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ABSTRACT
While efforts have been made on bridging the semantic gap
in image understanding, the in situ understanding of social
media images is arguably more important but has had less
progress. In this work, we enrich the representation of im-
ages in image tweets by considering their social context. We
argue that in the microblog context, traditional image fea-
tures, e.g., low-level SIFT or high-level detected objects, are
far from adequate in interpreting the necessary semantics la-
tent in image tweets.

To bridge this gap, we move from the images’ pixels to
their context and propose a context-aware image tweet mod-
elling (CITING) framework to mine and fuse contextual
text to model such social media images’ semantics. We
start with tweet’s intrinsic contexts, namely, 1) text within
the image itself and 2) its accompanying text; and then we
turn to the extrinsic contexts: 3) the external web page
linked to by the tweet’s embedded URL, and 4) the Web as
a whole. These contexts can be leveraged to benefit many
fundamental applications. To demonstrate the effectiveness
our framework, we focus on the task of personalized image
tweet recommendation, developing a feature-aware matrix
factorization framework that encodes the contexts as a part
of user interest modelling. Extensive experiments on a large
Twitter dataset show that our proposed method significantly
improves performance. Finally, to spur future studies, we
have released both the code of our recommendation model
and our image tweet dataset.
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mantics; microblog

1. INTRODUCTION
In the mobile Internet era, people now effortlessly snap

pictures and share the events in their daily lives on social
media. As a result, usage of social media platforms has
soared, especially in terms of user-generated images. For
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Figure 1: Example images affiliated with two tweets:
(left) China ends the one-child policy, and (right)
the movie Fast and Furious 6. For such microblog im-
ages, understanding their context is the key to its
semantics.

example in Twitter, about 17.2% of tweets have associated
images (which we term image tweets) according to our
dataset collected in December 2014 (detailed in Section 5).
The trend is even more evident in Sina Weibo — the largest
microblog service in China — where over 45% of tweets are
image tweets [8]. Being able to understand the images in im-
age tweets is beneficial for many downstream applications,
such as event detection, image tweet retrieval and recom-
mendation [35]. For example in tweet recommendation, the
widely-used collaborative filtering technique does not work
well [7, 10, 15], due to the short life span of tweets. There-
fore, it is crucial to look into the content of image tweets.

Understanding image tweets, however, is non-trivial for
machines. This is partially due to the technical difficulties
in mining semantics from images, but more importantly, is
because of the special context in social media. A picture is
worth a thousand words, while the ever-evolving property of
social media induces the full story of an image is far beyond
itself and the contexts (e.g., event and intent) are critical for
image tweets understanding. Figure 1 shows two examples.
For the left picture, image recognition algorithms tag it with
words like “child, cute, girl, little, indoor”1. However, these
visual tags can not capture the background and real intent
of the picture — this image was the poster child for the
story of China abandoning its controversial one-child policy.
Similarly, for the right picture, the annotated tags “car, as-
phalt, road, people, transportation system” fail to tell the
origin and objective of the picture — this is a promotional
poster for the movie Fast and Furious 6.

In this work, we propose to exploit the contexts to tackle
the challenges in understanding image tweets. We devise a
context-aware image tweet modelling (CITING) framework
(illustrated in Figure 2) to enrich the representation of im-

1These are the actual top five tags from Clarifai (https://
www.clarifai.com), a commercial visual recognition system.
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Figure 2: An image tweet’s four sources of contextual text in our CITING framework. Blue outlines denote
evidence frome text; orange from the image.

age tweets from both intrinsic and extrinsic contexts. We
start with the intrinsic contexts: 1) for the text, we enhance
hashtags to better represent the topics of images, and 2) for
the image, we apply optical character recognition (OCR) to
extract text from images. Then we turn to extrinsic con-
texts, which are especially important to understand the full
story of image tweets: 3) parsing the external webpage(s)
hyperlinked within the tweet; and 4) querying image search
engines with the image as query. Our assessment reveals
that the contextual text from each source differs in quality
and coverage. As such, we further devise a series of heuris-
tics to fuse text when multiple channels are triggered. This
fusion makes the modelling more accurate and also reduces
the acquisition cost of the contexts.

Our proposed framework extracts contexts in the form
of textual words, which are easy to interpret and integrate
with other image/visual feature inventories. To demonstrate
the efficacy of the extracted contexts, we apply them to the
personalized image tweet recommendation task, for which
the key is to accurately model users’ interests. We develop
a generic feature-aware Matrix Factorization (MF) frame-
work to model users’ preference on features. As users do
not explicitly express their dislikes, there is no explict neg-
ative data, which can adversely affect the learning of user
interests [13]. To resolve this, we propose a time-aware neg-
ative sampling strategy that samples negative tweets for a
user based on how likely the user may see the tweet but has
not retweeted it. Lastly, we adopt a pair-wise learning to
ranking method to infer users’ interests based on our en-
hanced contexts. We conduct experiments on a large Twit-
ter dataset, showing that our proposed contexts are more
effective for users’ interests modelling than the tweet’s text
and visual images themselves, which validates our recom-
mendation methodology.

We summarize the main contributions as follows:

• We propose the CITING framework to mine and fuse
contexts to better represent image tweets. Such study
is fundamental and can benefit many applications such
as event detection, image tweet retrieval and recom-
mendation (Section 3).

• We develop a feature-aware recommendation model to-
gether with a featured negative sampling method for
tweets, so as to effectively integrate contextual features
for user interest modelling (Section 4).

• We conduct extensive experiments on Twitter image

tweets that show the effectiveness of our CITING frame-
work and the recommendation model. We have made
the dataset and the model publicly available to facili-
tate future research (Section 5).

2. RELATED WORK
Unlike their textual counterparts, images in microblogs

have only started attracting academic attention recently. We
review the existing studies on image tweets, focusing on how
the semantics of images are exploited for downstream appli-
cations. As there is no previous work on personalized recom-
mendation of image tweets (to the best of our knowledge),
we then review works about general tweet recommendation
in the microblog setting.

2.1 Images in Microblog
As an image tweet consists of both text and image com-

ponents, most existing works leverage both modalities to in-
terpret the semantics of an image tweet [2, 3, 6, 30, 31, 34].
For text part, it is widely accepted that pre-processing —
such as tokenization, lowercasing and stopword removal —
is important to combat noise in the text. For the image part,
existing work has followed a multimedia paradigm; that is,
attempting to mine the semantics of an image from both low-
level and high-level features. In terms of low-level features,
works [30, 31, 16, 2, 3, 26] have considered pixels, color his-
tograms, SIFT descriptors and Speeded Up Robust Features
(SURF), among others. To be specific, SIFT descriptors and
SURF are quantized by means of a visual codebook learned
by k-means. However, the gap between the low-level fea-
tures and the real semantics limits the model fidelity. The
other works leveraged higher-level features, such as visual
objects [6], human faces [8], and the output from the upper
layers of convolutional neural networks (CNNs) trained for
object recognition (hereafter, CNN features) [4, 34, 5]. For
the CNN features, two papers [4, 5] used them directly (e.g.,
4096 dimensional visual features), while Zhang et al. [34] car-
ried additional steps to quantize them into discrete features,
which shares a similar spirit to the quantization of SIFT and
SURF.

Due to the heterogeneous nature of image tweets, features
extracted from the text and image lie in different spaces,
which are non-trivial to integrate. To resolve this, multi-
modal topic models [30, 31, 2, 4, 34, 9] have been developed
to project images and the text of tweets to a shared latent
topic space. As such, an image tweet is represented as a



multinomial topic distribution; however, the dimensions of
such latent representation are difficult to interpret semanti-
cally. One solution is to assign labels or categories to im-
age tweets through human labelling or transfer learning [3].
However, the limited number of labels can seriously restrict
the method’s generalizability and coverage in practice. For
example, in Bian et al’s work [3], only 20 categories were
considered to label image tweets, which significantly limited
the representation of semantics.

Although the above works have exploited image tweets in
various ways, we argue that there are two key limitations of
the previous work. First, concerning the tweet’s text, only
the textual words have been investigated; but microblog-
specific textual features (e.g., hashtags, external URLs) that
contain known, rich contextual information have not been
utilized. Second, images are leveraged only at a shallow
level; that is, the community has limited itself to only using
image features commonly used in general domain research.
Microblog images exhibit unique characteristics, such that
modelling these images using conventional manners confines
an understanding to a superficial level (see the examples in
Figure 1). It is thus critical to turn to external knowledge
to gain a comprehensive understanding of an image tweet.
In this work, we aim to fill this research gap by mining the
rich contexts of image tweets.

2.2 Tweet Recommendation
With the vast amount of tweets, microblog users are now

overwhelmed with many uninteresting posts. It is of great
necessity to understand users’ interest and recommend in-
teresting tweet feeds for users. One line of research [14, 23,
22, 29] attempted to predict the general interestingness (or
equivalently, “popularity”) of a tweet, in regardless of the
identity of an audience. Such prediction task is usually for-
mulated as a classification problem (e.g., popular or not). To
this end, various features have been exploited, such as the
explicit features from tweet’s textual content (e.g., words,
topics and sentiments), contextual meta-data (e.g., posting
time), and the author’s profile (e.g., the number of followers
and followees). The only work that has paid attention to
image tweets is done by Can et al. [6], which also utilized
shallow image features to build a classifier.

However, a generally popular tweet does not necessarily
mean it will be interesting to a particular user, since interest-
ingness is subjective and relevant to user’s own taste [1]. To
generate better recommendations for users, researchers have
turned to build personalized models to predict tweet’s inter-
estingness. An early work by [28] built a classifier similar
to general popularity predictor but with additional features
from the target user, such as user’s retweeting regularity and
user–author relations. Later work casted it as a typical rec-
ommendation problem [7, 15, 10, 33], for which collaborative
filtering (CF) is known to be the most effective technique. In
the microblog platform, however, CF does not work well for
tweet recommendation because of the ubiquitous cold-start
problem: most live tweets are newly generated and have
never been seen in the training data. To tackle this, exist-
ing works incorporate tweet’s textual content into collabo-
rative filtering models. Specifically, Chen et al. [7] trans-
formed the traditional user–tweet interaction matrix to a
user–word matrix before applying matrix factorization. Fol-
lowing the same idea, Feng et al. [10] additionally modelled
the user–hashtag interaction, since hashtags are good topic

indicators. Hong et al. [15] extended the Factorization Ma-
chines to jointly model user–tweet relations and the textual
tweet generation process.

Despite the fact that many works have studied the tweet
recommendation problem, they have primarily focused on
the textual tweets. The rich signals in images and their
contexts have been ignored. To the best of our knowledge,
our work is the first to specifically consider the personalized
recommendation task with image tweets.

3. CONTEXT-AWARE IMAGE TWEET MOD-
ELLING

In this section, we present our CITING framework for
image tweets modelling. We first describe the four strate-
gies that construct contexts from different data sources (cf.
Figure 2), and then discuss the rules to fuse the contexts
which help to improve text quality and save the acquisition
cost. Unless otherwise stated, the descriptive statistics in
this section are drawn from our 1.3 million Twitter image
tweets dataset (detailed in Section 5).

3.1 Four Strategies to Construct Contexts
We start with the intrinsic context in image tweets: 1) the

textual tweet, and 2) the image itself. Then we turn to the
extrinsic context: 3) the external web pages hyperlinked in
the tweet, and 4) the whole Web based on search engine.

1. Hashtag Enhanced Text. The most obvious con-
text for a microblog image is its accompanying text. Here
we focus on hashtags, which have relatively high coverage
due to their prevalence in image tweets — 26.8% have hash-
tags in our Twitter dataset. Compared to the textual words
of a tweet, hashtags exhibit stronger semantic ties to the
post [21]. For example, we observe that a few hashtags (e.g.,
#dogphoto) annotate objects present in an image, while the
majority describe the topic or event of the image (e.g., #it-
syourbirthday). In both cases, hashtags are helpful in cap-
turing the semantics of the image. However, a challenge in
utilizing hashtags is that they do not exhibit the regularity
of controlled vocabulary due to the user-generated nature.
More specifically, people usually use different variant hash-
tags to refer to the same (series of) events (e.g., #icebucket,
#ALSIceBucketChallenge; #NewYears2013, #NewYears2014).
Gathering hashtags variants can thus help conflate images
with common semantics. Observing these variants are often
composed with common keywords, we break up hashtags
into component words by Microsoft’s Word Breaker API2,
e.g., #icebucket will be broken up as “ice” and “bucket”; we
found that 14.3% of image tweets utilize multiword hash-
tags. We then combine such component words with post’s
text (including the original hashtags with their hash symbol)
to form the hashtag enhanced text.

2. Text in the Image. Images in microblogs are not
solely captured by camera, and many of them are software-
generated or edited images, e.g., graphics, memes, cartoons
and screenshots. We observe that text is often embedded
in images: our own manual annotation3 of 500 randomly-
sampled images (hereafter, Twitter-500) from our Twitter
dataset identified 174 (34.8%) that fall in this category. We

2https://www.projectoxford.ai/weblm
3Annotated by the first author.
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Table 1: Demographics of the 5 subtypes of text-
images and associated Tesseract OCR performance.

Category Manual Tesseract

# (%) Miss Rate Recall
Text-style 38 (21.8%) 10.5% 0.984
Meme-style 64 (36.8%) 42.1% 0.572
Tweet screenshot 14 (8.0%) 7.1% 0.843
Other synthetic 43 (24.7%) 30.2% 0.500
Natural scene w/ text 15 (8.6%) 66.7% 0.467

Total 174 119

Table 2: Categories of the 100 most frequent do-
mains in URLs and Google Image indexed pages.
YT is YouTube and IA is image aggregator. For the
66.0% SNS indexed by Google, 48.0% are from Twit-
ter, 40.1% are from Pinterest.

% News SNS Shop Article YT IA Music
URLs 51.7 15.3 11.9 10.9 3.9 2.3 1.8
Google 5.7 66.0 3.6 0.3 2.8 18.3 1.0

term such images as text-images, which we further categorize
into five subtypes as shown in Table 1.

First, from the second column, we see that one-third of
text-images are meme-styled: i.e., a (viral Internet) image
overlaid with text (as in Figure 3, left). It is impossible to
differentiate the semantics of meme-style images from a vi-
sual perspective, as many originate from an identical source
picture. Figure 4 shows two example images. In contrast,
the embedded captions all but give away the context. In
even more text-heavy cases, images can consist purely of
text (Figure 3, right), accounting for roughly a fifth of text-
images. Twitter users sometimes post such pure text-style
images possibly to circumvent the 140 character restriction.
Screenshots of tweets (8.0%) are also common; we conjec-
ture that the primary intention of such posts is to achieve
the “retweet with comment” feature before Twitter officially
supported this function in April 20154. For such tweets that
have a strong textual nature, object detectors are close to
useless. For the remaining text-images, 16.7% are other syn-
thetic images, and 8.5% are natural photos that contain text
in the scene (e.g., road signs). Our findings lead to two key
implications: 1) that a large proportion of social media im-
ages have a textual aspect, and for posts feature in such
images, that 2) the embedded text is an important carrier
of its semantics.

As such, we apply the Tesseract open source OCR software
(version 3.02.02)5 to recognize text from these images. After
further using the vocabulary built by our Twitter posts to
filter out noise, 26.4% of the images in our dataset have at
least one recognized textual word. As Tesseract is designed
for printed text, a natural question to ask is how well does
it work for Twitter images? Using our manual annotation
as a reference, we evaluate Tesseract’s performance on our
Twitter-500 sample set. Table 1’s rightmost two columns
show its miss rate and the average recall for recognized text.
Overall, Tesseract detected text from 119 images, missing 55
images that actually did contain some text. The majority
of the misses come from text present in the scene (missed

4It is likely that the number of such screenshots is decreas-
ing, while we believe the overall coverage of text-images has
not change much.
5https://github.com/tesseract-ocr/tesseract

Figure 3: (left) Meme-styled and (right) text-styled
image tweets. The callouts are the tweets’ text.

Figure 4: Two meme-styled images have similar vi-
sual properties but different embedded captions.

two-thirds) and meme-style text (missed 42.1%). Tesseract
performs well on pure-text style images (detected 89.5% of
images with some text, and recognized 98.4% of the actual
words) and tweet screenshots. The cause of the discrepancy
is simple: the more similar the image is to scanned text, the
better the performance.

3. External Webpages. To provide context as well as to
circumvent length limitations, microblog users also embed
shortened hyperlinks in their tweets. In our dataset, 22.7%
of image tweets contain at least one external URL. To the
best of our knowledge, URLs in image tweets have not been
studied in prior work. What are the external web pages
about? How do they correlate to the images?

To answer these questions, we first resolved the hyper-
linked shortened URLs and stored the redirected original
URLs6. We then aggregated the resolved URLs by domain,
manually categorizing the top 100 most frequent domains
(accounting for 51.8% of URLs) into seven types. Table 2
shows the category distribution of the external resources.
The majority are news reports, while three other promi-
nent sources are online social networks (15.3%), e-commerce
shops (11.9%), and articles (10.9%, e.g., WordPress blogs).
YouTube, image aggregators and music links account for the
remaining minority (3.9%, 2.3% and 1.8%, respectively).

Interestingly, we also discover that the tweet image often
originates from the external resource (82.1% of URL image
tweets in our Twitter-500 set). Often, the image is a key
scene in a news event, an item to be sold for online shops,
or a portrait of the musician in music links. This suggests
the external resource is the original, unsummarized context
for such tweets, and thus a reliable source for capturing the
image’s semantics. We thus apply Boilerpipe [18] to extract
the main textual content, then filter out stopwords, and fi-
nally use standard tf.idf term weighting to select the top k
textual words as features. Considering some pages consist
only of the title text (no main text), we use the page’s title
as another descriptor.

6Over half were still accessible, as of 30 September 2015.
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Figure 5: Percentage of image tweets that benefit
from three major sources and the overlaps.

4. Search Engine as Context Miner. As 85% of Twit-
ter trending topics are news [20] and Internet viral images
are popular, many such tweet images have been previously
used in other places on the Web, in similar contexts. To
obtain these external contexts, we leverage Web search en-
gines, which represent an up-to-date repository for the Web.
We send each image in our dataset as a query to Google Im-
age Search (done during the last week of August 2015), then
parse the first search engine result page (SERP) to obtain
a list of pages that contain the image (including URL and
title). We then follow the links to crawl the actual content
of the external pages. In our dataset, a surprisingly large
proportion (76.0%) of Twitter images were already been in-
dexed by Google.

Following our workflow for tweets’ embedded URLs, we
also categorize the top 100 domains for such SERP-listed
web pages, which accounted for 54.6% of pages. From Ta-
ble 2, we see 66.0% of pages are social network posts, of
which 48.0% originate from Twitter itself. This implies im-
ages are re-purposed even in Twitter, and that image re-
use is not limited to retweeting. The photo-based Pinter-
est social network takes up another 40.1% of such posts.
The second largest category represents photo aggregators
(18.3%, e.g., imgur.com), which host images for social net-
works. The remaining 15.7% is distributed among the other
site types (news sites, e-commerce, YouTube, music sites and
blog sites, representing 5.7%, 3.6%, 2.8%, 1.0% and 0.3%,
respectively).

For the query image, Google Image Search occasionally
also offers a “best guess” at a short text description. Un-
like the tags from traditional visual recognizer, the “best
guess” can be seen as translating from a visual description
to a semantic description — technically implemented as the
best keyword for discovering the query image. For Figure 1
(right), the best guess is “fast and furious 6” which is spot-
on. When the query image is identified as a named entity
(e.g., celebrity, movie or landmark), Google also sometimes
shows a detailed named entity description in a knowledge
graph box (functionality introduced in Google around July
2012). We additionally utilize these sources — the best guess
(57.9% of Twitter images) and named entity (8.1%) as im-
age’s semantic description when available. In sum, 81.3% of
images in our dataset have obtainable contextual text from
Google Image Search.

3.2 Fusing the Contexts
Image tweets have rich contexts that can be exploited.

In our dataset, 89.1% of images have at least one appli-
cable strategy and 39.9% can leverage multiple ones. We

Figure 6: Our filtered rule for fusing text from con-
text sources. The % denotes the coverage of each
source alone after fusion.

survey the overlap among the contextual text sources of ex-
ternal URLs, OCR-ed text and Google Image Search for our
dataset in Figure 5. As we can see, Google Image Search has
large overlaps with external URLs and OCR text. For these
overlaps, the other two sources are direct context indicated
by image tweet’s author, and we believe provide more accu-
rate semantics for the image tweet than the SERP-extracted
text. Take the two meme-styled images in Figure 4 as an
example. The best guess description from Google Image
Search is “no adulting meme” and “india pakistan match
troll”, respectively. Neither reveals the correct semantics
which the OCR text does.

As such, instead of merely polling all four sources of con-
textual text, we can fuse them more opportunistically to
improve text quality. We feel that this cascading approach
is a better option than a weighted sum, as it also cuts down
computation costs. The tweet’s original textual post and
enhanced hashtags form the basis for fusion, as they are the
most obvious context created directly by the author. We
then propose a filtered fusion approach (illustrated in Fig-
ure 6) to use text obtainable from the other three sources:
1) for an image tweet with an embedded URL, we fuse only
the text from its external web page, since the external page
is the most accurate and accessible semantic context for the
image; 2) for the remainder, we apply OCR on the image
and if it contains embedded text, we fuse its OCR text rec-
ognized by Tesseract; 3) but if no embedded text is found,
we obtain and fuse the SERP-extracted text from Google
Image Search. It is worth noting that the fusion strategy
helps to reduce the acquisition cost of contexts by 18.0% in
our dataset (when treating all API calls as a unit cost), and
provides better semantic modelling for image tweets (demon-
strated in Section 5.2).

4. PERSONALIZED IMAGE TWEET
RECOMMENDATION

We now apply the CITING contexts that encode image
tweets’ semantics for personalized image tweet recommen-
dation. To the best of our knowledge, this is the first study
that learns user’s interest from image tweets. To be specific,
for a particular user, we aim to model her interest from her
previous history, and predict her interest in incoming new
image tweets. A direct application is to reorder the image
tweets in user’s feeds according to their interestingness.

We first discuss traditional collaborative filtering tech-

imgur.com


Figure 7: An example of user–item matrix, where 1
denotes the user has retweeted the image tweet and
0 otherwise. The rightmost two columns denote two
new items that cause the cold-start problem.

niques for tweet recommendation, then detail our proposed
feature-aware Matrix Factorization model, a generic method
that can incorporate various features for image tweet recom-
mendation.

4.1 Drawbacks of Collaborative Filtering
Collaborative filtering (CF) is acknowledged to be the

most effective and generalizable technique for recommender
system [25]. The basic idea is to predict a user’s preference
based on the histories of other similar users. For exam-
ple, Matrix Factorization (MF) [19], the most popular CF
method, projects users and items into latent space to encode
the preference similarity. As CF is designed to operate on
the user–item interaction matrix, it represents an item as an
ID and thus learns user’s preference on item IDs.

We highlight that a key weakness of CF is its inapplica-
bility to new items that have not yet attracted any inter-
action, which is known as the cold start problem. We show
an illustrative example in Figure 7, where the rightmost two
columns denote two new image tweets, which have never
been seen in the training set. In this case, CF will fail to
infer users’ interest on the new items, and the prediction
on new items is no better than random. This phenomenon
is even exacerbated in social media like Twitter, due to the
medium’s strong timeliness and dynamicity. Said differently,
old tweets (that are in training set) can quickly become
dated and unattractive, while new tweets can be interest-
ing but never appear in training. This makes the traditional
CF technique unsuitable for the tweet recommendation task.

4.2 Feature-aware MF Framework
To overcome the defect of CF, a common solution is to

go beyond modelling the interaction of user and item IDs
which are sparse for new items, and to model more dense
interactions by examining the properties of the content itself
as features. As a consequence, although the ID of a new item
has not been seen before, we can still infer a user’s preference
on new items based on their features (whose preferences have
been learned during training). This motivates us to develop
a generic model that can capture the interaction with various
features for recommendation.

Following the paradigm of factorization machines (FM) [24],
in our framework, we transform the user–item interaction
matrix to a set of feature vectors (model input) and a vector
of interactions (target). As illustrated in Figure 8, each row
denotes an interaction consisting of user ID, item ID, and
the various types of contextual features of the item. In our
feature-aware MF model, we learn a low-dimensional repre-

Figure 8: Example feature vectors for the user–item
matrix in Figure 7. Each row consists of user ID,
item ID, and the various features of the item. The
rightmost column is the prediction target.

sentation (also termed as “latent vector”) for each user and
feature. Suppose we have N types of features that represent
image tweets, then our model estimates the preference of
user u on image tweet i as:

ŷu,i = vT
u (

N∑
n=1

1

Zn,i

∑
f∈Fn,i

qf ), (1)

where vu and qf denote the latent vector for user u and
feature f , respectively. Fn,i denotes the feature set of the
nth feature type for item i, and Zn,i is the normalizer for

features (setting Zi =
√
|Fn,i| leads to good results).

This model is generic that it can incorporate any type
of features (and their combinations). In the case of image
tweets, they can be image features (e.g., visual objects),
textual words in tweets and our proposed contexts7. We
hypothesize that incorporating our proposed contextual fea-
tures will better capture the rich semantics in image tweets,
leading to better personalized tweet recommendation.

We point out that the key difference with FM is in the fea-
ture interactions considered — FM models the interactions
between all pairs of features (including feature pairs of the
same feature type), while we only model the interactions be-
tween user and item’s features. Our design choice is for the
model’s interpretability. By modelling only the interaction
between user and feature, we can interpret user u’s prefer-
ence on feature f as the inner product vT

uqf , which benefits
the explainability [12] of our recommendation model.

4.3 Learning from Implicit Feedback
The objective of tweet recommendation is to provide a

user with a personalized ranked list of tweets. From a user’s
observed behaviors (e.g., retweets), we naturally have the
positive feedback that represents which tweets users are in-
terested in. These positive tweets should be ranked higher
than other negative tweets for the user. Since the idea nat-
urally fits the framework of pairwise Learning to Rank, we
adopt the Bayesian Personalized Ranking [25], which learns
the model to maximize the probability that the positives
should be given a higher score than the negatives for users:

p(.|V,Q) =
∏
u∈U

∏
i∈Pu

∏
j /∈Pu

σ(ŷu,i − ŷu,j), (2)

7Note that we do not insert item IDs into the feature vector
(in gray in Figure 8), since most items in test set are not
observed in training. Excluding item IDs lessens the bias
to recommend only tweets seem in training, and favors the
prediction of new cold-start items, leading to better results.



where Pu denotes the positive tweets for user u, and σ is
the sigmoid function that projects the margin value into
probability space. We note that aside from the pairwise
function, another option for learning from implicit feedback
is the pointwise regression that treats the target value of
negative feedback as zero [13]. Here we opt for the pairwise
way that directly encodes our ranking intuition, and leave
the exploration of pointwise regression as future work.

Maximizing the objective function is equivalent to mini-
mize the following loss function:

L =
∑
u∈U

∑
i∈Pu

∑
j /∈Pu

log σ(ŷu,i − ŷu,j) + λ1 ‖vu‖2 + λ2

∥∥qf

∥∥2 ,
(3)

where ‖ · ‖ denotes the L2 norm for preventing model over-
fitting, and λ1 and λ2 are tunable hyper-parameters that
control the extent of regularization.

As the number of training instances is very large (all user–
item pairs) and there does not exist a closed form solution for
model’s parameters, learning is usually done by stochastic
gradient descent (SGD). In each descent step, the localized
optimization is performed on a tuple (u, i, j). The gradients
with respect to each parameter are given as follows:

∂L
∂vu

= −êu,i,j

N∑
n=1

(
1

Zn,i

∑
f∈Fn,i

qf −
1

Zn,j

∑
f∈Fn,j

qf ) + λ1vu,

∂L
∂qi

n,f

= −
1

Zn,i

êu,i,jvu + λ2q
i
n,f ,

∂L
∂qj

n,f

=
1

Zn,j

êu,i,jvu + λ2q
j
n,f ,

(4)

where êu,i,j = e−(ŷu,i−ŷu,j)/(1 + e−( ˆyu,i− ˆyu,j)).
Then we iteratively loop over all the (u, i, j) tuples in the

training set, and update the parameters to new values in the
direction of negative gradient weighted by the learning rate
until convergence. Learning rate is a key hyper-parameter
for SGD that determines the speed of moving towards the
optimal values — setting it too large we will skip the optimal
solution, while too small a setting requires many iterations
to converge. As such, we adopt Bold Driver [11], a technique
that adjusts learning rate adaptively in each iteration. To
be specific, it increases the learning rate by 5% if error rate
is reduced since the last iteration; otherwise, resets the pa-
rameters to the values of the previous iteration and decreases
the learning rate by 50%.

4.3.1 Time-aware Negative Sampling
In the literature of general recommender systems, uniform

sampling is most widely used for sampling nagative instances
due to its simplicity and acceptable performance [25]. Such
sampling strategy assumes that all non-retweeted posts are
equally weighted as negative instances (tweets disliked by
user u). However, we believe this is invalid as: 1) many non-
retweeted posts may simply be missed (never viewed) by user
u, and 2) tweets may not be uniformly likely to have been
seen by u. Previous works on tweet recommendation [33,
7, 15, 28] sampled negative instances from the tweets of the
target user’s followees only, assuming that the non-retweeted
posts by the followees are more likely to be seen but disliked
by the user. However, these previous efforts did not consider
the effect of time, another important factor that determines
whether the user may have seen the tweet.

To address this, we propose a time-aware negative sam-

Table 3: Image tweet training and test set demo-
graphics.

Users Retweets All Tweets Ratings
Training

926
174,765 1,316,645 1,592,837

Test 9,021 77,061 82,743

pling strategy. Our key assumption is that if a user has
retweeted a post, she should also have read other tweets (of
her followees) that were posted in close temporal proximity
to the retweeted post. Such tweets are then more likely to
be true negatives. Given a known image tweet interaction
rt, we sample the non-retweeted image tweets (posted by her
followees) in proportion to the time interval between the post
and rt; i.e., posts closer to rt have a higher chance of being
selected. Our featured negative sampling method improves
pairwise learning. We study its efficacy in Section 5.3.

5. EXPERIMENT
We now evaluate CITING, our framework for context-

aware image tweets modelling in the task of personalized
image tweets recommendation. The goal of our experiment
is to answer the following research questions:

RQ 1: How well do the four proposed contexts perform?

RQ 2: Do the filtered fusion improve model quality?

RQ 3: Can time-aware negative sampling strategy create
better training set than uniform sampling?

RQ 4: Are visual objects sufficient to capture Twitter im-
ages’ semantics?

Dataset. As there is no publicly available image tweet
dataset, we constructed our own by gathering image tweets
from Twitter in a user-centric manner. We first crawled one
week of public timeline tweets (8–14 December 2014) which
resulted in a set of 5,919,307 tweets, of which 17.2% con-
tained images. From this collection, we randomly sampled
926 users who had at least 100 followees and 100–3000 fol-
lowers, and posted at least 100 tweets. These requirements
were used to select ordinary but active users, as has been
done similarly by [28]. These 926 users are regarded as tar-
get users for our recommendation task.

We then crawled their latest tweets (up to 3,200 — limited
by the Twitter API), their followee list and further crawled
the image tweets published by their followees. In particular,
given a user and her retweet rt, we sample 10 non-retweeted
image tweets according to the time-aware negative sampling
strategy described in Section 4.3.1. This process results in
a dataset of 1,369,133 image tweets, summarized in Table 3.
To simulate the real recommendation scenario, we adopt a
time-based evaluation. For each user, we use her most recent
10 retweets as the test set, with the rest for training. Note
that the user–tweet interaction is extremely sparse: each
image tweet is retweeted by 1.22 users on average, and only
31% of the testing tweets have previously been observed in
the training set. This validates the sparsity observations in
previous works [7, 10].

Evaluation Metrics. The objective of tweet recommen-
dation is to rank the candidate tweets such that the interest-
ing tweets are placed at top for the target user. In our case,
we mix the testing retweets (i.e., ground-truth) and their
negative samples as the candidate tweets for each user. To
assess ranking quality, we adopt the average precision at



Table 4: Performance of each context source and its
coverage (short for Cvr.). The best single context is
the title of Google image search pages.

P@1 P@3 P@5 MAP Cvr.
P: Post 0.359 0.325 0.287 0.275
P + Hashtag 0.360 0.324 0.293 0.277 14.3%
P + OCR text 0.366 0.332 0.301 0.283 26.4%
P + URL (title) 0.374 0.326 0.294 0.278 14.2%
P + URL (content) 0.381 0.330 0.300 0.279 13.2%
P + G (content) 0.369 0.319 0.289 0.275 57.2%
P + G (title) 0.388 0.344 0.308 0.288 76.0%
P + G (guess+NE) 0.381 0.330 0.296 0.280 58.1%

rank k (P@k) and Mean Average Precision (MAP) as eval-
uation metrics, which have been widely used for the tweet
recommendation task [7, 10, 15]. Since users are usually
most interested in only the few top recommendations, we
report P@k at the top ranks (k=1, 3 and 5).

Parameter Settings. We tune two regularization pa-
rameters (λ1 and λ2) and the number of latent factors K.
We first vary the regularizers until the results are generally
stable, and then carefully tune K in a grid search manner
(from 10 to 200). We report the performance at λ1 = 0.05,
λ1 = 0.01 and K = 160, which shows good results. Simi-
larly, we tune the parameters for other methods, and report
their optimal results accordingly. For all the experiments,
we set the initial learning rate as 0.01.

5.1 Utility of Proposed Contexts (RQ 1)
We first examine the efficacy of our proposed four strate-

gies for context mining. To this end, we add the obtained
text from each source to the post’s original text separately,
and assess performance using each combined text. For web-
pages, we separate the title and page content in evaluation,
since we find some pages only have titles while lacking the
main content and vice versa. Observing that some webpages
can be very long and only the top few words (measured by
tf*idf) are most relevant, we use the top 20 words8 as the
page content.

Table 4 shows the performance of each source with its
coverage. In general, all context sources show a positive im-
pact on the recommendation performance9. We find that
the gains from the two external sources (external URL and
Google Image Search) are more significant than the two in-
ternal sources (hashtag and OCR text). This validates the
usefulness of external knowledge for interpreting images’ se-
mantics in social media. The largest improvement is ob-
tained by integrating the titles of Google indexed pages, with
a relative 8.1% and 4.7% improvement over using post’s text
only, in terms of P@1 and MAP, respectively. This improve-
ment is partially due to the high coverage of Google Image
Search over social media images. However, using the actual
page content of the Google indexed pages neither improves
over titles, nor betters the post’s text — even degrading the
performance for P@3 and MAP. Upon our deeper analysis,
we find this might be caused by the noise introduced by
Boilerpipe when extracting the main text from SNS pages
and image aggregator sites. These sites make up a large
portion in Google’s indexed pages (84.3%) but their layouts

8We experimented with a few settings (e.g., 10, 20, 30) and
found 20 works best.
9 Although the P@3 slightly degrades for the source hashtag,
other metrics still reveal it as a helpful feature.

Table 5: Context fusion performance comparison.
‘**’ denotes statistically significant difference vs.
CITING with p < 0.01; ‘*’ with p < 0.05.

P@1 P@3 P@5 MAP
(1): Random 0.114** 0.115 0.115 0.156**
(2): Length 0.176** 0.158 0.150 0.173**
(3): Profiling 0.336** 0.227 0.197 0.202**
(4): Post 0.359* 0.325 0.287 0.275**
(5): Non-filtered 0.413 0.352 0.319 0.296
(6): CITING 0.419 0.355 0.319 0.298

significantly differ from news and blogs that Boilerpipe was
trained on. As a result, Boilerpipe suffers from a high er-
ror rate. Thus in our subsequent experiments, we use all
contextual text except the actual content of Google indexed
pages.

5.2 Effectiveness of Context Fusion (RQ 2)
We now evaluate the effectiveness of filtered fusion ap-

proach. For comparison purpose, we report the performance
of our feature-aware MF model using all context without the
filtered fusion (Non-filtered) and Post’s text only (Post).
The latter is equivalent to the results obtainable from two
state-of-the-art models [7, 10] on text tweet recommenda-
tion, as the two are special cases of our model when only
post’s text is considered. To benchmark the performance,
we also consider three baselines: 1) Random: ranking im-
age tweets randomly; 2) Length: rank image tweets by the
number of words in post’s text, and the intuition is that
longer tweets tend to be more informative and possibly to
be more popular [32]; 3) Profiling: rank image tweets by
the similarity of tweets’ text and user’s profile, which is
constructed from the words of user’s historical posts and
retweets. To be specific, given a user u and an image tweet
t, we compute the profile-based similarity score as follows:

Su,t = (1− w)× cos(posts(u), t) + w × cos(retweets(u), t),

where cos denotes the cosine similarity and w is a tunable
parameter to balance the importance of the posting and
retweeting history.

Table 5 shows the results. First, our proposed filtered
fusion (CITING, R6) outperforms the three baselines (ran-
dom, length, profiling) by a large margin. The filtered fusion
method also significantly betters the strong baseline of us-
ing post’s text by 0.06 (16.9% relative improvement) and
0.023 (8.3%) in terms of P@1 and MAP, respectively. When
adopting non-filtered fusion approach, the performance slightly
drops, e.g., the P@1 drops from 0.419 to 0.413. Although
not statistically significant, it indicates that our heuristic
filtered fusion approach achieves comparable results while
saving acquisition costs of the contextual text by 18.0%.
These experimental results evidence the effectiveness of our
fusion approach and the feature-aware MF model.

5.3 Importance of Negative Sampling (RQ 3)
We now assess the effect of the negative sampling strat-

egy. We compare with the uniform sampling strategy, which
is a commonly used strategy by previous works in tweet rec-
ommendation [33, 7, 28]. To this end, we constructed a new
dataset by uniformly sampling negative image tweets from
our training set and pair with the positive image tweets. We
then trained our feature-aware MF on this new dataset, us-



Table 6: Performance using visual objects.

P@1 P@3 P@5 MAP
(1): CITING 0.419 0.355 0.319 0.298
(2): Visual objects (V) 0.221 0.205 0.192 0.211
(3): Post’s text + V 0.379 0.325 0.293 0.280
(4): CITING + V 0.425 0.350 0.313 0.298

ing our proposed filtered contexts, and evaluated the method
in the same way. Experimental result shows the time-aware
sampling strategy significantly betters the random sampling
by 0.017 (4.2% relative improvement) and 0.006 (2.1%), for
P@1 and MAP, respectively. Both one-tailed paired t-test
for P@1 and MAP show p < 0.05. This validates our time-
aware negative sampling strategy is effective in constructing
a higher quality training set, aiding better user interest mod-
elling.

5.4 Insufficiency of Visual Objects (RQ 4)
We now validate our claim at the outset that annotat-

ing visual objects without context does not fare well for so-
cial media interpretation. First, we applied GoogLeNet [27],
the winning system in ILSVRC 2014, to classify the visual
objects for our Twitter images. GoogLeNet is trained on
1.2 million Flickr images with 1000 object categories, where
each category corresponds to a node in ImageNet/WordNet.
The pre-trained model is provided by Caffe [17]. We take the
top five labels as the description for each image and conduct
the same experiment. We see that prediction using just vi-
sual objects does perform worse (P@1= 0.221, MAP= 0.211;
Table 6, R2), due to the largely literal image descriptions.
Our CITING context significantly outperforms visual ob-
jects by 89.2% of relative improvement and 40.9% in terms
of P@1 and MAP, respectively. This shows the contextual
text does capture image tweets’ semantics much better.

For comprehensiveness, we further experiment with the
combination of text and visual objects (i.e., model the two
as two types of features), to see whether the incorporation
of visual cues could further boost the recommendation per-
formance. As shown in Table 6 (R3), the integration of
visual objects with post’s text slightly improves over post’s
text 5.6% (relative improvement) and 1.8%, for P@1 and
MAP, respectively, while our CITING context still signif-
icantly betters such combination by relatively 10.5% and
6.2%. This further validates our contextual text is able to
capture semantics of image tweets better. Unlike the pre-
vious combination, the incorporation of visual objects does
not lead to a stable improvement for contextual text: P@1
is slightly improved by 0.006 (1.4%), and MAP remains the
same, while the other two metrics drop. This suggests the
descriptors brought about by using visual objects is limited
in modelling usefulness, and such visual cues might have
already been largely captured by our contextual text (e.g.
some best guess descriptions from Google Image Search de-
scribe visual objects).

5.5 Case Studies
It is also instructive to examine individual users and actual

posts to better understand the effectiveness of our proposed
filtered contextual text. To this end, we examine a few users
whose recommendations have a large performance gain when
using CITING. In Figure 9, we show such a typical user (re-
fer as User 1) and four of her retweets in test set that are

Figure 9: Four image tweets from User 1’s retweets
in test set benefit from our contextual text.

Figure 10: Five image tweets from User 2’s retweets
in test set benefit from our contextual text.

enriched by our contextual text. As a consequence, the av-
erage recommendation precision of our approach (0.592) sig-
nificantly outperforms the approach of using visual objects
(0.226) and using post’s text (0.443). In an even more suc-
cessful case, 9 out of 10 retweets (we show 5 in Figure 10) for
User 2 obtained contextual text from our approach. The av-
erage precision is boosted from 0.423 (using visual objects)
and 0.319 (using post’s text) to 0.728 (our approach).

Taking a closer look at the these image tweets, we find a
few of them trigger multiple context mining channels. Some
have both embedded URL and overlaid text in image (see
Figure 10: the top leftmost and the bottom rightmost).
A further investigation shows the external web pages redi-
rected by embedded URLs contain richer and more relevant
information than the overlaid text. This validates our text
fusion strategy which assigns a higher priority to text from
embedded URL than OCR. Another image tweet (Figure 9,
top leftmost) has both overlaid text and search result from
Google Image. However, the search result only indicates the
image is a quote, but does not reveal its deep semantics as
OCR text does. In this case, OCR text is more reliable than
search result, validating our text fusion strategy 2.



6. CONCLUSION
Compared to the traditional vision research on stock photo

images, we have shown that social media images are more
semantic but diverse, which need to be understood within
their context of mention. To complement the visual features,
we propose a CITING framework that mines both the intrin-
sic and extrinsic contexts of image tweets. To demonstrate
the effectiveness, we focus on the task of personalized image
tweet recommendation, developing a feature-aware recom-
mendation system that encodes the contexts as part of user
interest modelling. Extensive experiments verify the effec-
tiveness of our proposed CITING method in context mining,
significantly boosting recommendation performance.

We have done an analysis of the coverage and efficacy of
acquiring the textual context of social media images, but
there is still much that can be improved here. To spur addi-
tional research on social media images, we have released the
code of our feature-aware MF model, our large image tweets
dataset, as well as our annotated corpus of 500 sample im-
ages with their manually-recognized text10. In particular,
future work can adapt OCR to better acquire text within
the images, as current OCR fares poorly on meme-style im-
ages and graphics. Additionally, we plan to examine whether
other types of features (e.g., geo-location or publisher) would
result in even better user modelling.
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