i º

t +1. For the sake of convenience, we will useX1:T =
»x1; � � � ;xT ¼andY1:T = »y1; � � � ;yT ¼to denote general sequences
without referring to speci�c sequences.

The goal of time-series prediction is that, given observations
¹X1:T ;Y1:T º and future inputsXT:T+K , how to predict outputs
YT:T+K in the future. Suppose a model predictsot at timet given
input xt , the common optimization goal can be written as,

min
TÕ

t =1

kot � yt k2 (2)

Then after the inference the model could predict the correspond-
ing outputsO1:T+K give inputsX1:T+K . Traditional methods such
as autoregressive moving average model (ARMA) [46] and Non-
linear autoregressive exogenous (NARX)[31] predicts outputs by
conducting linear or non-linear regression on past inputs. Recently,
deep neural network such as Recurrent Neural Network (RNN)
shows superior advantages compared with traditional methods in
modeling time-series data. Numerous improvements have been
made on RNN such as Long-short Term Memory [22] and Gated
Recurrent Unit [9].

2.2 Extreme Events
Although DNN such as GRU has achieved noticeable improvements
in predicting time-series data, this model tends to fall into either
over�tting or under�tting if trained with imbalanced time series, as
we have demonstrated in introductory part. We will refer to such a
phenomenon asExtreme Event Problem. Towards a formal under-
standing of this phenomenon, it will be convenient to introduce an
auxiliary indicator sequenceV1:T = »v1; � � � ;vT ¼:

vt =

8>><

>>
:

1 yt > � 1
0 yt 2 »� � 2; � 1¼

� 1 yt < � � 2

(3)

where large constants� 1; � 2 > 0 are calledthresholds. For time step
t , if vt = 0, we de�ne the outputyt asnormal event. If vt > 0, we
de�ne the outputyt asright extreme event. If vt < 0, we de�ne the
outputyt asleft extreme event.

2.2.1 Heavy-tailed Distributions.There are many researches pay
attention to these large observations in other tasks, e.g., previous
work notices that empirical distribution of real-world data always
appear to beheavy-tailed[37]. Intuitively, if a random variableY is
said to respect aheavy-tailed distribution, then it usually has a non-
negligible probability of taking large values (larger than a threshold)
[37]. In fact, a majority of widely applied distributions including
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Table 1: Mathematical Notations

Symbol Size Description

x¹i º
t R Input of timet in i -th sequence

y¹i º
t R Output of timet in i -th sequence

v ¹i º
t f� 1; 0; 1g Extreme event indicator of timet in i -th

sequence
N N Number of sequences
T N Train length of each sequence
H N Size of latent factors in GRU
M N Size of memory module
� N Size of each window
ot R Prediction of timet in i -th sequence
ht RH Hidden state from GRU at timet
wj R� Window j of memory network
sj RH Latent representation of windowj
qj f� 1; 0; 1g Extreme event indicator of windowj
pj »� 1;1¼ Prediction of extreme event indicator of

window j
~ot R Prediction from GRU part at timet
� t RM Attentive weights at timet
ut »� 1;1¼ Prediction of extreme event at timet

Gaussian, Poisson are not heavy-tailed, therefore,light-tailed. Only
a few number of parametric distributions are heavy-tailed, e.g.
Pareto distribution and log-Cauchy distribution. Therefore mod-
eling with light-tailed parametric distributions would bring un-
avoidable losses in the tail part of the data. Such a statement can be
illustratively presented with Fig. 2(a), where we choose a light-tailed
truncated normal distribght-tailed distribution �ts data around the
center quite well, the inaccuracy on the tail part is intolerable.

2.2.2 Extreme Value Theory.Historically, Extreme Value Theory
(EVT) take a further step on studying these heavy-tailed data. EVT
studies the distribution of maximum in observed samples [43]. For-
mally speaking, supposeT random variablesy1; : : : ;yT are i.i.d
sampled from distributionFY , then the distribution of the maxi-
mum is,

lim
T!1

Pf max¹y1; � � � ;yT º � yg = lim
T!1

FT ¹yº = 0 (4)

In order to obtain a non-vanishing form ofPf max¹y1; � � � ;yT º �
yg, previous researches proceeded by performing a linear trans-
formation on the maximum. As a fundamental result in EVT, the
following theorem states that the distribution ofY after linearly
transformed is always limited to few cases.

Theorem 2.1 ([17, 20]). If there exists a linear transformation
on Y which makes the distribution in Eq. 4 non-degenetated to 0.
Then the class of the non-degenerated distributionG¹yº after the
transformation must be the following distribution:

G¹yº =

(
exp

�
� ¹ 1 � 1

 yº
�

; , 0; 1 � 1
 y > 0

exp
�
� e� y �

; = 0
(5)

Usually, the formG¹yº is called Generalized Extreme Value dis-
tribution, with  , 0 asextreme value index. Such a statement
sometimes is also regarded as the law of large numbers for the
maximum [27]. In fact, the theorem above has a natural extension

(a) Illustration of Heavy Tail Distribution (b) Illustration of OptimizedP¹oº

Figure 2: Distributions of yt in time-series data, where yt are
sampled from climate dataset as introduced in experiments.

to observations which exceed certain �xed threshold as follows,
which would be useful in the next part.

2.2.3 Modeling The Tail.Previous works extend the above theorem
to model the tail distribution of real-world data by [18, 47],

1 � F¹yº � ¹ 1 � F¹� ºº
h
1 � logG

� y � �
f ¹� º

� i
;y > � (6)

where� > 0 is a su�ciently large threshold.Previous researches
point that the approximation in Eq. 6 can �t the tail distribution well
[12]. Although there are many methods for modeling the distribu-
tions of extreme values [1], due to the rare and irregular essence of
extreme events, it is always hard to forecast these pumping points
[19]. What is worse, these extreme events could a�ect the learning
of deep neural networks, where we will discuss the reason in detail
in the next section.

3 PROBLEMS CAUSED BY EXTREME EVENTS
In this part we will deliver our explanation on why extreme event
problem is almost inevitable for previously studied DNN models in
time-series prediction.

3.1 Empirical Distribution After Optimization
We further investigate the in�uence of extreme events in time series
prediction. For the sake of simplicity, we only pay our attention to
one sequence, that is,X1:T andY1:T . From the probabilistic perspec-
tive, minimization of the loss function in Eq. 2 is in essence equiva-
lent to the maximization of the likelihoodP¹yt jxt º. Based on Breg-
man's theory [5, 40], minimizing such square loss always has the
form of Gaussian with variance� , that is,p¹yt jxt ; � º = N¹ot ; � 2º,
where� is the parameter of the predicting model,O1:T are outputs
from the model.

Therefore, Eq. 2 can be replaced with its equivalent optimization
problem as follows

max
�

TÖ

t =1

P
�
yt jxt ; �

�
(7)

With Bayes's theorem, the likelihood above can be written as,

P¹YjXº =
P¹X jYºP¹Yº

P¹Xº
(8)

By assuming the model has su�cient learning capacity with
parameter� [23, 29], we claim the inference problem will yield
an optimal approximation toP¹YjXº. It is worth to notice that our
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assumption on learning capacity is a widely adopted assumption
in previous researches [3, 21] and can be implemented with a deep
neural network structure in practice. Furthermore, ifP¹YjXº has
been perfectly learned, so as the distributionsP¹Yº;P¹Xº;P¹X jYº,
which are therefore totally independent of inputsX. By considering
the following observations,

� The discriminative model (Eq. 2) has no prior onyt
� The outputot is learned under likelihood as normal distribution

it is therefore reasonable to state that empirical distributionP¹Yº
after optimization should be of the following form,

P̂¹Yº =
1
N

TÕ

t =1

N¹yt ; �̂ 2º (9)

where constant̂� is an unknown variance. In consideration of its
similarity to Kernel Density Estimator (KDE) with Gaussian Kernel
[38], we can reach an intermediate conclusion that such a model
would perform relatively poor if the true distribution of data in
series is heavy-tailed, according to [7].

3.2 Why Deep Neural Network Could Su�er
Extreme Event Problem

As discussed above, the distribution of output from a learning model
with optimal parameters can be regarded as a KDE with Gaussian
Kernel (Eq. 7).

Since nonparametric kernel density estimator only works well
with su�cient samples, the performance therefore is expected to
decrease at the tail part of the data, where sampled data points
would be rather limited [7]. The main reason is that the range of
extreme values are commonly very large, thus few samples hardly
can cover the range. As depicted in Fig. 2(b), we sampleyt from the
true distribution and �t a KDE with Gaussian Kernel. As is shown,
since there are only two samples withyt > 1:5, the shape of �tted
KDE peaks inconsistently around these points. Moreover, as a large
majority of samples are centered at 0, therefore the probability
density around origin estimated by KDE tends to be much higher
than the true distribution.

Formally, let us supposex1;x2 are two test samples with cor-
responding outputs aso1 = 0:5;o2 = 1:5. As our studied model is as-
sumed to have su�cient learning capacity for modelingP¹Xº;P¹X jYº,
thus we have

P¹y1jx1; � º =
P¹X jYºP̂¹Yº

P¹Xº
�

P¹X jYºPtrue¹Yº
P¹Xº

= Ptrue¹y1jx1º (10)

Similarly P¹y2jx2; � º � Ptrue¹y2jx2º. Therefore, in this case, the
predicted value from deep neural network are always bound, which
immediately disables deep model from predicting extreme events,
i.e. causes theunder�tting phenomenon.

On the other side, as we have discussed in related work, several
methods propose to accent extreme points during the training by,
for example, increasing the weight on their corresponding training
losses. In our formulation, these methods are equivalent to repeating
extreme points for several times in the dataset when �tting KDE.
Its outcome is illustrated by dot line in Fig. 2(b). As a consequence,
we have

P¹y2jx2; � º =
P¹X jYºP̂¹Yº

P¹Xº
�

P¹X jYºPtrue¹Yº
P¹Xº

= Ptrue¹y2jx2º (11)

Intuitively, the inequality above indicates, with the estimated prob-
ability of extreme events being added up, the estimation of normal
events would simultaneously become inaccurate. Therefore, normal
data in the test set is prone to be mis-classi�ed as extreme events,
which therefore marks theover�tting phenomenon.

As we can see, the extreme events problem in DNN is mainly
caused by that there is no su�cient prior on tail part of observations
yt . Through maximizing likelihood could lead to a nonparametric
estimation ofyt , which could easily causeunder�tting problem.
On the other side, if we increase the weight on those large values,
DNN could easily su�er theover�tting problem. In order to alleviate
these problems in DNN, we will provide an elegant solution, which
aims at imposing prior on extreme events for DNN in predicting
time series data.

4 PREDICTING TIME-SERIES DATA WITH
EXTREME EVENTS

In order to impose prior information on tail part of observations for
DNN, we focus on two factors:memorizing extreme eventsandmod-
eling tail distribution. For the �rst factor we propose to use memory
network to memorize the characteristic of extreme events in his-
tory, and for the latter factor we propose to impose approximated
tailed distribution on observations and provide a novel classi�ca-
tion called Extreme Value Loss (EVL). Finally we combine these two
factors and introduce the full solution for predicting time series
data with extreme values.

4.1 Memory Network Module
As pointed out by Ghil et al., extreme events in time-series data
often show some form of temporal regularity [19]. Inspired from
this point, we propose to use memory network tomemorizethese
extreme events, which is proved to be e�ective in recognizing
inherent patterns contained in historical information [45]. First,
de�ne the concept ofwindowin our context.

4.1.1 Historical Window.For each time stept , we �rst randomly
sample a sequence ofwindowsby W = fw1; � � � ;wM g, whereM
is the size of the memory network. Each windowwj is formally
de�ned aswj = »xt j ;xt j +1; � � � ;xt j +� ¼, where� as the size of the
window satisfying0 < t j < t � � .

Then we propose to apply GRU module to embed each window
into feature space. Speci�cally, we usewj as input, and regard the
last hidden state as the latent representation of this window, de-
noted assj = GRU¹»xt j ;xt j +1; � � � ;xt j +� ¼º 2RH . Meanwhile, we
apply a memory network module to memorize whether there is a ex-
treme event int j + � + 1for each windowwj . In implementation, we
propose to feed the memory module byqj = vt j +� +1 2 f� 1; 0; 1g.

For an overview of our memory network based module, please
see Fig. 3(a). In summary, at each time stept , the memory of our
proposed architecture consists of the following two parts:

� Embedding ModuleS 2 RM� H : sj is the latent representation of
history window j.

� History ModuleQ 2 f� 1; 0; 1gM : qj is the label of whether there
is a extreme event after the windowj.

4.1.2 A�ention Mechanism.In this part, we further incorporate
the module demonstrated above into our framework for imbalanced
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