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ABSTRACT
According to our statistics on over 2 million micro-videos,
only 1.22% of them are associated with venue information,
which greatly hinders the location-oriented applications and
personalized services. To alleviate this problem, we aim
to label the bite-sized video clips with venue categories.
It is, however, nontrivial due to three reasons: 1) no
available benchmark dataset; 2) insufficient information, low
quality, and information loss; and 3) complex relatedness
among venue categories. Towards this end, we propose a
scheme comprising of two components. In particular, we
first crawl a representative set of micro-videos from Vine
and extract a rich set of features from textual, visual and
acoustic modalities. We then, in the second component,
build a tree-guided multi-task multi-modal learning model
to estimate the venue category for each unseen micro-video.
This model is able to jointly learn a common space from
multi-modalities and leverage the predefined Foursquare
hierarchical structure to regularize the relatedness among
venue categories. Extensive experiments have well-validated
our model. As a side research contribution, we have released
our data, codes and involved parameters.

Keywords
Micro-Video Analysis; Multi-Modal Multi-Task Learning;
Venue Category Estimation.

1. INTRODUCTION
The popularity of the traditional online video sharing

platforms, like Youtube1, has changed everything about
the Internet [39, 18]. Servers like Youtube have enabled
users to capture high-quality and long videos, upload and
share them socially with everyone. But the late 2012
has seen a dramatic shift in the way Internet users digest
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videos: micro-videos spread rapidly across various online
flagship platforms, such as Viddy2, Vine3, Instagram4 and
Snapchat5. Considering Vine as an example, as of December
2015, it has experienced an exponential explosion in its user
and video base, reaching approximately 200 million active
users monthly and 1.5 billion video loops daily6. One reason
that such bite-sized videos are gaining popularity is because
users can conveniently shoot and instantly share videos via
their smartphones without the need for professional camera
work, editing, and, therefore, significant budgets. Besides,
it takes seconds rather than minutes or even hours to view.
The micro-video trends confirms this saying: “every good
comes in small packages”.

In addition to their value in brevity, authenticity and low
cost, micro-video platforms have started encouraging users
to associate spatial contexts (venues) to videos. The venue
information is usually selected manually by the user relying
on a GPS enabled device, and each venue is automatically
aligned with a venue category via the Foursquare API7. This
new feature benefits multifaceted aspects: 1) Footprints
recording. It facilitates users to vividly archive where they
were and what they did. 2) Personalized applications. Such
people-centric location data enables precise personalized
services, such as suggesting local restaurants, alerting
regional weather, and spreading business information to
nearby customers. And 3) other location-based services.
Location information is helpful for the inference of users’
interests, the improvement of activity prediction, and the
simplification of landmark-oriented video search. Despite
its significance, users of micro-video platforms have been
slow to adopt this geospatial feature: in a random sample
over 2 million Vine videos, we found that only 1.22% of
the videos are associated with venue information. It is thus
highly desired to infer the missing geographic cues.

As a preliminary research, we aim to first infer the
venue categories from micro-videos, rather than the exact
venues. This task is, however, non-trivial due to the
following challenges: 1) Insufficient information. The
most prominent attribute of micro-video platforms is that
they are thriving heavily in the realm of shortness and
instant. For example, Vine allows users to upload about
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Figure 1: The hierarchical structure of the venue
categories. We only illustrate part of the structure
due to the limited space. The entire tree can be
viewed here9.

six-second videos online; Snapchat offers its users the option
to create 10-second micro-videos; and Viddy limits the
length of its upload videos to 30 seconds. Persuasively,
short length makes video production and broadcasting
easily, downloading timely, and playing fluently on portable
devices. However, in contrast to the traditional long
videos, the visual information conveyed by micro-videos
is somehow inadequate and it is thus unable to provide
rich contexts for effective similarity measurement. Besides,
as aforementioned, only around 1.22% of videos have
venue labels, which brings in a challenge for training data
collection. 2) Low quality. Most portable devices have
nothing to offer for video stabilization. Some videos can
thus be shaky or bumpy, which greatly hinders the visual
expression. Furthermore, the audio track that comes along
with the video, can be in different types of distortion and
noise, such as buzzing, hums, hisses, and whistling, which
is probably caused by the poor microphones or complex
surrounding environments. 3) Information loss. Apart
from acoustic and visual modalities, micro-videos are, more
often than not, uploaded with textual descriptions, which
express some useful cues that may be not available in the
other two modalities. However, the textual information
may be not well correlated with visual and acoustic cues.
Moreover, according to our statistics upon 276,624 Vine
videos, more than 11.4% of them do not have such texts,
probably the results of users’ casual habits. This serious
information missing problem greatly reduces the usability
of textual modality. And 4) hierarchical structure.
The venues of micro-videos are organized into hundreds
of categories, which are not independent but hierarchically
correlated. Part of this structure is shown in Figure 1.
How to explore such structure to guide the venue category
estimation is largely untapped.

To address the aforementioned challenges, we propose
a scheme consisting of two components, as illustrated in
Figure 2. In the first component, we work towards data
preparation. In particular, we first collect a representative

set of micro-videos with their associated venue IDs and map
these venue IDs to venue categories via Foursquare API. We
then extract discriminant features from the textual, visual
and acoustic modalities of each video, respectively. In a
sense, appropriate fusion of multi-modal features are able
to comprehensively and complementarily represent micro-
videos, which somehow alleviates the data insufficiency
and is robust to the low quality of some modalities.
Thereafter, we complete the missing modalities for some
videos via matrix factorization techniques, which well solves
the information loss problem. The second component
aims to label micro-videos with venue categories. Towards
this end, we present a TRee-guided mUlti-task Multi-
modal leArNiNg model, TRUMANN for short. This
model intelligently learns a common feature space from
multi-modal heterogeneous spaces and utilizes the learned
common space to represent each micro-video. Meanwhile,
the TRUMANN treats each venue category as a task
and leverages the pre-defined hierarchical structure of venue
categories to regularize the relatedness among tasks via a
novel group lasso. These two objectives are accomplished
within a unified framework. As a byproduct, the tree-guided
group lasso is capable of learning task-sharing and task-
specific features. Extensive experiments on our collected
real-world dataset have demonstrated the advantages of our
model.

The main contributions are in threefold:

1. As far as we know, this is the first work on venue
category estimation for micro-videos. We conducted
an in-depth analysis of the challenges of this research
problem.

2. We proposed a novel tree-guided multi-task multi-
modal learning approach. This approach is able to
jointly fuse multi-modal information, capture the task
relatedness constrained by a pre-defined tree structure.

3. We built a large-scale micro-video datasets. Mean-
while, we have released our data, codes, and
involved parameter settings to facilitate the research
communities10.

The remainder of the paper is organized as follows.
Section 2 reviews the related work. Section 3 and 4 detail our
data preparation and our proposed TRUMANN model,
respectively. Experimental settings and results are reported
in Section 5, followed by the conclusion and future work in
Section 6.

2. RELATED WORK
Our work is related to a broad spectrum of multimedia

location estimation, and multi-modal multi-task learning.

2.1 Multimedia Venue Estimation
Nowadays, it has become convenient to capture images

and videos on the mobile end and associate them with GPS
tags. Such a hybrid data structure can benefit a wide
variety of potential multimedia applications, such as location
recognition [19], landmark search [6], augmented reality[4],
and commercial recommendations [44]. It hence has
attracted great attention from the multimedia community.
Generally speaking, prior efforts can be divided into two
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Figure 2: Graphical representation of our framework.

categories: mono-modal venue estimation [4, 6] and multi-
modal venue estimation [19, 13, 8]. Approaches in the
former category extract a rich set of visual features from
images and leverage the visual features to train either
shallow or deep models to estimate the venues of the given
images. As reported in [19], the landmark identification [6]
and scene classification [4] of images are the key factors to
recognize the venues. The basic philosophy behind these
approaches is that certain visual features in images correlate
strongly with certain geographies even if the relationship
is not strong enough to specifically pinpoint a location
coordinate. Beyond the mono-modal venue estimation
which only takes the visual information into consideration,
multi-modal venue estimation works by inferring the geo-
coordinates of the recording places of the given videos by
fusing the textual metadata and visual or acoustic cues [12,
8]. Friendland et al. [12] determined the geo-coordinates of
the Flickr videos based on both textual metadata and visual
cues. Audio tracks from the Placing Task 2011 dataset
videos were also used to train a location estimation models
and it achieved reasonable performance [27]. The main idea
is that the integration of multiple modalities can lead to
better results, and it is consistent to the old saying “two
heads are better than one”. However, multi-modal venue
estimation is still at its infant stage, and more efforts should
be dedicated to improve this line of research.

Noticeably, the venue granularity of the targeted
multimedia entities in the aforementioned literature varies
significantly. Roughly, the spatial resolutions are in three-
levels: city-level [19, 13], within-city-level [35, 6, 28] and
close-to-exact GPS level [12]. City-level and within-city-
level location estimation can be applied to multimedia
organization [9], location visualization [6], and image
classification [37]. However, their granularities are large,
which may be not suitable for some application scenarios,
such as business venue discovery [5]. The granularity of
close-to-exact GPS level is finer; nevertheless, it is hard to
estimate the precise coordinates, especially for the indoor
cases. For example, it is challenging to distinguish an office
on the third floor and a coffee shop on the second floor within
the same building, since the GPS is not available indoors.

Our work differs the above methods from the following
two aspects: 1) We focus on the estimation of venue
category which is neither city-level nor the precise location.
This is because, venue category is more abstract concept
than single venue name, which can help many applications
for personalized and location-based services/marketing [5].

And 2) micro-videos are the medium between images and
traditional long videos, which pose tough challenges.

2.2 Multi-Modal Multi-Task Learning
Venue category estimation of micro-videos exhibits dual-

heterogeneities. In particular, a single learning task have
features from multiple modalities and multiple learning tasks
could be related to each other via their commonalities [41].
In the light of this, our proposed TRUMANN falls into
the community of multi-view multi-task learning.

The literature on the multi-task problem with multi-
modal data is relatively sparse. He et al.[20] proposed
a graph-based iterative framework for multi-view multi-
task learning (IteM2) and applied it to text classification.
However, it can only deal with problems with non-negative
feature values. In addition, it is a transductive model.
Hence it is unable to generate predictive models for
independent and unseen testing samples. To address
the intrinsic limitations of transductive models, Zhang
et al.[47] proposed an inductive multi-view multi-task
learning model (regMVMT). regMVMT penalizes the
disagreement of models learned from different sources
over the unlabeled samples. However, without prior
knowledge, simply restricting all the tasks to be similar is
inappropriate. As an extension of regMVMT, an inductive
convex shared structure learning algorithm for multi-view
multi-task problem (CSL-MTMV) was developed in [23].
Compared to regMVMT, CSL-MTMV considers the
shared predictive structure among multiple tasks.

However, none of the methods mentioned above can be
applied to venue category estimation directly. This is due
to the following reasons: 1) IteM2, regMVMT and CSL-
MTMV are all binary classification models, of which the
extension to multi-class or regression problem is nontrivial,
especially when the number of classes is large; and 2) the
tasks in venue category prediction are pre-defined as a
hierarchical structure.

3. DATA PREPARATION
In this section, we detail the data preparation, containing

dataset collection, feature extraction and missing data
completion.

3.1 Dataset and Ground Truth Construction
We crawled the micro-videos from Vine through its public

API11. In particular, we first manually chose a small set
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Table 1: Number of micro-videos in each of the top
ten layer categories.

Top-layer Category Num. Top-layer Category Num.

Outdoors & Recreation 93,196 Shop & Service 10,976
Arts & Entertainment 88,393 Residence 8,867

Travel & Transport 24,916 Nightlife Spot 8,021
Professional & Other 18,700 Food 6,484
College & Education 12,595 Event 1,047

Table 2: Leaf categories with the most and the least
of micro-videos.

Leaf Category with
the Most Videos

Num. Leaf Category with
the Least Videos

Num.

City 30,803 Bakery 53
Theme Park 16,383 Volcano 51

Neighborhood 15,002 Medical 51
Other Outdoors 10,035 Classroom 51

Park 10,035 Toy & Games 50

of active users from Vine as our seed users. We then
adopted the breadth-first strategy to expand our user sets
via gathering their followers. We terminated our expansion
after three layers. For each collected user, we crawled
his/her published videos, video descriptions and venue
information if available. In such way, we harvested 2 million
micro-videos. Thereinto, only about 24,000 micro-videos
contain Foursquare check-in information. After removing
the duplicate venue IDs, we further expanded our video set
by crawling all videos in each venue ID with the help of
vinepy API. This eventually yielded a dataset of 276,264
videos distributed in 442 Foursquare venue categories. Each
venue ID was mapped to a venue category via the Foursquare
API, which serves as the ground truth. As shown in Figure3,
99.8% of videos are shorter than 7 seconds.

Foursquare organizes its venue categories into a four-layer
hierarchical structure12, with 341, 312 and 52 leaf nodes in
the second-layer, third-layer and fourth-layer, respectively.
The top-layer of this structure contains ten non-leaf nodes
(coarse venue categories). To visualize the coverage and
representativeness of our collected micro-videos, we plotted
and compared the distribution curves over the number of leaf
categories between our dataset and the original structure, as
shown in Figure 4. It is worth mentioning that, the number
of leaf categories distributed in Foursquare is extremely
unbalanced. For instance, the ‘Food’ category has 253 leaf
nodes; while the ‘Residence’ only contains five leaf nodes.
Accordingly, the distribution of our crawled videos over the
top-layer categories also shows such unbalance, as displays
in Table 1.

On the other hand, we observed that some leaf categories
contain only a small number of micro-videos. For instance,
‘Bank/Financial’ only consists of 3 samples in our dataset,
which is hard to train a robust classifier. We hence removed
the leaf categories with less than 50 micro-videos. At last, we
obtained 270,145 micro-videos distributed in 188 Foursquare
leaf categories. Table 2 lists the top five leaf categories with
the most and the least micro-videos, respectively.

3.2 Feature Extraction
We extracted a rich set of features from visual, acoustic

and textual modalities, respectively.

12
https://developer.foursquare.com/categorytree.
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3.2.1 Features in Visual Modality
Scenes or visual concepts conveyed by the visual modality

are intuitive signals of the venue category. For instance,
dishes, drinks, waiter and tables are the main elements
of restaurants. This motivates us to extract high-level
semantics from the visual modality to represent the micro-
videos. Deep convolutional neural networks (CNNs) have
been established as a powerful model to capture the visual
concepts of images [45, 43]. We employed the AlexNet [26]
model to extract the visual features through the publicly
available Caffe [22]. The model was pre-trained on a set
of 1.2 million clean images of ILSVRC-201213 and it hence
provides a robust initialization for recognizing semantics.
Before feature extraction, we first extracted the key frames
from each micro-video by using OPENCV14, and then
employed the AlexNet to get CNN features of each frame.
Following that, we took the mean pooling strategy over all
the key frames of one video, and generated a single 4,096
dimensional vector for each micro-video.

3.2.2 Features in Acoustic Modality
The audio clips embedded in the micro-videos contain

useful cues or hints about the places. For example, within
the clothing stores, audio clips capture employees answering
customers questions as to clothing sizes or colors, and
welcoming them to the store. Considering the nightclub as
another example, the audio clips can reflect the mixed noise
but young sounds. The acoustic information is especially
useful for the cases where the visual features are too diverse
or cannot carry satisfied information. To extract the
acoustic features, we first separated audio tracks from micro-
videos with the help of FFmpeg15. Hereafter, the audio
tracks were transformed into a uniform format: 22,050Hz,
16bits, mono-channel and pulse-code modulation signals.

13
http://www.image-net.org/challenges/LSVRC/2012/.

14
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15
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Table 3: List of the 10 representative hashtags and
their frequencies in our dataset.

ID Hashtag Num ID Hashtag Num

1 NYC 1688 6 Paris 352
2 LosAngles 715 7 Food 345
3 Beach 694 8 Hollywood 335
4 Chicago 467 9 London 323
5 Travel 436 10 Disney 309

We then performed a spectrogram with a 46ms window
and 50% overlap via librosa16. After getting the shallow
representation of each audio track with 512 dimensional
features, we adopted theano [2] to learn the deep learning
features. In particular, the stack Denosing AutoEncoder
(DAE) [38], which has been successful applied in speech
recognition and speaker recognition [48, 11], was employed
to extract acoustic features. The DAE was pre-trained on an
external Vine micro-videos, which contains 120,000 samples.
The deep model contains three hidden layers, with 500, 400,
and 300 nodes on each layer. We ultimately obtained 200
dimensional acoustic features for each micro-video.

3.2.3 Features in Textual Modality
The textual descriptions of micro-videos, including user

generated text and hashtags, can provide strong cues for
micro-video venue estimation. For instance, this description
“Vining the #beach while tanning the thighs on a glorious
Anzac Day” clearly indicates that the venue category is
beach. According to our statistics, 27.7% of our collected
276,264 micro-videos have hashtags, and the total number of
hashtags is 253,474. Table 3 lists ten representative hashtags
with their frequencies. It can be seen that, these hashtags
are strongly related to venue categories. These textual data
are, however, very sparse and lack of sufficient contexts.
Therefore, the traditional approaches such as topic-level
features [3] or n-grams may be unsuitable in such scenario.
Instead, we utilized the Paragraph Vector method [33],
which has been found to be effective to alleviate the semantic
problems of word sparseness [14]. In particular, we first
eliminated the non-English characters, followed by removing
the stop words. We then employed Sentence2Vector tool17

to extract the textual features. We finally extracted 100
dimensional features for each micro-video description.

Apart from the deep learning features mentioned above,
we also extracted some traditional features such as color
histogram and Mel-frequency spectrogram (MFS) to enrich
the feature set, which are summarized in Table 4.

3.3 Missing Data Completion
We observed that the acoustic and textual modalities

are missing in some micro-videos. More precisely, there
are 169 and 24,707 micro-videos with missing acoustic
and textual modality, respectively. Information missing is
harmful for most machine learning performance [10, 46],
including the models for venue category estimation. To
alleviate such problem, we cast the data completion task
as a matrix factorization problem [50]. In particular, we
first concatenated the features from three modalities in
order, which naturally constructed an original matrix. We

16
https://github.com/bmcfee/librosa.

17
https://github.com/klb3713/sentence2vec.

Table 4: Feature summarization of three modalities.

Modality Extracted features

Visual 4,096-D CNN, 96-D color histogram
Acoustic 200-D DAE, 256-D MFS
Textual 100-D paragraph vector

then applied the matrix factorization technique to factorize
this original matrix into two latent matrices with 100
latent features, such that the empirical errors between the
production of these two latent matrices and the original
matrix are as small as possible. The entries in the two latent
matrices are inferred by the observed values in the original
matrix only, and over-fitting is avoided through a regularized
model.

4. OUR TRUMANN MODEL

4.1 Notations and Assumptions
We first declare some notations. In particular, we use bold

capital letters (e.g., X) and bold lowercase letters (e.g., x)
to denote matrices and vectors, respectively. We employ
non-bold letters (e.g., x) to represent scalars, and Greek
letters (e.g., β) as parameters. We denote the Frobenius
norm and the group lasso (i.e., `2,1-norm) matrix X as ‖X‖F
and ‖X‖2,1, respectively. Moreover, let Xij denote the entry
in row i and column j. If not clarified, all vectors are in
column forms.

Suppose we have a set of N micro-video samples. Each
has S modalities and is associated with one of T venue
categories. In this work, we treat each venue category
as a task. We utilize Xs = [xs

1,x
s
2, . . . ,x

s
N ]T ∈ RN×Ds

to denote the representation of N samples with a Ds

dimensional feature space from the s-th modality, and utilize
Y = [y1,y2, . . . ,yN ]T ∈ RN×T to denote the labels of
the N samples over the T pre-defined tasks {t1, t2, . . . , tT }.
Our objective is to jointly learn the mapping matrix As

from the individual space Xs to the common space B ∈
RN×K , and learn the optimal coefficient matrix W =
[w1,w2, . . . ,wT] ∈ RK×T . Based on As and W we are
able to estimate the venue categories for the unseen videos.

To intuitively demonstrate our proposed model, we
introduce TWO assumptions first:

1. We assume that there exists a common discriminative
space for micro-videos, originating from their multi-
modalities. Micro-videos can be comprehensively
described in this common space and the venue
categories are more distinguishable in this space.
The space over each individual modality can be
mathematically mapped to the common space with a
small difference.

2. The tasks (venue categories) are organized into a tree
structure. We assume that such structure encodes
the relatedness among tasks and leveraging this prior
knowledge is able to boost the learning performance.

To consider the aforementioned assumptions simulta-
neously, we devise a tree-guided multi-task multi-modal
learning method, which will be detailed in a stepwise way.

https://github.com/bmcfee/librosa
https://github.com/klb3713/sentence2vec


4.2 Common Space Learning
Common space learning [42, 16] over multiple modalities

or views has been well studied. Theoretically, it can capture
the intrinsic and latent structure of data, which preserveps
information from multiple modalities [29, 40]. It is thus
able to alleviate the fusion and disagreement problems of the
classification tasks over multiple modalities [16, 30]. Based
upon our first assumption, we propose a joint optimization
framework which minimizes the reconstruction errors over
multiple modalities of the data, and avoids overfitting using
Frobenius norm on the transformation matrices. It is
formally defined as,

min
As,B

λ1

2

S∑
s=1

‖XsAs −B‖2F +
λ2

2

S∑
s=1

‖As‖2F , (1)

where B ∈ RN×K is the representation matrix in the
common space learned from all modalities, and K is
the latent feature dimension. As ∈ RDs×K is the
transformation matrix from the original feature space over
the s-th modality to the common space; and λ1 and λ2 are
nonnegative tradeoff parameters.

4.3 Tree-guided Multi-task Learning
Although the existing multi-task learning methods, such

as graph-regularized [49] and clustering-based [21], achieve
sound theoretical underpinnings and great practical success,
the tree-guided method [25] is more suitable and feasible for
our problem. This is because the relatedness between the
venue categories are naturally organized into a hierarchical
tree structure by experts from Foursquare. As Figure1
shows, the relatedness among different tasks can be
characterized by a tree τ with a set of nodes V, where the
leaf nodes and internal nodes represent tasks and groups of
the tasks, respectively. Intuitively, each node v ∈ V of the
tree can be associated with a corresponding group Gv = {ti},
which consists of all the leaf nodes ti belonging to the subtree
rooted at the node v. To capture the strength of relatedness
among tasks within the same group Gv, we assign a weight
ev to node v according to an affinity function, which will
be detailed in the next subsection. Moreover, the higher
level the internal node locates at, the weaker relatedness it
controls, and hence the smaller weight it obtains. Therefore,
we can formulate such tree-guided multi-task learning as
follows,

min
W,B

Γ =
1

2
‖Y −BW‖2F +

λ3

2

∑
v∈V

ev‖WGv‖2,1, (2)

where WGv = {wi : ti ∈ Gv} ∈ RK×|Gv| is the coefficient
matrix of all the leaf nodes rooted at v, where each column
vector is selected from W according to the members within

the task group Gv; ||WGv ||2,1 =
∑K

k=1

√∑
ti∈Gv w

2
ki is

the `2,1-norm regularization (i.e., group lasso) which is
capable of selecting features based on their strengths over
the selected tasks within the group Gv, and in this way,
we can simultaneously learn the task-sharing features and
task-specific features. Lastly, the nonnegative parameter
λ3 regulates the sparsity of the solution regarding W.
By integrating the common space learning function in
Eqn.(1) and the tree-guided multi-task learning framework

Algorithm 1 optimization of TRUMANN model

Input: Xs, Y, λ1, λ2, λ3, e, V,
K: dimension of the desired common space.

Output: As, B, W.
1: Initialize As, B, W and Q
2: while not converge do
3: Fixing B and W, update As according to

As ← (λ1X
sTXs + λ2I)−1(λ1X

sB).
4: Fixing A and W, update B according to

B← (YWT + λ1

∑S
s=1 XsAs)(λ1SI + WWT )−1

5: while not converge do
6: Fixing W, update qk,v according to

qk,v ←
ev‖Wk

Gv
‖∑K

k=1

∑
v∈V ev‖Wk

Gv
‖

7: Updating Qt according to

Qt ←
∑

v∈V
e2v

qk,v

8: Fixing A, Qt and B, update wt according to
wt ← (BTB + λ3

∑T
t=1 Qt)−1BTyt

9: end while
10: end while

in Eqn.(2), we reach the final objective function as follows,

min
W,B,As

Γ =
1

2
‖Y −BW‖2F +

λ1

2

S∑
s=1

‖XsAs −B‖2F +

λ2

2

S∑
s=1

‖As‖2F +
λ3

2

∑
v∈V

ev‖WGv‖2,1. (3)

4.4 Optimization
We adopt the alternating optimization strategy to solve

the three variables As, B and W in Eqn.(3). To be more
specific, we optimize one variable while fixing the others in
each iteration. We keep this iterative procedure until the
objective function converges.

4.4.1 Computing As with B and W fixed
We first fix B and W, and take derivative of Γ with respect

to As. We have,

∂Γ

∂As
= λ1(XsAs −B)Xs + λ2A

s. (4)

By setting Eqn.(4) to zero, it can be derived that,

As = (λ1X
sTXs + λ2I)−1(λ1X

sTB), (5)

where I ∈ RDs×Ds

is an identity matrix. The first term in
Eqn.(5) can be easily proven to be positive definite and hence
invertible according to the definition of positive-definite
matrix.

4.4.2 Computing B with As and W fixed
With As and W fixed, we compute the derivative of Γ

regarding B as follows,

∂Γ

∂B
= λ1

S∑
s=1

(B−XsAs) + (BWWT −YWT ). (6)

By setting Eqn.(6) to zero, we have,

B = (YWT + λ1

S∑
s=1

XsAs)(λ1SI + WWT )−1, (7)



where (λ1SI + WWT ) can be easily proven to be invertible
according to the definition of positive-definite matrix.

4.4.3 Computing W with As and B fixed
Considering that the last term in Eqn.(3) is not

differentiable, we use an equivalent formulation of it, which
has been proven by [1], to facilitate the optimization as
follows,

λ3

2
(
∑
v∈V

‖WGv‖)
2. (8)

Still, it is intractable. We thus further resort to another
variational formulation of Eqn.(8). According to the
Cauchy-Schwarz inequality, given an arbitrary vector b ∈
RM such that b 6= 0, we have,

M∑
i=1

|bi| =
M∑
i=1

θ
1
2
i θ
− 1

2
i |bi|

≤ (

M∑
i=1

θi)
1
2 (

M∑
i=1

θ−1
i b2i )

1
2 ≤ (

M∑
i=1

θ−1
i b2i )

1
2 , (9)

where θi’s are the introduced variables that should satisfy∑M
i=1 θi = 1, θi > 0 and the equality holds for θi =

|bi|/‖b‖1. Based on this preliminary, we can derive the
following inequality,

(
∑
v∈V

ev‖WGv‖)
2 ≤

K∑
k=1

∑
v∈V

e2v‖wk
Gv‖

2
2

qk,v
, (10)

where
∑

k

∑
v qk,v = 1, qk,v ≥ 0, ∀k, v; wk

Gv denotes the k-th
row vector of the group matrix WGv . It worth noting that
the equality holds when

qk,v =
ev‖wk

Gv‖
2
2∑K

k=1

∑
v∈V ev‖wk

Gv‖
2
2

. (11)

Thus far, we have theoretically derived that minimizing Γ
with respect to W is equivalent to minimizing the following
convex objective function,

min
W,qk,v

1

2
‖Y −BW‖2F +

λ1

2

S∑
s=1

‖XsAs −B‖2F +

λ2

2

S∑
s=1

‖As‖2F +
λ3

2

K∑
k=1

∑
v∈V

‖evwk
Gv‖

2

qk,v
. (12)

To facilitate the computation of the derivative of objective
function Γ with respect to wt for the t-th task, we define
a diagonal matrix Qt ∈ RK×K with the diagonal entry as
follows,

Qt
kk =

∑
{v∈V,|t∈v}

e2v
qk,v

. (13)

We ultimately have the following objective function,

min
W,Q

1

2

T∑
t=1

‖yt −Bwt‖2F +
λ1

2

S∑
s=1

‖XsAs −B‖2F +

λ2

2

S∑
s=1

‖As‖2F +
λ3

2

T∑
t=1

wT
t Qtwt. (14)

The alternative optimization strategy is also applicable
here. By fixing Qt, taking derivative of the above

formulation regarding wt, and setting it to zero, we reach,

wt = (BTB + λ3Q
t)−1(BTyt). (15)

Once we obtain all the wt, we can easily compute Qt based
on Eqn.(11)

4.5 Task Relatedness Estimation
According to our assumption, the hierarchical tree

structure of venue categories plays a pivotal role to boost the
learning performance in our model. Hence, the key issue is
how to precisely characterize and model the task relatedness
in the tree, namely, how to estimate the reasonable weight
ev for each node v in the tree appropriately. Although
the existing tree-guided multi-task learning approaches [36,
17] have addressed this issue by exploring the geometric
structure, they do not consider the semantic relatedness
among tasks. To remedy this problem, we aim to model
the intrinsic task relatedness based on the feature space.
Towards this goal, we introduce the affinity measurement of
the node group proposed in [31]. A high affinity value ev
of the node group Gv indicates the dense connections and
compact relations among the leaf nodes within the given
group. We hence can employ the affinity measurement to
characterize the task relatedness in the tree.

To facilitate the affinity measurement of each node group
Gv, we need to obtain the pairwise similarity between all
leaf nodes. For simplicity, we utilize the adjacency matrix
S ∈ RT×T to denote the pairwise similarity matrix and the
entry Sij to capture the non-negative relatedness between
the i-th and j-th leaf nodes, which can be formulated as,

Sij = exp

(
−||x̄i − x̄j||2

θ2

)
, (16)

where x̄i represents the mean feature vector of the samples
belonging to the i-th venue category which can be extracted
from the training dataset; θ is radius parameter that is
simply set as the median of the Euclidean distances of all
node pairs.

For ease of formulation and inspired by the work in [31],
we define a scaled assignment vector uv ∈ RT for each node
of the tree over all the T leaf nodes which can be stated as,

uvt =

{
1√
|Gv|

, if t ∈ Gv

0, otherwise
. (17)

Based on the scaled assignment uv and the pairwise
similarity matrix S, we can further formulate the affinity
ev for the node v as follows,

ev = uT
v Suv. (18)

Since the characteristics of the affinity definition, the value
of the ev are limited within the range of [0, 1]. More
importantly, such affinity measurement can guarantee that
higher nodes correspond to weaker relatedness, and vice
versa.

4.6 Complexity Analysis
In order to analyze the complexity of our proposed

TRUMANN model, we have to estimate the time
complexity for constructing A, B and W as defined
in Eqn.(5), Eqn.(7) and Eqn.(15). The computational
complexity of the training process is O(M×(O1+O2+O3)),
where O1, O2 and O3 respectively equal to ((Ds)2N +



(Ds)3 + (Ds)2K)S, (NK2 + NDKS + K3 + K2T ) and
(2NK2 +K3)T . Thereinto, M is the iteration times of the
alternative optimization, which is a small value less than 10
in our above analysis. N , T , S, K and D respectively refer
to the number of micro-videos, venue categories, modalities,
latent dimension and the total feature dimensions over all
the modalities. Usually, we consider only a few number of
modalities. S is hence very small. In our experimental
settings, K and T are in the order of a few hundreds.
Meanwhile, the number of feature dimension is about 5,000.
Therefore, D2 is greater than K2T . In the light of this, we
can reduce the time complexity to be ND2, which is faster
than SVM, in terms of O(N3).

5. EXPERIMENTS
All the experiments were conducted over a server equipped

with Inter(R) Core(TM) CPU i7-4790 at 3.6GHz on 32Gb
RAM, 8 cores and 64-bit Windows 10 operation system.

5.1 Experimental Settings
To thoroughly measure our model and the baselines, we

employed multiple metrics, namely, macro-F1 and micro-
F1[15]. The averaging macro-F1 gives equal weight to each
class-label in the averaging process; whereas the averaging
micro-F1 gives equal weight to all instances in the averaging
process. Both macro-F1 and micro-F1 metrics reach their
best value at 1 and worst score at 0.

The experimental results reported in this paper were
based on 10-fold cross-validation. In particular, the
stratified cross-validation [34] was adopted to ensure all
categories contain approximately the same percentage
between training and testing samples. In each round of
the 10-fold cross-validation, we split our dataset into three
chunks: 80% of the micro-videos (i.e., 194,505 videos) were
used for training, 10% (i.e., 24,313 videos) were used for
validation, and the rest (i.e., 24,313 videos) were held-out for
testing. The training set was used to adjust the parameters,
while the validation set was used to avoid overfitting, i.e.,
verifying that any performance increase over the training
dataset actually yields an accuracy increase over a dataset
that has not been shown to the model before. The testing
set was used only for testing the final solution to confirm
the actual predictive power of our model with optimal
parameters. Grid search was employed to select the optimal
parameters with small but adaptive step size.

5.2 Performance Comparison among Models
We carried out experiments to compare the overall

effectiveness of our proposed TURMANN model with
several state-of-the-art baselines:

• SRMTL: The Sparse Graph Regularization Multi-
Task Learning method can capture the relationship
between task pairs and further impose a sparse graph
regularization scheme to enforce the related pairs close
to each other [32].

• regMVMT: This semi-supervised inductive multi-
view multi-task learning model considers information
from multiple views and learns multiple related tasks
simultaneously [47]. Besides, we also compared
our model with the variant of regMVMT method,
dubbed regMVMT+. regMVMT+ can achieve
better performance by modeling the non-uniformly
related tasks.

Table 5: Performance comparison between our
model and the baselines on the venue category
estimation. (p-value*: p-value over micro-F1.)

Models Macro-F1 Micro-F1 p-value*

SRMTL 2.61±0.19% 15.71±0.21% 1.1e-3
regMVMT 4.33±0.41% 17.16±0.28% 7.0e-3

regMVMT+ 4.53±0.31% 18.35±0.13% 9.1e-3
MvDA+RMTL 2.46±0.18% 17.28±1.67% 1.0e-3
TRUMANN- 3.75±0.17% 24.01±0.35% 1.0e-2
TRUMANN 5.21±0.29% 25.27±0.17% -

• MvDA+RMTL: This baseline is the combination
of Multi-view Discriminant Analysis [24] and Robust
Multi-Task Learning [7]. In particular, MvDA seeks
for a single discriminant common space for multiple
views by jointly learning multiple view-specific linear
transforms. Meanwhile, the RMTL is able to capture
the task relationships using a low-rank structure via
group-sparse lasso.

• TURMANN-: This baseline is the variant of our
proposed model by setting all ev in Eqn.(3) to be 1.
In other words, this baseline does not incorporate the
knowledge of the pre-defined hierarchical structure.

The comparative results are summarized in Table 5.
From this table, we have the following observations: 1)
TRUMANN achieves better performance, as compared
to other multi-task learning approaches, such as SRMTL.
This is because, the SRMTL cannot capture the prior
knowledge of task relatedness in terms of tree structure.
On the other hand, it reflects that micro-videos are more
separable in the learnt common space. 2) Multi-modal
multi-task models, such as regMVMT and TRUMANN
remarkably outperform pure multi-task learning models,
such as SRMTL. This again demonstrates that the
relatedness among multi-modalities can boost the learning
performance. 3) The joint learning of multi-modal multi-
task models, including regMVMT and TRUMANN,
shows their superiors to the sequential learning of multi-
view multi-task model, MvDA+RMTL. This tells us that
multi-modal learning and multi-task learning can mutually
reinforce each other. 4) We can see that TRUMANN
outperforms TRUMANN-. This demonstrate the
usefulness of the pre-defined hierarchical structure, and
reveals the necessity of tree-guided multi-task learning. And
5) we conducted the analysis of variance (known as ANOVA)
micro-F1. In particular, we performed paired t-test between
our model and each of the competitors over 10-fold cross
validation. We found that all the p-value are substantially
smaller than 0.05, which shows that the improvements of
our proposed model are statistically significant.

5.3 Representativeness of Modalities
We also studied the effectiveness of different modality

combination. Table 6 shows the results. From this
table, we observed that: 1) The visual modality is
the most discriminant one among visual, textual and
acoustic modalities. This is because, the visual modality
contains more location-specific information than acoustic
and textual modality. On the other hand, it signals that
the CNN features are capable of capturing the prominent
visual characteristics of venue categories. 2) The acoustic
modality provide important cues for venue categories as
compared to the textual modality across micro-F1 and
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Figure 5: Categories with best classification performance under visual, acoustic, textual modality and their
combination, respectively.

macro-F1 metrics. But only given the acoustic modality,
it is hard to estimate the venue categories for most of
the videos, while the combination of visual and acoustic
modality get an improvement than visual modality. 3)
Textual modality is the least descriptive for venue category
estimation. This is due to that the textual descriptions
are noisy, missing, sparse, and even irrelevant to the venue
categories. And 4) the more modalities we incorporate,
the better performance we can achieve. This implies that
the information of one modality is insufficient and multi-
modalities is complementary to each other rather than
mutually conflicting. This is a consensus to the old saying
“two heads are better than one”.

5.4 Case Studies
In Figure 5, we respectively list the top eight categories

with best performance in only visual modality, acoustic
modality, textual modality, and their combination. From
this figure, we have the following observations: 1) For
visual modality, our model achieves stable and satisfactory
performance on many venue categories, especially on those
with discrimiant visual characteristic, such as the micro-
videos related to ‘Zoo’ and ‘Beach’. 2) Regarding the
acoustic modality, our model performs better on those with
regular sounds or noisy noise, such as, ‘Music Venue’ and
‘Concert Hall’, which have discriminate acoustic signals as
compared to other venue categories. 3) When it comes
to the textual modality, we found that the top eight best
performing categories are with high frequencies in micro-
video descriptions. For instance, the terms of ‘Park’
and ‘Beach’ occur 2,992 and 3,882 times in our dataset,
respectively. It is worth noting that not all the textual
descriptions are correlated with the actual venue category,
which in fact decreases the performance. For example,
the textual description of one micro-video is ‘I love my
city’. Nevertheless, its venue category is ‘Park’. And 4)
unsurprisingly, we obtained a significant improvement for
‘Aquarium’ category, which is hard to recognize with only
one modality. Moreover, compared to the performance
over visual modality, the ‘Basketball Stadium’ and ‘Zoo’
categories are also improved about 8% in micro F1. Besides,
the more training samples one venue category contains, the
higher probability of this category will yield, such as ‘Theme
Park’ and ‘City’.

5.5 Parameter Tuning and Sensitivity
We have four key parameters as shown in Eqn.(3): K,

λ1, λ2 and λ3. The optimal values of these parameters
were carefully tuned with 10-fold cross-validation in the

Table 6: Representativeness of different modalities.
(p-value*: p-value over micro-F1.)

Modality Macro-F1 Micro-F1 p-value*

Visual 4.49±0.09% 22.56±0.10% 2.3e-2
Acoustic 2.79±0.01% 16.25±0.46% 2.9e-4
Textual 1.44±0.29% 12.36±0.38% 5.4e-4

Acoustic+textual 2.87±0.16% 16.86±0.06% 6.4e-3
Visual+acoustic 4.61±0.08% 23.85±0.20% 1.8e-2
Visual+textual 4.52±0.11% 23.54±0.17% 1.1e-2

All 5.21±0.29% 25.27±0.17% -

training data. In particular, for each of the 10-fold, we
chose the optimal parameters by grid search with a small
but adaptive step size. Our parameters were searched in
the range of [50, 500], [0.01,1], [0,1] and [0,1], respectively.
The parameters corresponding to the best micro F1-score
were used to report the final results. For other competitors,
the procedures to tune the parameters are analogous to the
ensure fair comparison.

Take the parameter tuning in one of the 10-fold as an
example. We observed that our model reached the optimal
performance when K=200, λ1 = 0.7, λ2 = 0.4 and λ3 =
0.3. We then investigated the sensitivity our model to these
parameters by varying one and fixing the others. Figure 6
illustrates the performance of our model with respect to K,
λ1, λ2 and λ3. We can see that: 1) When fixing λ1, λ2, λ3

and tuning K, the micro F1 score value increases first and
then reaches the peak value at K=200. And 2) the micro
F1 score value changes in a small range, when varying λ1,
λ2 and λ3 from 0 to 1. The slight change demonstrates that
our model is non-sensitive to parameters.

At last, we recorded the value of micro F1 along with the
iteration time using the optimal parameter settings. Figure7
shows the convergence process with respect to the number
of iterations. From this figure, it can be seen that our
algorithm can converge very fast.

6. CONCLUSION AND FUTURE WORK
In this paper, we present a novel tree-guided multi-task

multi-modal learning method to label the bite-sized video
clips with venue categories. This model is capable of learning
a common feature space from multiple and heterogonous
modalities, which preserves the information of each modality
via disagreement penalty. In this common space, the
venue categories of micro-videos are more distinguishable.
Meanwhile, the proposed method intelligently leverages the
pre-defined Foursquare hierarchical structure to regularize
the relatedness among venue categories. We seamlessly
integrate the common space learning and multi-task
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classification into a unified model. To validate our model,
we crawl a representative set of micro-videos from Vine and
extract a rich set of features from textual, visual and acoustic
modalities. Based upon the extensive experiments on this
dataset, we have shown that our model is superior to several
state-of-the-art baselines.

In the future, we plan to study the relatedness among
multiple modalities, such as conflict, complementary and
consistent relatedness, to boost the learning performance.
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