
Interactive Path Reasoning on Graph for Conversational
Recommendation

Wenqiang Lei1, Gangyi Zhang2, Xiangnan He2∗, Yisong Miao1, Xiang Wang1, Liang Chen3,
Tat-Seng Chua1

1National University of Singapore, 2University of Science and Technology of China, 3Sun Yat-Sen University
wenqianglei@gmail.com,gangyi.zhang@outlook.com,xiangnanhe@gmail.com,miaoyisong@gmail.com

xiangwang@u.nus.edu,chenliang6@mail.sysu.edu.cn,chuats@comp.nus.edu.sg

ABSTRACT
Traditional recommendation systems estimate user preference on
items from past interaction history, thus suffering from the lim-
itations of obtaining fine-grained and dynamic user preference.
Conversational recommendation system (CRS) brings revolutions
to those limitations by enabling the system to directly ask users
about their preferred attributes on items. However, existing CRS
methods do not make full use of such advantage — they only use
the attribute feedback in rather implicit ways such as updating the
latent user representation. In this paper, we proposeConversational
Path Reasoning (CPR), a generic framework that models conver-
sational recommendation as an interactive path reasoning problem
on a graph. It walks through the attribute vertices by following user
feedback, utilizing the user preferred attributes in an explicit way.
By leveraging on the graph structure, CPR is able to prune off many
irrelevant candidate attributes, leading to better chance of hitting
user preferred attributes. To demonstrate how CPR works, we pro-
pose a simple yet effective instantiation named SCPR (SimpleCPR).
We perform empirical studies on the multi-round conversational
recommendation scenario, the most realistic CRS setting so far that
considers multiple rounds of asking attributes and recommending
items. Through extensive experiments on two datasets Yelp and
LastFM, we validate the effectiveness of our SCPR, which signifi-
cantly outperforms the state-of-the-art CRS methods EAR [13] and
CRM [24]. In particular, we find that the more attributes there are,
the more advantages our method can achieve.

CCS CONCEPTS
• Information systems→Users and interactive retrieval;Rec-
ommender systems; Personalization; • Human-centered com-
puting → Interactive systems and tools.

KEYWORDS
Conversational Recommendation; Interactive Recommendation;
Recommender System; Dialogue System

∗Xiangnan He is the Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403258

ACM Reference Format:
Wenqiang Lei1, Gangyi Zhang2, XiangnanHe2∗, YisongMiao1, XiangWang1,
Liang Chen3, Tat-Seng Chua1. 2020. Interactive Path Reasoning on Graph for
Conversational Recommendation. In Proceedings of the 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’20), August
23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3394486.3403258

1 INTRODUCTION
Personalized recommendation systems have been standard fixtures
in many scenarios like E-commerce (e.g., Amazon) and content
sharing platforms (e.g., YouTube). They traditionally conduct rec-
ommendations by inferring user preference on items from their
historical actions [10, 20]. While proven to be a success, traditional
methods suffer from the intrinsic limitation of passively acquiring
user feedback in the process of making recommendations. Such
information asymmetry makes it hard to obtain dynamic and fine-
grained user preference, preventing the system to provide accurate
and explainable recommendation service.

The recently emerging conversational recommendation system
(CRS) brings revolutions to the aforementioned limitation. CRS is
envisioned as the deep composition of a conversational system and
a recommendation system [13]. It makes recommendations when
interacting with users using natural languages and can proactively
ask a user whether he/she likes an item attribute or not. As such,
CRS has the natural advantage of conducting dynamic and explain-
able recommendation by utilizing the user’s preferred attributes
as interpretable reasons. However, existing works only utilize at-
tribute feedback implicitly by mapping attributes into a latent space,
which we believe does not make full use of the advantage of at-
tribute feedback. For example, Bi et al. [1], Zhang et al. [33] update
the opaque user embedding once obtaining the user feedback on an
attribute. Lei et al. [13] feed the preferred attribute into a variant
of factorization machine [20] to score items in the latent space.
Sun and Zhang [24] feed the user attribute preference to a policy
network, which is trained to decide the next action — whether to
make recommendations or ask an attribute.

The key hypothesis of this work is that, a more explicit way
of utilizing the attribute preference can better carry forward the
advantages of CRS — being more accurate and explainable. To this
end, we propose a novel conversational recommendation frame-
work called Conversational Path Reasoning (CPR). Inspired by
the recent success of graph-based recommendation [25], we model
conversational recommendation as the process of finding a path in
user-item-attribute graph interactively. Figure 1 shows an illustra-
tive example. The vertices in the right graph represent users, items

https://doi.org/10.1145/3394486.3403258
https://doi.org/10.1145/3394486.3403258

Hi! I'm looking for a dance
music artist.

Do you like rock music?

Yes! I like it!

Do you like pop music?

Yes! I like it!

You may like music artist
Michael Jackson !

Yes! Thank you!

Turn 1

Ask attribute

𝑇𝑂𝑀

dance

𝐻𝑎𝑙𝑜𝑢

Thomas

trip-hop

rock

Michael
Jackson

𝑆𝑖𝑚𝑜𝑛
𝐶𝑢𝑟𝑡𝑖𝑠

Alice

𝑊𝑎𝑔𝑜𝑛
𝐶ℎ𝑟𝑖𝑠𝑡

pop

electronic

𝑇ℎ𝑒 𝑃𝑜𝑤𝑒𝑟
𝑆𝑡𝑎𝑡𝑖𝑜𝑛

𝐵𝑙𝑜𝑐
𝑃𝑎𝑟𝑡𝑦

User start

Turn 1

Turn 2

Turn 2

Walk

Turn 3 Walk

Turn 4
Recommend

Turn 3

Ask attribute

Walk

Walk

Turn 4

Recommend

Walk

Walk

Figure 1: An illustration of interactive path reasoning in
CPR. As the convention of this paper, light orange, light
blue, and light gold vertices represents the user, attribute
and items respectively. For example, the artiest Michael
Jackson is an item and and the attributes are rock, dance etc.

and attributes as well as other relevant entities. An edge between
two vertices represent their relation, for example, a user-item edge
indicates that the user has interacted with the item, and a user-
attribute edge indicates that the user has affirmed an attribute in
a conversation session. A conversation session in our CPR is ex-
pressed as a walking in the graph. It starts from the user vertex,
and travels in the graph with the goal to reach one or multiple item
vertices the user likes as the destination. Note that the walking is
navigated by users through conversation. This means, at each step,
a system needs to interact with the user to find out which vertex to
go and takes actions according to user’s response.

We now go through an example in Figure 1 to better understand
the process. A user TOM is seeking a recommendation of music
artists. The walking starts from the user vertex (“TOM”), and the
session is initialized by the user-specified attribute (“dance”). Ac-
cordingly, the system makes its first step from “TOM” to “dance”.
Afterwards, the system identifies an adjacent attribute (c.f. Sec 4.1)
vertex on the graph to consult the user, or recommendation a list
of items. If the user confirms his preference to the asked attribute,
the system will transit to that attribute vertex. However, if the
user rejects the attribute, or rejects a recommendation, the system
will stay at the same vertex and consult the user for another at-
tribute. The session will repeat such cycle multiple times until the
recommended items are accepted by the user1.

The proposed CPR framework, as a new angle of conducting
conversational recommendation, conceptually brings several merits
to the development of CRS:

1. It is crystally explainable. It models conversational recommenda-
tion as an interactive path reasoning problem on the graph, with
each step confirmed by the user. Thus, the resultant path is the
correct reason for the recommendation. This makes better use of
the fine-grained attribute preference than existing methods that
only model attribute preference in latent space such as [13].

2. It facilitates the exploitation of the abundant information by intro-
ducing the graph structure. By limiting the candidate attributes
to ask as adjacent attributes of the current vertex, the candidate

1In our descriptions on graphs, we sometime directly use the word item, attribute or
user to refer to their corresponding vertices for simplicity.

space is largely reduced, leading to a significant advantage com-
pared with existing CRS methods like [13, 24] that treat almost all
attributes as the candidates.

3. It is an aesthetically appealing framework which demonstrates
the natural combination and mutual promotion of conversation
system and recommendation system. On one hand, the path walk-
ing over the graph provides a natural dialogue state tracking for
conversation system, and it is believed to be efficient to make the
conversation more logically coherent [12, 14]; on the other hand,
being able to directly solicit attribute feedback from the user, the
conversation provides a shortcut to prune off searching branches
in the graph.

To validate the effectiveness of CPR, we provide a simple yet ef-
fective implementation called SCPR (SimpleCPR), targeting at the
multi-round conversational recommendation (MCR) scenario (c.f.
Sec 3). We conduct experiments on the Yelp and LastFM datasets,
comparing SCPR with state-of-the-art CRS methods [13, 24] which
also use the information of user, item and attribute but does not
use graph. We analyze the properties of each method under dif-
ferent settings, including different types of questions (binary and
enumerated) and different granularity of attributes. We find that
SCPR outperforms existing methods on recommendation success
rate, especially in the settings where the attribute space is larger.

In summary, our contributions are two-folds:
• We propose the CPR framework to model conversational recom-
mendation as a path reasoning problem on a heterogeneous graph
which provides a new angle of building CRS. To the best of our
knowledge, it is the first time to introduce graph-based reasoning
to multi-round conversational recommendation.

• To demonstrate the effectiveness of CPR, we provide a simple
instantiation SCPR, which outperforms existing methods in vari-
ous settings. We find that, the larger attribute space is, the more
improvements our model can achieve.

2 RELATEDWORK
The success of a recommendation system hinges on offering the
relevant items of user interest accurately and timely. At beginning,
recommendation systems are largely built on the collaborative fil-
tering hypothesis to infer a distributed representation of the user
profile. Representative models include matrix factorization [11]
and factorization machines [9, 20]. However, by nature, these ap-
proaches suffer from two intrinsic problems. The first one is the
inability of capturing user dynamic preferences with the strict
assumption that a user’s interest is static over the long-term hori-
zon [23]. The second problem is the weak explainability as the
user preference representation is only a continuous vector. Later
works try to introduce Markov models [21] and multi-arm bandit
methods [28] to solve the dynamic problem but the explainability
still remains to be unsatisfactory.

Recently,Graph-based recommendationmethods attract in-
creasing research attention. One line of research leverages on the
better expressiveness of the graph. They either explore implicit
properties like collaborative signals [25, 35] from the global connec-
tivities, or focus on yielding better representations of user/items
by incorporating latent network embeddings [30]. Another line of

Table 1: Main notations used in the paper.

u ; v ; p User, item, and attribute
P An active attribute path in the graph

aat An adjacent attribute of the attribute pt
AAt The set of adjacent attributes of the attribute pt
Pu The set of attributes confirmed by u in a session

Pcand The set of candidate attributes
Vp The set of items that contain the attribute p

Vcand The set of candidate items;
a The action of CPR, either aask or ar ec

work leverages on the explainability of the graph, modeling recom-
mendation as a path reasoning problem on the graph. They aim
to find a path from a user vertex to the target item, and use the
resultant path as the recommendation reason [26, 29]. While being
explainable, such methods suffer from two problems: 1) they are
still static models which intrinsically cannot capture the preference
dynamics, and 2) the modeling complexity is high such that pruning
becomes a critical step [29].

Conversational recommendation system (CRS) becomes an
appealing solution to both the dynamic preference and weak ex-
plainability problems as it dynamically gets user explicit feedback.
As an emerging topic, various problems under different settings
have been explored [5–7, 15–17, 19, 22, 24, 31–34], such as natural
language understanding and generation [5, 15], multi-model and
multi-media [17], monitoring user feedback on viewing, clicking
and commenting [31], and attribute prediction [19].

We believe that how to dynamically ask attribute questions and
make recommendations upon attribute answer is the key at current
stage of conversational recommendation. As such, we consider the
system asking user preference on attributes and making recommen-
dation based on those attributes in a multi-turn basis. As discussed
in Section 1, main works [1, 13, 24, 33] along this line do not use
attributes explicitly. We argue more explicitly utilizing the attribute
would better carry forward the advantage of conversational rec-
ommendation. Therefore, this paper makes a key contribution to
introduce graph to increase the explainability.

3 MULTI-ROUND CONVERSATIONAL
RECOMMENDATION SCENARIO

As conversational recommendation is an emerging research topic,
various settings have been explored in recently. This paper follows
the multi-round conversational recommendation (MCR) scenario
since it is the most realistic setting in research so far [13]. In a MCR
setting, a CRS is free to ask attributes or make recommendation
multiple times. We use a round to emphasize one trial of recom-
mendation. This is in contrast to the single-round conversational
recommendation as adopted by [24] where the system asks attribute
multiple times followed by making recommendation only once,
after which the conversation session ends regardless of whether
the recommendation succeeds. The multi-round setting is more
challenging than the single-round one as a CRS has more freedom
to take actions which makes the policy space more complex.

Specifically, an item v is associated with a set of attributes Pv .
The attributes broadly cover various descriptions as long as it can
describe certain properties of an item. For example, in the music
artist recommendation domain (e.g., in the lastFM dataset), an item

Algorithm 1 The MCR Scenario

Input: user u, all attributes P, all items V , the number of items
to recommend k , the maximum number of turns T ;

Output: recommendation result: success or fail;
1: User u specifies an attribute p0;
2: Update: Pu = {p0}; Pcand = P \ p0; Vcand = Vp0
3: for turn t = 1; 2; 3:::T do
4: Select an action a
5: if a == aask then
6: Select the top attribute p from Pcand
7: if u accepts pt then
8: Update: Pu = Pu ∪ p; Vcand = Vcand ∩Vp

9: Update: Pcand = Pcand \ p
10: else[a == ar ec]
11: Select the top-k itemsVk fromVcand
12: if User acceptsVk then
13: Recommendation succeeds; Exit.
14: else[User rejectsVk]
15: Update:Vcand = Vcand \ Vk

16: Recommendation fails; Exit.

is a music artist and the attribute may be descriptions like Jazz,
Classic, Energetic, Peaceful etc. The items and attributes are provided
by the dataset. During a conversation session, a CRS obtains the
user’s fine-grained preference by asking whether he likes particular
attributes. Based on such conversations, a CRS aims to provide
accurate recommendations in the shortest conversational turns.

A conversation session starts on the user side, which initializes
the attribute p0 by specifying an attribute the user likes (e.g., I
like some dance music). Next, the CRS is free to ask his preference
on an attribute selected from the candidate attribute set Pcand
or recommend items from the candidate item set Vcand . Then,
the user needs to give feedback accordingly, either accepting or
rejecting them. The CRS makes use of such feedback from the
user — if the user accepts the asked attribute, the CRS puts it in the
preferred attribute setPu and removes it fromPcand . Then the CRS
updates Vcand to Vcand ∩Vp , representing the items containing
all attribute confirmed by the user in the session. Vp denote the
items containing the attribute p; if he rejects the asked attribute, the
CRS removes it from Pcand ; if he rejects the recommended items,
the CRS removes them fromVcand . Based on the updated sets, the
CRS takes the next action, i.e., asking or recommending, and repeats
the above process. The conversation session ends until the CRS hits
the user preferred items or reaches the maximum number of turns
T . This process is detailed in Algorithm 1.

Following Lei et al. [13], it is noticeable that the above MCR sce-
nario makes two assumptions. (1) It assumes that the user clearly ex-
presses his preferences by specifying attributes without any reserva-
tions, and the items containing the preferred attributes are enough
in the dataset. Given this assumption, the CRS takes the attributes
accepted by the user as a strong indicator. For example, it only
considers all items containing all attributes he accepts (line 2 and
line 8 in Algorithm 1). This is because the items that contain all
the preferred attributes have higher priority than the items do not.
Since such higher-prioritized items are enough, ignoring the other
candidate items is a reasonable simplification to this problem. (2)

𝑤1

𝑅𝑒𝐿𝑈

𝑤2

𝑄 𝑠, 𝑎

Policy Network

𝑠ℎ𝑖𝑠 𝑠𝑙𝑒𝑛

Concatenate

𝑎𝑎𝑠𝑘

𝑎rec

State

𝑝0

𝑢0

𝑣0

𝑣5
𝑢𝑓

𝑎𝑟𝑒𝑐

𝑎𝑎𝑠𝑘
Adjacent attribute

𝑢 𝑣

𝑓𝑣

𝑝𝑗

User start

𝑣2

𝑝1

𝑝2

𝑢𝑓

𝑣3

𝑣4

𝑣1

𝒂𝒓𝒆𝒄: score items(𝑣 message)

𝒂𝒂𝒔𝒌: score attribute(𝑝 message)
Message propagation

𝜋∗ 𝑠 = arg max
𝑎

𝑄∗ (𝑠, 𝑎)

Figure 2: CPR framework overview. It starts from the user
u0 and walks over adjacent attributes, forming a path (the
red arrows) and eventually leading to the desired item. The
policy network (left side) determines whether to ask an at-
tribute or recommend items in a turn. Two reasoning func-
tions f and д score attributes and items, respectively.

It assumes that the CRS does not handle strong negative feedback.
This means, if a user rejects the asked attribute, the CRS does not
distinguish whether the user does not care it or hates it. It is because
such negative feedback is hard to obtain in current data, making
it difficult to simulate in experimental surroundings. Therefore,
the CRS equally treats all rejected attributes as does not care and
only removes the attributes from the candidate set without further
actions like removing all items that contain the rejected attributes.

In this scenario, Lei et al. [13] distills several key research prob-
lems, such as: (1) Which items to recommend? (2) Which attribute
to ask? (3) When to ask attributes and when to make recommen-
dations? We next articulate how our method conceptually brings
benefits to address these questions.

4 PROPOSED METHODS
We first propose Conversational Path Reasoning (CPR), a general
solution framework for graph-based conversational recommenda-
tion. We then introduce a simple yet effective instantiation SCPR
to demonstrate how it works.

4.1 CPR Framework
A graph uses vertices to represent entities and edges to represent
the relationships between entities. Specifically, a graphG is defined
as a set of triplets {(h; r ; t)}, indicating a certain relation r exists
between the head entity h and the tail entity t . In this paper, we
consider the graph containing three types of entities, namely, user
u, item v , and attribute p. The relations between each types of
entities can vary a lot depending on specific datasets (c.f. Table
4 in Appendix A). For example, in Figure 2, the edge between the
u0 and p0 means the u0 has specified his preference on attribute
p0 in his static profile; the edge between u0 and v0 indicate the
user u0 has interacted with v0. Note that, in this paper, we do not
specifically model different semantics of relations, and only care
care whether there is an edge between two vertices for simplicity.
In addition, the item, attributes and user information and their

relations are also used by existing conversational recommendations
systems [13, 24]. The difference is that, our CPR organizes such
three types of information in graph and leverages on the advantages
of graph structure to conduct conversational recommendation.

In the MCR scenario, the system treats attributes as the prefer-
ence feedback. To explicitly utilize these feedback, CPR performs
the walking (i.e., reasoning) over the attribute vertices. Specifically,
CPR maintains an active path P , comprising the attributes con-
firmed by a user (i.e., all attributes in Pu) in the chronological order,
and exploring on the graph for the next attribute vertex to walk.
Note that, (1) CPR does not visit the attributes that have been vis-
ited before and does not consider the directions of edges.(2) The
walking in CPR differs from existing work of graph-based recom-
mendation [26, 29], which performs the walking over all types of
vertices. We believe that restricting walking on attributes as in
CPR brings two benefits. First, it emphasizes the importance of the
attributes as explicit reasons for recommendation. Second, it makes
the walking process more concise, eliminating the uncertainty in
an unnecessarily long reasoning path which might lead to error
accumulation [29].

Now, we move to the detailed walking process in CPR. Assume
the current active path is P = p0;p1;p2; :::;pt . The system stays
at pt and is going to find the next attribute vertex to walk. This
process can be decomposed into three steps: reasoning, consultation
and transition.

4.1.1 Reasoning. This is the beginning of a turn. It is triggered
when an attribute is initialized or confirmed by the user. In this
step, CPR scores items and attributes, solving the problem of which
items to recommend and which attribute to ask. In the context of
MCR, CPR makes the key contribution of formalizing the scoring as
message propagation on the graph. Because the scoring of attributes
and items are interdependent, we adopt an alternating optimization
strategy to optimize them in an asynchronous manner which has
been proven to be effective [36].

First, the alternating optimization propagates messages from at-
tributes to items to score the items (the light gold arrows in Figure 2).
Specifically, all attributes in the path P (i.e.,∀pi ∈ Pu) together with
the user vertex u propagate messages to candidate items in Vcand
(from Section 3, we know thatVcand actually corresponds to the
vertices directly connecting all Pu). As an example, in Figure 2,
when a user initializes his preferred attribute p0 (i.e., P = p0), the
CPR propagates messages from p0 to its directly connected items
(i.e., v0, v1, v4, v5) to score these items. The scoring function for
each item can be any implementation of traditional recommender
models, abstracted as

sv = f (v;u; Pu); (1)

where sv is a scalar indicating the recommendation score of item v
in the current conversation session, and Pu denotes the attributes
confirmed by u in the session.

Second, the candidate items in turn propagate messages to the
candidate attributes (the light blue arrows in Figure 2). The idea
is that, with updated scores (i.e., sv) calculated in the first step,
the items provide additional information to find proper attributes
to consult the user. For example, the attributes that can reduce
the uncertainty in item scoring. Specifically, CPR leverages on

the natural constraint of graph structure, considering only the
transition to the adjacent attributes— if the shortest path between
attribute pt and aat does not contain any other attribute, then aat
is the adjacent attribute of pt . For example, in the graph of Figure 2,
both p1 and p2 are the adjacent attribute of p0. Formally, in CPR,
the candidate attribute set Pcand = AAt \ (Pu ∪ Pr e j), where
AAt stores all adjacent attributes of pt and Pr e j is the attributes
rejected by the user. Finally, for a candidate attribute p ∈ Pcand ,
its score is calculated by propagating messages from the candidate
itemsVcand :

sp = д(u;p;Vcand); (2)

This adjacent attribute constraint brings two benefits. (1) In terms
of recommendation, it significantly reduces the search space for
selecting which attribute to ask. Note that state-of-the-art conversa-
tional recommendation systems like EAR [13] and CRM [24] treat
the whole attribute set P as the candidate space, increasing the
difficulty to learn a good decision function. (2) In terms of conversa-
tion, constraining the adjacent attributes makes the dialogue more
coherent. In linguistics, the closer the two entities are in any two
adjacent utterances, the more coherent the conversation will be [8].

4.1.2 Consultation. Once a reasoning step is completed, CPRmoves
to the consultation step. The purpose of this step is to decidewhether
to ask an attribute or to recommend items, with the goal of achieving
successful recommendations in fewest turns. We address it as a
reinforcement learning (RL) problem. Specifically, a policy function
π (s) is expected to make the decision based on the global dialogue
state s, which can include any information useful for successful
recommendation, such as the dialogue history, the information
of candidate items.The output action space of the policy function
contains two choices: aask or ar ec , indicating whether to perform
top-k recommendations or to ask an attribute in this turn. If the
RL decision is aask , we directly take highest-scored attribute from
Pcand , where the score is sp as defined in Eq. (2). Otherwise, we
recommend top-k items from Vcand according to the score of sv ,
which is defined in Eq. (1).

It is worth mentioning that our design of RL here reflects another
major difference with existing conversational recommendation sys-
tems EAR [13] and CRM [24]. Although they also learn policy
networks with RL, their policy is to decide which attribute to ask,
rather than our choice of whether to ask attribute. Which means, the
size of their action space is |P | + 1, where |P | denotes the number
of attributes. This greatly increases the difficulty to learn the policy
well, especially for a large |P |, since RL is notoriously difficult to
train when the action space is large [4]. In contrast, the action space
of our RL is of size 2, being much easier to train.

4.1.3 Transition. The transition step will be triggered after the
user confirms an asked attribute pt . CPR first performs walking
from the last confirmed attribute pt−1 to pt , forming an extended
path P = p0;p1; :::pt−1;pt . Then, we add pt to the preferred at-
tribute set Pu . Accordingly, the candidate attribute set is updated
by Pcand = AAt \ (Pu ∪ Pr e j), and the candidate item setVcand
is updated by keeping the items that directly link to all attributes
in the updated Pu . Note that, if an attribute is rejected by the user,
we just remove it from the candidate attribute set without vertex
transition (line 9 of Algorithm 1). After the transition, our CPR

starts the next conversation turn, repeating the same reasoning–
consultation–transition process 2 .

4.2 SCPR Model
To materialize the CPR framework, we need to specify functions
f (v;u; Pu), д(u;p;Vcand) and π (s). We here provide a simple im-
plementation SCPR, adapting some designs from EAR [13] — a
latest conversational recommendation system.

4.2.1 Reasoning - Item Scoring. In the reasoning stage, f (v;u; Pu)

scores the item v by propagating messages from the user-preferred
attributes. We use the inner product between two vertex embed-
dings as the message, same as the FM variant used in EAR:

f (v;u; Pu) = uT v +
Õ

p∈Pu

vT p; (3)

where u, v and p denote the embedding of the user u and item v
and attribute p, respectively. The first term models the message
propagated from the user to the item, and the second term mod-
els the messages propagated from user-preferred attributes to the
item. These embeddings are randomly initialized and trained of-
fline with the goal of scoring the interacted items higher than the
non-interacted ones. The training objective is a multi-task pairwise
loss, which follows EAR and we leave the details to Appendix B.

4.2.2 Reasoning - A�ribute Scoring. Another function of the rea-
soning step is to decide which attribute is worth asking according
to the current system state. An expected strategy is to find the one
that can better eliminate the uncertainty of items. As information
entropy has proven to be an effective method of uncertainty estima-
tion [27], we implement the д(u;p;Vcand) function as information
entropy but adapt it to a weighted way:

д(u;p;Vcand) = −prob(p) · log2(prob(p));

prob(p) =

˝
v ∈Vcand∩Vp

σ (sv)˝
v ∈Vcand

σ (sv)
;

(4)

where σ is the sigmoid function to normalize the item score sv to
(0; 1),Vcand denotes the candidate items, andVp denotes the items
that include the attribute p. Different from the standard entropy
which treats each item equally, our weighted entropy employed
here assign higher weights to the important items (i.e., the items in
Vp and scored higher) in attribute scoring. If there is no message
propagated to an attribute, we define its entropy to be 0. Note that,
in this implementation, we do not consider user u for calculating д
for simplicity. It does not not mean we don’t value the importance
ofu in deciding attribute. We leave the exploration of incorporating
u for future works.

4.2.3 Consultation - RL Policy. We use a two-layer feed forward
neural network as our policy network. For the ease of convergence,
we use the standard Deep Q-learning [18] for optimization3

2Unlike EAR, CPR does not specifically answer the questions of how to adapt user
feedbacks like EARS by designing a reflection mechanism. It is because [13] reports it
is still an open and challenging question with lots of details to be explored. Hence we
leave it for future works.
3According to our experiments, Deep Q-learning does not lead to better model, while
making the model much easier to converge. We also call the value network (the termi-
nology in Deep Q-learning) as policy network for ease of discussion.

The policy network takes the state vector s as input and outputs
the values Q(s; a) for the two actions, indicating the estimated
reward for aask or ar ec . A system will always choose the action
with higher estimated reward. The state vector s is a concatenation
of two vectors:

s = shis ⊕ slen; (5)
where shis encodes the conversation history, which is expected
to guide the system to act smarter, e.g., if the asked attributes
are accepted for multiple turns, it might be a suitable timing to
recommend. The slen encodes the size of candidate item set. As
discussed by [13], it is easier to make successful recommendations
when there are fewer candidate items.

The reward follows [13], containing five kinds of rewards, namely,
(1) rr ec_suc , a strongly positive reward when the recommendation
succeeds, (2) rr ec_f ail , a strongly negative reward when the rec-
ommendation fails, (3) rask_suc , a slightly positive reward when
the user accepts an asked attribute, (4) rask_f ail , a negative reward
when the user rejects an asked attribute, and (5) rquit , a strongly
negative reward if the session reaches the maximum number of
turns. The accumulated reward is the weighted sum of these five.
The detailed value for each reward can be found in Sec 5.2.

While some components of our SCPR are adapted from EAR, it is
worth highlighting two significant differences between them. First,
SCPR leverages on the adjacent attribute constraint on the graph,
largely reducing the search space of attributes. Second, SCPR scores
attributes through message propagation on the graph, instead of
by the policy network as what has been done in EAR. This enables
our policy network to have a much smaller decision space — only
two actions, alleviating the pressure for policy making.

5 EXPERIMENTS
In this section, we are going to evaluate our proposed CPR frame-
work by empirically examining the SCPR implementation on two
real-world datasets. We use the following research questions (RQs)
to guide our experiment4.

• RQ1. How does our CPR framework compared with existing con-
versational recommendation methods?

• RQ2. Are the adjacent attribute constraint and smaller decision
space in SCPR really effective?

• RQ3. Can our method make the reasoning path explainable and
easy-to-interpret?

5.1 Dataset Description
For better comparison, we follow EAR [13] to conduct experiments
on LastFM5 for music artist recommendation and Yelp6 for business
recommendation. LastFM contains 1,801 users and 27,675 items and
76,693 interactions. Yelp contains 27,675 users, 70,311 items and
1,368,606 interactions.

In the original paper of EAR [13], LastFM is designed to evaluate
binary question scenario, where the user give preference towards
an attribute using yes or no. For the ease of modeling, Lei et al.
[13] manually merged relevant attributes into 33 coarse-grained

4Code and datasets can be found at: https://cpr-conv-rec.github.io/
5https://grouplens.org/datasets/hetrec-2011/
6https://www.yelp.com/dataset/

attributes. Whereas, the Yelp dataset is designed for enumerated
questions, where the user can select multiple attributes under one
category. They manually built a 2-layer taxonomy and there are 29
first-layer categories with 590 second-layer attributes.

While we follow the setting of [13], we believe they are not
necessarily the best practice as they requires heavy manual efforts
with expert knowledge, which is expensive for real usage. Therefore
we also consider the setting of using the original attributes (pruning
off frequency < 10 attributes), denoting them as LastFM* (containing
8438 attributes) and Yelp* (containing 590 attributes) separately. The
statistics can be found in Appendix A.

5.2 Experimental Setup
5.2.1 Training Details. We split each dataset for training, validation
and testing in a ratio of 7:1.5:1.5. And set top k item as 10, and
maximum turn T as 15. Following [13, 24] The training process is
made up of two parts: (1) An offline training for scoring function of
item in reasoning step. We use the historical clicking record in the
training set to optimize our factorization machine offline (Eq. (3))
by strictly follow [13]. The goal is to assign higher score to the
clicked item for each users. We articulate the details in Appendix
B and we also refer the readers to the original paper [13] for more
Information. All hyperparameters for offline training remains the
same as [13]. (2) An online training for reinforcement learning
used in consultation step. We use a user simulator (c.f. Sec 5.2.2)
to interact with the user to train the policy network using the
validation set. The detailed rewards to train the policy network are:
rr ec_suc=1, rr ec_f ail=-0.1, rask_suc=0.01, rask_f ail=-0.1, rquit=-
0.3. The parameters of the DQN are empirically set as following:
the experience replay memory size is 50,000, the sample batch size is
128, discount factor γ is set to be 0.999. We optimize policy network
with RMSprop optimizer and update the target network every 20
epsiodes. It is also noticeable that, since our policy network have
much smaller actions space and we adopt Deep Q-learning, the
network is easier to converge. We do not need to have pre-training
as adopted in EAR [13] and CRM [24]. All those hyperparameters
related online training are tuned according to the validation set.

5.2.2 User Simulator For MCR. As a CRS is an interactive system,
it needs to be trained and evaluated by interacting with users.
However, it is infeasible to do so in a research lab. Employing a user
simulator is a common practice [2]. We follow the user simulators
in [13, 24] which simulate one conversation session for one user-
item (u;v) interaction record in validation set (for training) and
testing set (for testing). In a giving session, the user u’s preference
is anchored by item v : (1) when the system proposes a list of items,
he will only accept it if the list contains item v ; (2) when a system
asks for an attribute, he will only confirm he likes it if this attribute
is included by item v . There is no denying that such simulation has
many limitation, but it is the most practical and realistic at current
stage [13, 24]. One major attack for such simulation is that the user
may "falsely" reject an item which is actually liked by him but it
has not been observed hence not being clicked by him. However,
it is hard to address it as there is few suitable exposure data. One
may also suggest to treat all user-item interaction in testing set as
positive instances for one session, we also forgo using it because
the aim for CRS is to capture user’s current specific preference

which may shift from his general interest. As our main focus is the
strategy of graph reasoning, we use template for conversations.

5.2.3 Baselines. Although there are more CRS models, they follow
different settings, hence being not comparable to us. We use the
following baselines to compare:

• Max Entropy. This method follows a rule-based protocol to ask
and recommend. When asking question, it always chooses an
attribute with the maximum entropy within the current candidate
item set. The system follows certain probabilities to recommend.
Details can be found at [13].

• AbsGreedy [7]. This method serves as a baseline where the model
only recommends items and updated itself, until it finally makes
successful recommendation. Christakopoulou et al. [7] report that
it outperforms online recommendation methods like Thompson
Sampling [3].

• CRM [24]. This is a CRS model which records user’s preference
into a belief tracker, and uses reinforcement learning (RL) to find
the policy to interact with the user. The RL leverages on a pol-
icy network whose state vector is the result of belief tracker. We
follow [13] to adapt it to the MCR scenario.

• EAR [13]. This is the state-of-the-art method on MCR setting
and proposed a three stage solution called Estimation–Action–
Reflection which emphasizes on the interaction between conver-
sation component and recommendation component. This inspires
our SCPR implementation hence being the most comparable model.

5.2.4 Evaluation Metrics. The evaluation follows [13]. We use suc-
cess rate (SR@t) [24] to measure the cumulative ratio of successful
recommendation by turn t . We also use average turns (AT) to record
the average number of turns for all session (if a session still fails in
the last turn T , we count the turn for that session as T). Therefore,
the higher SR@t indicates a higher performance at a specific turn t,
while the lower AT means an overall higher efficiency.

5.3 Performance Comparison of SCPR with
Exsiting Models (RQ1)

Table 2: Success Rate @ 15 and Average Turn. Bold number
represents the improvement of SCPR over existing models
is statistically significant (p < 0:01) (RQ1)

LastFM Yelp
SR@15 AT SR@15 AT

Abs Greedy 0.222 13.48 0.264 12.57
Max Entropy 0.283 13.91 0.921 6.59

CRM 0.325 13.75 0.923 6.25
EAR 0.429 12.88 0.967 5.74
SCPR 0.465 12.86 0.973 5.67

Table 2 and 3 present the statistics of model’s performances. We
can see that our SCPR model achieves significantly higher SR and
less AT than state-of-the-art baselines, demonstrating our SCPR
method’s supurior performances in usage.

We also intuitively present the performance comparison in Fig-
ure 3 and 4. They show Success Rate * (SR*) in each turn. SR* denotes
the relative SR compared with the most competitive baseline EAR
(meaning the difference of SR between each method and EAR),

Table 3: Performance comparison on original attributes.
Bold number represents the improvement of SCPR over ex-
isting models is statistically significant (p < 0:01) (RQ1)

LastFM* Yelp*
SR@15 AT SR@15 AT

Abs Greedy 0.635 8.66 0.189 13.43
Max Entropy 0.669 9.33 0.398 13.42

CRM 0.580 10.79 0.177 13.69
EAR 0.595 10.51 0.182 13.63
SCPR 0.709 8.43 0.489 12.62

Figure 3: Success Rate* of compared methods at different
turns on LastFM and Yelp (RQ1).

Figure 4: Success Rate* of compared methods at different
conversation turns on LastFM* and Yelp*(RQ1).

and EAR serves as the gray line of y = 0 in the figures. We have
following discoveries:

• It is important to see our SCPR outperforms all baselines on various
settings. Interestingly, we can find that our SCPR shows larger
advantage in LastFM* and Yelp* datasets, showing its validity in
practical usage with large attribute space. This also validates our
key design in CPR. Firstly, the graph constraint helps our model to
eliminate many irrelevant attributes to ask, this becomes especially
helpful when there are a large number of attributes. In contrast,
we discover that EAR has more difficulties in asking accurate
attributes in LastFM* and Yelp*. Secondly, our framework utilizes
a more dedicated RL model which only decides to recommend or
to ask, hence have better chances to learn more effective policy. At
the same time, EAR may outperform SCPR on first few rounds, but
it falls behind in future rounds. It is due to EAR has much larger
action space, making it challenging for them to learn effective
strategy to recommend while asking.

• Interestingly, Abs Greedy can achieve the best results on the first
few turns but plunges in further turns. The reason is that Abs
Greedy is the only method that solely attempts to recommend

User start

User accept !
SCPR Walk

User accept !
SCPR Walk

Turn 2

𝑎𝑎𝑠𝑘

Turn 3

𝑎𝑎𝑠𝑘

Turn 4 𝑎𝑟𝑒𝑐

User accept !
SCPR Walk

User reject !
User reject !

User reject !

User reject !

Turn 2

EAR 𝑎𝑎𝑠𝑘

Turn 3

EAR 𝑎𝑎𝑠𝑘

EAR

SCPR

Target Artist
User Init

𝑢: 903

american

post-hardcore

metal

𝑚𝑒𝑡𝑎𝑙𝑐𝑜𝑟𝑒

hardcore

seen live

canadian

southern rock

alternative

𝑆𝑝𝑖𝑛𝑒𝑠ℎ𝑎𝑛𝑘

𝑏𝑙𝑒𝑠𝑠𝑡ℎ𝑒𝑓𝑎𝑙𝑙

𝑇ℎ𝑒 𝐴𝑔𝑜𝑛𝑖𝑠𝑡

𝐷𝑒𝑎𝑑 𝑎𝑛𝑑 𝐷𝑖𝑣𝑖𝑛𝑒
𝑆𝑤𝑜𝑟𝑛 𝐸𝑛𝑒𝑚𝑦

Hi! I'm looking for a
𝑚𝑒𝑡𝑎𝑙𝑐𝑜𝑟𝑒 music artist.

Do you like hardcore
music?

Yes! I like it!

Do you like post-
hardcore music?

Yes! I like it!

You may like music
artist 𝐛𝐥𝐞𝐬𝐬𝐭𝐡𝐞𝐟𝐚𝐥𝐥!

Yes! Thank you!

SCPR Conversation

Hi! I'm looking for a
𝑚𝑒𝑡𝑎𝑙𝑐𝑜𝑟𝑒 music artist.

Do you like alternative
music?

NO!

EAR Conversation

Do you like seen live
music?

NO!

Do you like southern
rock music?

NO!

You may like music artist
𝐃𝐞𝐚𝐝 𝐚𝐧𝐝 𝐃𝐢𝐯𝐢𝐧𝐞!

NO! It's wrong!

Turn 4

EAR 𝑎𝑎𝑠𝑘

Turn 5

EAR 𝑎rec

Turn 2

Turn 3

Turn 4

Turn 5

Turn 2

Turn 3

Turn 4

Turn 1 Turn 1

Turn 1

Figure 5: Sample conversations generated by SCPR (left) and EAR (right) and their illustrations on the graph (middle).

items to user. While Abs Greedy is continuously pushing recom-
mendation, other methods are probably consulting user’s explicit
feedback on attributes which in turns helps reduce candidate item
space and help the model achieve long term reward. This also vali-
dates our core design in SCPR – utilizing user’s explicit feedback
on attributes.

• The two previously proposed RL-based methods, EAR and CRM
can both outperform max entropy in Yelp and LastFM, but achieve
lower performance than max entropy in Yelp* and LastFM*. The
reason is that Yelp* and LastFM* have larger attribute space (590
and 8438 than 29 and 33). According to their model design, their
RL model is responsible for both which attribute to ask and whether
to recommend. Therefore, they have action spaces of 590+1 dimen-
sions and 8438+1 dimensions for Yelp* and LastFM* respectively.
Such larger action space may bring challenges to action making.

5.4 Evaluating Key Design in SCPR (RQ2)
The key design of our SCPR method is that we leverage on the
adjacent attribute constraint of the graph and a more dedicated RL
model with smaller action space. To test the effectiveness of such
key features, we conduct additional experiments by designing a
variant of our SCPR model, named SCPR-v. Specifically, we replace
our policy network with the policy network in EAR. It has the same
state vector as EAR and the action space of the policy network
increases from 2 to |P | + 1, meaning that the policy function is also
responsible for deciding which attribute to ask. Note that we keep
other components unchanged, including our graph constraint of
adjacent attributes. Such constraint exerts influence on our policy
function in a straightforward way: we add a condition of "being
one adjacent attribute" to the selection of action with maximum
value. Therefore such SCPR-v model can be seen as an intermediate
layer between EAR and SCPR, (1) it can be seen as a variant of
SCPR where its RL model is not so dedicated, (2) it can also be seen
as a variant of EAR where the attribute asking can be helped (if
any) by our graph constraint. We follow the same implementation
paradigm for SCPR-v. Due to the space limitation, we only briefly
report the Success Rate* comparison among SCPR-v, EAR and SCPR
on LastFM* and Yelp* datasets which are more representative.

We have these discoveries: (1) SCPR-v has generally worse perfor-
mance than SCPR, since it is very challenging for decisionmaking in
a very large action space. It validates our design in a more dedicated

Figure 6: Success Rate* of compared methods at different
conversation turns on LastFM* and Yelp*(RQ2).

RL model with small action space. Interestingly we can see that
SCPR-v has similar performance at first few turns compared with
SCPR, but falls behind in future turns. According to instance-level
studies, we observe the RL component of SCPR-v adopts simple
strategies. It asks a few attributes and recommend items at earlier
turns than SCPR. Then with fewer attributes known, it has a larger
candidate item space, making it harder to achieve higher SR in
longer turns. It suggests that SCPR-v with very large action space
has difficulty learning effective strategy for long term reward. (2)
We can see that SCPR-v has better performance than EAR. This ad-
vantage is due to our graph constraint on attributes that eliminates
many irrelevant attributes, making it easier for attribute choice.

5.5 Case Study on Explainability (RQ3)
Aside from the superior performance on success rate and average
turns, our CPR is also more explainable. It conducts conversational
recommendation by walking (reasoning) on graph, resulting in a
path of attributes. The path brings crystally clear reasoning logic
which is naturally explainable.

Let’s go through an example of real interaction from LastFM* in
Figure 5. We display the conversation histories of SCPR and EAR
on two sides of the figure, and illustrate the whole processing in
the middle graph. The session is initiated by the user (id: 903) who
specifies an attribute he likes as “metalcore”. We can see our SCPR
travels a short path of attributes (“metalcore” to “hardcore” then to
“post-hardcore”) that quickly reaches user’s preferred item (artist
“blessthe f all”) and successfully make recommendation. The whole
conversation is coherent and the red path is the explanation of the
recommendation reason. On the contrary, EAR’s behavior looks
strange. It first asks “alternative”, then asks “seenlive” followed by

“southern rock”. Those attributes are not very closely related, being
more like a random pop-ups of attributes. From model developing
perspective, such loss of relevance makes it hard to explain why
the EAR executes such jumps. From application perspective, such
loss of relevance leads to less coherent conversations.

6 CONCLUSION AND FUTUREWORK
We are the first to introduce graph to address the multi-round
conversational recommendation problem, and propose the Con-
versational Path Reasoning (CPR) framework. CPR synchronizes
conversation with the graph-based path reasoning, making the
utilization of attribute more explicitly hence greatly improving
explainability for conversational recommendation. Specifically, it
tackles what item to recommend and what attribute to ask problems
through message propagation on the graph, leveraging on the com-
plex interaction between attributes and items in the graph to better
rank items and attributes. Using the graph structure, a CRS only
transits to the adjacent attribute, reducing the attribute candidate
space and also improving the coherence of the conversation. Also,
since the items and attributes have been ranked during the message
propagation, the policy network only needs to decide when to ask
and when to recommend, reducing the action space to be 2. It relieves
the modeling load of the policy network, enabling it to be more
robust especially when the candidate space is large.

There are many interesting problems to be explored for CPR.
First, CPR framework itself can be further improved. For example,
CPR does not consider how to adapt the model when the user rejects
a recommended item. How to effectively consider such rejected
items would be an interesting and challenging task. Second, more
sophisticated implementation can be considered. For example, it is
possible to build more expressive models for attribute scoring other
than the weighted max-entropy as adopted in this paper. Currently,
the embeddings of items and attributes do not get updated during
the interactive training. It would be better to build a more holistic
model to incorporate the user feedback to update all parameters in
the model, inclusive of user, item and attribute embeddings.

Acknowledgement: This research is supported by the National
Research Foundation, Singapore under its International Research
Centres in Singapore Funding Initiative as well as National Natural
Science Foundation of China (61972372, U19A2079). All content
represents the opinion of the authors, which is not necessarily
shared or endorsed by their respective employers and/or sponsors.
We thank the anonymous reviewers for their valuable comments.

REFERENCES
[1] Keping Bi, Qingyao Ai, Yongfeng Zhang, andWBruce Croft. 2019. Conversational

product search based on negative feedback. In CIKM. 359–368.
[2] Senthilkumar Chandramohan, Matthieu Geist, Fabrice Lefevre, and Olivier

Pietquin. 2011. User simulation in dialogue systems using inverse reinforce-
ment learning. In Interspeech 2011. 1025–1028.

[3] Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson
sampling. In NeurIPS. 2249–2257.

[4] Haokun Chen, Xinyi Dai, Han Cai, Weinan Zhang, Xuejian Wang, Ruiming Tang,
Yuzhou Zhang, and Yong Yu. 2019. Large-scale interactive recommendation with
tree-structured policy gradient. In AAAI, Vol. 33. 3312–3320.

[5] Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding, Yukuo Cen, Hongxia Yang,
and Jie Tang. 2019. Towards Knowledge-Based Recommender Dialog System. In
EMNLP-IJCNLP. 1803–1813.

[6] Konstantina Christakopoulou, Alex Beutel, Rui Li, Sagar Jain, and Ed H Chi. 2018.
Q&R: A Two-Stage Approach toward Interactive Recommendation. In SIGKDD.
139–148.

[7] Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. 2016. Towards
conversational recommender systems. In SIGKDD. 815–824.

[8] Sudeep Gandhe and David Traum. 2008. An evaluation understudy for dialogue
coherence models. In Proceedings of the 9th SIGdial Workshop on Discourse and
Dialogue. 172–181.

[9] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In SIGIR. 355–364.

[10] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In WWW. 173–182.

[11] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
matrix factorization for online recommendation with implicit feedback. In SIGIR.
549–558.

[12] Xisen Jin, Wenqiang Lei, Zhaochun Ren, Hongshen Chen, Shangsong Liang,
Yihong Zhao, and Dawei Yin. 2018. Explicit State Tracking with Semi-
Supervisionfor Neural Dialogue Generation. In CIKM. 1403–1412.

[13] Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, Min-
Yen Kan, and Tat-Seng Chua. 2020. Estimation–Action–Reflection: Towards
Deep Interaction Between Conversational and Recommender Systems. InWSDM.
304–312.

[14] Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He, and Dawei
Yin. 2018. Sequicity: Simplifying Task-oriented Dialogue Systems with Single
Sequence-to-Sequence Architectures. In ACL. 1437–1447.

[15] Raymond Li, Samira Ebrahimi Kahou, Hannes Schulz, Vincent Michalski, Laurent
Charlin, and Chris Pal. 2018. Towards Deep Conversational Recommendations.
In NeurIPS. 9748–9758.

[16] Shijun Li, Wenqiang Lei, Qingyun Wu, Xiangnan He, Peng Jiang, and Tat-Seng
Chua. 2020. Seamlessly Unifying Attributes and Items: Conversational Recom-
mendation for Cold-Start Users. arXiv preprint arXiv:2005.12979 (2020).

[17] Lizi Liao, Yunshan Ma, Xiangnan He, Richang Hong, and Tat-Seng Chua. 2018.
Knowledge-aware Multimodal Dialogue Systems. In ACM MM. 801–809.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[19] Bilih Priyogi. 2019. Preference Elicitation Strategy for Conversational Recom-
mender System. In WSDM. 824–825.

[20] Steffen Rendle. 2010. Factorization machines. In ICDM. 995–1000.
[21] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-

izing personalized markov chains for next-basket recommendation. InWWW.
811–820.

[22] Nicola Sardella, Claudio Biancalana, Alessandro Micarelli, and Giuseppe San-
sonetti. 2019. An Approach to Conversational Recommendation of Restaurants.
In ICHCI. 123–130.

[23] Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, and Jian
Tang. 2019. Session-based social recommendation via dynamic graph attention
networks. InWSDM. 555–563.

[24] Yueming Sun and Yi Zhang. 2018. Conversational Recommender System. In
SIGIR. 235–244.

[25] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165–174.

[26] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng
Chua. 2019. Explainable reasoning over knowledge graphs for recommendation.
In AAAI, Vol. 33. 5329–5336.

[27] Ji Wu, Miao Li, and Chin-Hui Lee. 2015. A probabilistic framework for repre-
senting dialog systems and entropy-based dialog management through dynamic
stochastic state evolution. TASLP 23, 11 (2015), 2026–2035.

[28] Qingyun Wu, Naveen Iyer, and Hongning Wang. 2018. Learning Contextual
Bandits in a Non-stationary Environment. In SIGIR. 495–504.

[29] Yikun Xian, Zuohui Fu, S Muthukrishnan, Gerard De Melo, and Yongfeng Zhang.
2019. Reinforcement knowledge graph reasoning for explainable recommenda-
tion. In SIGIR. 285–294.

[30] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. 2018.
HOP-rec: high-order proximity for implicit recommendation. In RecSys. 140–144.

[31] Tong Yu, Yilin Shen, and Hongxia Jin. 2019. An Visual Dialog Augmented
Interactive Recommender System. In SIGKDD. 157–165.

[32] Ruiyi Zhang, Tong Yu, Yilin Shen, Hongxia Jin, and Changyou Chen. 2019. Text-
Based Interactive Recommendation via Constraint-Augmented Reinforcement
Learning. In NIPS. 15188–15198.

[33] Xiaoying Zhang, Hong Xie, Hang Li, and John Lui. 2020. Conversational Contex-
tual Bandit: Algorithm and Application. In WWW.

[34] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W Bruce Croft. 2018.
Towards conversational search and recommendation: System ask, user respond.
In CIKM. 177–186.

[35] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S. Yu. 2018. Spectral
Collaborative Filtering. In RecSys. 311–319.

[36] Ke Zhou, Shuang-Hong Yang, and Hongyuan Zha. 2011. Functional matrix
factorizations for cold-start recommendation. In SIGIR. 315–324.

A DATASET STATISTICS

Table 4: Dataset Statictics of LastFM and Yelp. Here we list
the relation types in different datasets to let readers to get
better understanding of the dataset.

Dateset LastFM Yelp

User-Item
Interaction

#Users 1,801 27,675
#Items 7,432 70,311

#Interactions 76,693 1,368,606
#attributes 33 29

Graph
#Entities 9,266 98,605
#Relations 4 3
#Triplets 138,217 2,884,567

Relations Description Number of Relations

Interact user⇐⇒ item 76,696 1,368,606
Friend user⇐⇒ user 23,958 688,209
Like user⇐⇒ attribute 7,276 *

Belong_to item⇐⇒ attribute 30,290 350,175

Table 5: Dataset Statistics for LastFM* and Yelp*, we use orig-
inal attributes to avoid complex feature engineering.

Dateset LastFM* Yelp*

User-Item
Interaction

#Users 1,801 27,675
#Items 7,432 70,311

#Interactions 76,693 1,368,606
#attributes 8,438 590

Graph
#Entities 17,671 98,576
#Relations 4 3
#Triplets 228,217 2,533,827

Relations Description Number of Relations

Interact user⇐⇒ item 76,696 1,368,606
Friend user⇐⇒ user 23,958 688,209
Like user⇐⇒ attribute 33,120 *

Belong_to item⇐⇒ attribute 94,446 477,012

B DETAILS OF OFFLINE TRAINING IN THE
REASONING STEP

In our CPR framework design, there is a trainable component in
reasoning step for item scoring. For simplicity, we instantiate it as
the FM model in EAR[13]. For the reproducibility of this paper, we
articulate the whole process of such instantiation in this section.

B.1 Training Objective
EAR[13] embeds users, items and attributes as vectors into one Fac-
torization Machine (FM)[21] model. The training objective for such
FMmodel is simultaneously achieving item prediction and attribute
prediction for Multi-round Conversational Recommendation(MCR)
scenario, using a multi-task pairwise loss.

B.1.1 Item Prediction. We borrow a variant of Factorization Model
(FM) model as introduced in [13] to capture the interaction between
users, items and attributes. As discussed in Section 4.1, the scoring
function is defined as:

f (u;v; Pu) = uT v +
Õ

pi ∈Pu

vT pi; (6)

where the first and second term represent message propagated from
user to item and item to user respectively.

We follow [13] to use a pairwise loss to optimize, one key inno-
vation is that they use two types of negative samples D1 and D2
tailored for MCR:

Litem =
Õ

(u ;v ;v ′)∈D1

−lnσ (f (u;v; Pu) − f (u;v ′; Pu))

+
Õ

(u ;v ;v ′)∈D2

−lnσ (f (u;v; Pu) − f (u;v ′; Pu)) + λΘ ∥Θ∥2 ;

(7)
where

D1 := {(u;v;v ′) | v ′ ∈ V−
u }; V−

u := V\V+
u (8)

D2 := {(u;v;v ′) | v ′ ∈ bV−
u }; bV−

u := Vcand\V
+
u (9)

The intuition is that the model first needs to learn user’s general
preference (D1). Additionally it also should learn user’s preference
when some attributes have been confirmed, resulting a dynamically
updating candidate item setVcand , which is a main characteristic
for MCR (D2). Specifically, V−

u is the ordinary negative samples
which are non-interacted items, and bV−

u is candidate item setVcand
that excludes the interacted itemsV+

u . The obtaining of Vcand is
a dynamic process, which will be discussed in Section B.2.

B.1.2 A�ribute Prediction. The EAR[13] also leverages on the FM
model to make attribute prediction. Intuitively, the next attribute
p to ask should be dependent on the confirmed attribute set Pu ,
formally:

д̂(p |u; Pu) = uT p +
Õ

pi ∈Pu

pT pi ; (10)

where the first term captures user’s general preference towards
the given attribute p, and the second term models the interaction
between p and each attribute in the confirmed attribute set Pu .

They similarly leverages on the pairwise loss for attribute pre-
diction:

Lattr =
Õ

(u ;p;p′)∈D3

−lnσ (д̂(p |u; Pu) − д̂(p
′ |u; Pu)) + λΘ ∥Θ∥2 ;

(11)
where the pairwise training data D3 is defined as:

D3 = {(u;p;p′)|p ∈ Pv ;p′ ∈ P\Pv }; (12)
The Pv here denotes attributes of item v , hence p and p′ represent
attributes that belongs and not belongs to current item respectively,
forming the pairwise sample.

B.1.3 Multi-task learning. Since [13] discovered that item predic-
tion and attribute prediction can mutually promote, we also follow
their practice to use such multi-task pairwise loss to achieve these
two goals:

L = Litem + Lattr : (13)

B.2 Data Collection
As we have elaborated the training objective of the FM model used
in the reasoning step, now we are going to describe how we obtain
the data used to train such model, which are in fact D1, D2 and
D3.

As a common practice introduced in Section 5.2.2, we also lever-
age on user simulator to obtain such data. As introduced before,
we use observed user-item interactions to ground such simulation.
We accumulate D1, D2 and D3 through many MCR sessions and
append new instances at each steps of the interactions. Specifically,
given a user u and an itemv which has an attribute set Pv , without
the loss of generality, we assume Pv = {p0;p1;p2;p3;p4}. As for the
accumulation of D1, it is actually independent from the interaction
steps because it is intrinsically static. Therefore we directly sample
one item from the non-interacted items of user u. Now let’s assume
we are at the stage where user has confirmed a few attributes, yield-
ing the confirmed attribute set Pu = {p0;p1;p2}. NowVcand is the
set of items satisfying all attributes in Pu , one negative instance
will be sampled from the non-interacted items in Vcand to form
D2. Note that the positive instances in pairwise samples are always
v for both D1 and D2. Finally, as for the attribute side, the positive
instances for attributes are {p3;p4}, each of them will be paired
with a negative instance sampled from P\Pv and be added into
D3.

In order to have a high coverage of the dataset, we use all user-
item interactions in training set to ground such simulation. What’s
more, we simulate multiple times for each user-item interaction,
with all possibility of the first attribute user informed p0 being tried.

B.3 Training Details
After the training data has been collected, we strictly follow the
training instruction in [13]. To briefly report, we set the embedding
size of FM model as 64. We used SGD optimizer with L2 regulariza-
tion of 0.001. The learning rate for item prediction task and attribute
prediction task are set us 0.01 and 0.001 repectively.

	Abstract
	1 Introduction
	2 Related Work
	3 Multi-round Conversational Recommendation Scenario
	4 Proposed Methods
	4.1 CPR Framework
	4.2 SCPR Model

	5 Experiments
	5.1 Dataset Description
	5.2 Experimental Setup
	5.3 Performance Comparison of SCPR with Exsiting Models (RQ1)
	5.4 Evaluating Key Design in SCPR (RQ2)
	5.5 Case Study on Explainability (RQ3)

	6 Conclusion and Future Work
	References
	A Dataset Statistics
	B Details of Offline training in the Reasoning Step
	B.1 Training Objective
	B.2 Data Collection
	B.3 Training Details

