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ABSTRACT KEYWORDS

Personalized recommendation plays a central role in many
online content sharing platforms. To provide quality micro-video
recommendation service, it is of crucial importance to consider the
interactions between users and items (i.e., micro-videos) as well as
the item contents from various modalities (e.g., visual, acoustic, and
textual). Existing works on multimedia recommendation largely
exploit multi-modal contents to enrich item representations, while
less effort is made to leverage information interchange between
users and items to enhance user representations and further capture
user’s fine-grained preferences on different modalities.

In this paper, we propose to exploit user-item interactions to
guide the representation learning in each modality, and further
personalized micro-video recommendation. We design a Multi-
modal Graph Convolution Network (MMGCN) framework built
upon the message-passing idea of graph neural networks, which
can yield modal-specific representations of users and micro-videos
to better capture user preferences. Specifically, we construct a user-
item bipartite graph in each modality, and enrich the representation
of each node with the topological structure and features of
its neighbors. Through extensive experiments on three publicly
available datasets, Tiktok, Kwai, and MovieLens, we demonstrate
that our proposed model is able to significantly outperform state-
of-the-art multi-modal recommendation methods.
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1 INTRODUCTION

Personalized recommendation has become a core component in
many online content sharing services, spanning from image, blog
to music recommendation. Recent success of micro-video sharing
platforms, such as Tiktok and Kwai, bring increasing attentions to
micro-video recommendation. Distinct from these item contents
(e.g., image, music) that are solely from a single modality, micro-
videos contain rich multimedia information — frames, sound tracks,
and descriptions — that involve multiple modalities of visual,
acoustic, and textual ones [24, 25, 28].

Incorporating such multi-modal information into historical
interactions between users and micro-videos help establish an in-
depth understanding of user preferences:

e There is a semantic gap between different modalities. Take
Figure 1 as an example, while having visually similar frames,
micro-videos i1 and i have dissimilar textural representations
due to different topic words. In such cases, ignoring such modality
difference would mislead the modeling of item representations.

e A user may have different tastes on modalities of a micro-video.
For example, a user is attracted by the frames, but may turn out to
be disappointed with its poor sound tracks. Multiple modalities,
hence, have varying contributions to user preferences.

o Different modalities serve as different channels to explore user
interests. In Figure 1, if user u; cares more about frames, iy is
more suitable to be recommended; whereas, u; might click i3 due
to interest in textural descriptions.

Therefore, it is of crucial importance to distinguish and consider
modal-specific user preferences.

However, existing works on multimedia recommendation [8, 17]
mainly treat multi-modal information as a whole and incorporate
them into a collaborative filtering (CF) framework, while lacking


https://doi.org/10.1145/
https://doi.org/10.1145/

; Bridge of Spies is a historce
iy irama i .. Set during the Col
War, . U.S. A Force llat
Uy
iz
Angels-& Demons'is a mystery
theilor i . . solve & murder
u "
2 is
i3

User-Item Interactions Visual Space Textual Space

Figure 1: An illustration of modal-specific user preferences.

the modeling of modal-specific user preferences. Specifically, multi-
modal features of each item are unified as a single representation,
reflecting their content similarity; thereafter, such representations
are incorporated with user and item representations derived
from CF framework, such as MF [30]. For instance, VBPR [17]
leverages visual features to enrich ID embeddings of items; ACF (8]
employs the attention mechanism on a user’s history to encode
two-level personal tastes on historical items and item contents
into user representations. Such signals can be summarized as the
paths connecting the target user and item based on historical
interactions [38, 41]. For example, given two paths p; = u; —
i1 = up — igand py = ug — i — up — i3; this would suggest
that iy and i3 are likely to be of interest to u;. However, we argue
that these signals are not sufficient to draw such conclusion. The
key reason is that they ignore the differences and user preferences
among modalities.

To address the limitations, we focus on information interchange
between users and items in multiple modalities. Inspired by the
recent success of graph convolution networks (GCNs) [14, 22], we
use the information-propagation mechanism to encode high-order
connectivity between users and micro-videos in each modality,
so as to capture user preference on modal-specific contents.
Towards this end, we propose a Multi-modal Graph Convolution
Network (MMGCN). Specifically, we construct a user-item bipartite
graph on each modality. Intuitively, the historical behaviors of
users reflect personal interests; meanwhile, the user groups can
also profile items [38, 41]. Hence, in each modality (e.g., visual), we
aggregate signals from the corresponding contents (e.g., frames) of
interacted items and incorporate them into user representations;
meanwhile, we boost the representation of an item with its user
group. By performing such aggregation and combination operators
recursively, we can enforce the user and item representations
to capture the signals from multi-hop neighbors, such that a
user’s modal-specific preference is represented well in his/her
representation. Ultimately, the prediction of an unseen interaction
can be calculated as similarities between the user and micro-video
representations. We validate our framework over three publicly
accessible datasets — Tiktok, Kwai, and Movielens. Experimental
results show that our model can yield promising performance.
Furthermore, we visualize user preference on different modalities,
which clearly shows the differences in modal-specific preferences
by different users.

The main contributions of this work are threefold:

e We explore how information interchange on various modalities

reflects user preferences and affects recommendation performance.

e We develop a new method MMGCN, which employs information
propagation on the modality-aware bipartite user-item graph,
to obtain better user representations based on item content
information.

e We perform extensive experiments on three public datasets to
demonstrate that our proposed model outperforms several state-
of-the-art recommendation methods. In addition, we released
our codes, parameters, and the baselines to facilitate further
researchers by others!.

2 MODEL FRAMEWORK

In this section, we elaborate our framework. As illustrated
in Figure 2, our framework consists of three components —
aggregation layers, combination layers, and prediction layer.
By stacking multiple aggregation and combination layers, we
encode the information interchange of users and items into the
representation learning in each modality. Lastly, we fuse multi-
modal representations to predict the interaction between each user
and each micro-video in the prediction layer. In what follows, we
detail each component.

2.1 Modality-aware User-Item Graphs

Instead of unifying multi-modal information, we treat each modality
individually. Particularly, we have historical interactions (e.g.,
view, browse, or click) between users and micro-videos. Here
we represent the interaction data as a bipartite user-item graph
G = {(u,i)lu € U,i € T}, where U and I separately denote the
user and micro-video sets. An edge y,; = 1 indicates an observed
interaction between user u and micro-video i; otherwise y,; = 0.

Beyond the interactions, we have multiple modalities for each
micro-video — visual, acoustic, and textual features. For simplicity,
we use m € M = {v, a, t} as the modality indicator, where v, a, and
t represent the visual, acoustic, and textual modalities, respectively.
To accurately capture the users’ preferences on a particular modality
m, we split the bipartite graph G, from G by keeping only the
features for modality m.

2.2 Aggregation Layer

Intuitively, we can utilize the interaction data to enrich the
representations of users and items. To be more specific, historical
interactions of a user can describe user’s interest and capture the
behavior similarity with other users. Meanwhile, the user group of
a micro-video can provide complementary data to its multi-modal
contents. We hence incorporate the information interchange into
the representation learning.

Inspired by the message-passing mechanism of GCN, for a
user (or micro-video) node in the bipartite graph G, we employ
an aggregation function f(-) to quantify the influence (i.e, the
representation being propagated) from its neighbors and output a
representation as follows:

hym = f(Nu), (1)

where Ny, = {j|(u,j) € Gm} denotes the neighbors of user u, ie.,
interacted micro-videos. We implement f(-) via:

!https://github.com/weiyinwei/MMGCN.
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Figure 2: Schematic illustration of our proposed MMGCN model. It constructs the user-microvideo bipartite graph for each
modality to capture the modal-specific user preference for the personalized recommendation of micro-video.

e Mean Aggregation employs the average pooling operation
on the modal-specific features, and applies a nonlinear
transformation, as follows:

1
favg(Na) :LeakyReLU(m > Wimim), )
4 jENy

where j, € RYm is the dm-dimension representation of micro-

video j in modality m; Wy, € R9m>dm is the trainable
transformation matrix to distill useful knowledge, where d},
is the transformation size; and we select LeakyReLU(:) as
the nonlinear activation function [38, 41]. Such aggregation
method assumes that different neighbors would have the same
contributions to the representation of user u, namely, user u is
influenced equally by his/her neighbors.

e Max Aggregation leverages the max pooling operation to

perform dimension-aware feature selection, as follows:
fax(Nu) = LeakyReLU( max W1 mmjm . 3
JENy

where each dimension of h,, is set as the max-num of the
corresponding neighbor values. As such, different neighbors have
varying contributions to the output representations.

Hence, the aggregation layer is capable of encoding the structural
information and distribution of neighbors into the representation
of the ego user; analogously, we can update the representations for
item nodes.

2.3 Combination Layer

While containing the information being propagated from the
neighbors, such representations forgo user u’s own feature and
the interaction among different modalities. However, existing
GNN efforts (e.g., GCN [22], GraphSage [14], GAT [33]) only
consider homogeneous features from one data source. Hence,
directly applying their combination operations fails to capture the
interactions between different modalities.

In this section, we present a new combination layer, which
integrates the structural information hy,, the intrinsic information
Uy, and the modality connection u;4 into a unified representation,
which is formulated as:

‘191) = g(hm, um, u;q), (4)

where u,, € R9m is the representation of user u in modality m;
and u;4 € R? is the d-dimension embedding of user ID, remaining
invariant and serves as the connection across modalities.
Inspired by prior work [3] on multi-modal representation, we
first apply the idea of coordinated fashion, namely, separately
projecting u,,,¥Ym € M into the latent space that is the same
as u;g:
U, = LeakyReLU(W2 mupm) + u;qg, (5)

where W3 , € R%%dm ig the trainable weight matrix to transfer
u,, into the ID embedding space. As such, the representations
from different modalities are comparable in the same hyperplane.
Meanwhile, the ID embedding u;; essentially bridges the
gap between modal-specific representations, and propagates
information across modalities during the gradient back-propagation
process. In this work, we implement the combination function g(-)
via the following two methods:

e Concatenation Combination which concatenates the two

representations, using a nonlinear transformation:

geo(hm, Um,u;g) = LeakYReLU(w3,m(hm | |ﬁm))a (6)

where || is the concatenation operation, and W3, €
RIm*(d+4) i the trainable model parameters.

e Element-wise Combination that considers the element-wise
feature interaction between two representations:

Gele(hm, um, u;4) = LeakyReLU(W3,mhm + ﬁm)’ (7)

where W3, € R9%dm denotes a weight matrix to transfer the
current representations into the common space. In the element-
wise combination, the interactions between two representations



are taken into consideration, while two representations are
assumed to be independent in Concatenation Combination.

2.4 Model Prediction

By stacking more aggregation and combination layers, we explore
the higher-order connectivity inherent in the user-item graphs.
As such, we can gather the information propagated from the I-
hop neighbors in modality m, mimicking the exploration process
of users. Formally, the representation from [-hop neighbors of
user u and the output of /-th multi-modal combination layer are
recursively formulated as:

By = fNe) and uf) = g o) @)
where u(,fl_l) is the representation generated from the previous

layer, memorizing the information from its (I — 1)-hop neighbors.
ugg) is set as u,;, at the initial iteration. Wherein, user u is associated
with trainable vectors u,,, Ym € M, which are randomly initialized;
whereas, item i is associated with the pre-extracted features
im,Vm € M. As a result, u(,fl_l) characterizes the user preferences
on item features in modality m, and considers the influence of
modality interactions that reflect the underlying relationships
between modalities.

After stacking L single-modal aggregation and multi-modal
combination layers, we obtain the final representations for user
u and micro-video i via the linear combination of multi-modal
representations, as:

u* = Z u(,{,“) and i = Z ig,];) 9)

meM meM

2.5 Optimization

To predict the interaction between the users and micro-videos,
we fuse their modal-specific representations and apply Bayesian
Personalized Ranking (BPR) [30], which is a well-known pairwise
ranking optimization framework, as the learning model. In
particular, we model a triplet of one user and two micro-videos, in
which one of the micro-videos is observed and the other one is not,
formally as,

R ={(w,i,i")l(wi) € G, (u.i) ¢ G}, (10)

where N (u) consists of all micro-videos associated with u, and R
is a set of triples for training. Further, it is assumed that the user
prefers the observed micro-video rather than the unobserved one.
Hence, the objective function can be formulated as,

I= Z —Inp(u* T - ut i) + 2012, (11)
(u,i,i’)eR

where p(-) is the sigmoid function; A and © represent the
regularization weight and the parameters of the model, respectively.

3 EXPERIMENTS
In this section, we conduct experiments on three publicly available
datasets, aiming to answer the following research questions:

e RQ1: How does MMGCN perform compared with the state-of-
the-art multi-modal recommendation systems and other GNN-
based methods on our task?

Table 1: Statistics of the evaluation dataset. (V, A, and
T denote the dimensions of visual, acoustic, and textual
modalities, respectively.)

Dataset [ #Interactions [ #Items [ #Users [Sparsity [ V.T A [ T

Tiktok 726,065 76,085 | 36,656 | 99.99% | 128 | 128 | 128
Kwai 1,664,305 329,510 | 22,611 | 99.98% | 2,048 | - |128
MovieLens 1,239,508 5,986 | 55,485 | 99.63% | 2,048 | 128 | 100

e RQ2: How do different designs (e.g., number of modalities,
number of layers, selection of combination layer) influence the
performance of MMGCN?

e RQ3: Can MMGCN capture the inconsistent preference of users
on different modalities?

In what follows, we first present the experimental settings (i.e.,
datasets, baselines, evaluation protocols, and parameter settings),
followed by answering the above three questions.

3.1 Experimental Settings

Datasets. To evaluate our model, we experimented with three
publicly available datasets: Tiktok, Kwai, and MovieLens. The
characteristics of these datasets are summarized in Table 1.

e Tiktok?: It is published by Tiktok, a micro-video sharing
platform that allows users to create and share micro-videos with
duration of 3-15 seconds. It consists of users, micro-videos and
their interactions (e.g., click). The micro-video features in each
modality are extracted and published without providing the raw
data. In particular, the textual features are extracted from the
micro-video captions given by users.

e Kwai’: As a popular micro-video service provider, Kwai has
constructed a large-scale micro-video dataset. Similar with
the Tiktok dataset, it contains the privacy-preserving user
information, content features of micro-videos, and the interaction
data. However, the acoustic information of micro-videos is
missing.

e MovieLens*: This dataset has been widely used to evaluate
recommendations. To construct the dataset, we collected the
titles and descriptions of movies from the MoiveLens-10M dataset
and crawled the corresponding trailers instead of the full-length
videos from Youtube®. We use the pre-trained ResNet50 [16]
models to extract the visual features from key frames extracted
from micro-video. In terms of acoustic modality, we separate
audio tracks with FFmpeg® and adopt VGGish [20] to learn the
acoustic deep learning features. For textual modality, we use
Sentence2Vector [1] to derive the textual features from micro-
videos’ descriptions.

Baselines. To evaluate the effectiveness of our model, we
compare MMGCN with the following state-of-the-art baselines.
The baselines can be grouped into two categories: CF-based (VBPR
and ACF) and GCN-based (NGCF and GraphSAGE) methods.

e VBPR [17]. Such model integrates the content features and ID
embeddings of each item as its representation, and uses the

2http://ai-lab-challenge.bytedance.com/tce/vc/.
Shttps://www.kuaishou.com/activity/uimc.
*https://grouplens.org/datasets/movielens/.
Shttps://www.youtube.com/.
®http://ffmpeg.org/.



Table 2: Performance comparison between our model and the baselines.

Model Kwai Tiktok MovieLens
ode Precision  Recall NDCG | Precision  Recall NDCG | Precision  Recall NDCG
VBPR 0.2673 0.3386 0.1988 0.0972 0.4878 0.3136 0.1172 0.4724 0.2852
ACF 0.2559 0.3248 0.1874 0.8734 0.4429 0.2867 0.1078 0.4304 0.2589
GraphSAGE 0.2718 0.3412 0.2013 0.1028 0.4972 0.3210 0.1132 0.4532 0.2647
NGCF 0.2789 0.3463 0.2058 0.1065 0.5008 0.3226 0.1156 0.4626 0.2732
MMGCN 0.3057* 0.3996* 0.2298* 0.1164* 0.5520" 0.3423* 0.1215* 0.5138* 0.3062*
%Improv. [ 9.61% 15.59% 11.66% 9.03% 10.23% 6.11% [ 3.67% 8.76% 7.36%
Kwai Tiktok Movielens
0.40 : 0.55 . z 0.50 . z
035 1 ] : v 0-30 * 3 v 0.45 * b S
A 0.45 Y + *
w 030 ¢y v ¢ o7 v 0:40 *
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Figure 3: Performance in terms of Recall@K w.r.t. different modalities on the three datasets.

matrix factorization (MF) framework to reconstruct the historical
interactions between users and items. In the experiments, we
use the concatenation of multi-modal features as the content
information to predict the interactions between users and micro-
videos.

ACEF [8]. This is the first framework that is designed to tackle the
implicit feedback in multimedia recommendation. It introduces
two attention modules to address the item-level and component-
level implicit feedbacks. To explore the modal-specific user
preference and micro-video characteristic, we treat each modality
as one component of the micro-video, which is consistent with
the idea of standard ACF.

GraphSAGE [14]. Such model is based on the general inductive
framework that leverages node feature information to update
node representations for the previously unseen data. In particular,
it considers the structure information as well as the distribution
of node features in the neighborhood. For a fair comparison, we
integrate multi-modal features as the node features to learn the
representation of each node.

NGCEF [41]. This method represent a novel recommendation
framework to integrate the user-item interactions into the
embedding process. By exploiting the higher-order connectivity
from user-item interactions, the modal encodes the collaborative
filtering signal into the representation. For a fair comparison,
we regard the multi-modal features of micro-video as side
information and feed them into the framework to predict the
interactions between the users and items.

Evaluation Protocols and Parameter Settings. We randomly
split the dataset into training, validation, and testing sets with 8:1:1
ratio, and create the training triples based on random negative
sampling. For the testing set, we pair each observed user-item pair

with 1000 unobserved micro-videos that the user has not interacted
before. We use the widely-used protocols [8, 19]: Precision@K,
Recall@K, and NDCG@XK to evaluate the performance of top-K
recommendation. Here we set K = 10 and report the average
scores in testing set. To train our proposed model, we randomly
initialize model parameters with a Gaussian distribution and
use the LeakyReLU as the activation function, and optimizing
the model with stochastic gradient descent (SGD). We search
the batch size in {128, 256,512}, the latent feature dimension in
{32, 64, 128}, the learning rate in {0.0001, 0.0005,0.001.0.005,0.01}
and the regularizer in {0,0.00001,0.0001,0.001,0.01,0.1}. As the
findings are consistent across the dimensions of latent vectors, if
not otherwise specified, we only show the result of 64, a relatively
large number that returns good accuracy.

3.2 Performance Comparison (RQ1)

The comparative results are summarized in Table 2. From this table,
we have the following observations:

o MMGCN substantially outperforms all the other baselines in
most cases, verifying the effectiveness of our model. In particular,
MMGCN improves the strongest baselines w.r.t. Recall by 15.59%,
10.23%, and 8.76%, on the three datasets respectively. We attribute
such significant improvements to the learning of modal-specific
representations, so as to capture users’ preference effectively.

e The GNN-based model outperforms the CF-based model on
Kwai and Tiktok. The improvements are attributed to the graph
convolution layers. Such operations not only capture the local
structure information but also learn the distribution of neighbors’
features for each ego node, thus boosting the expressiveness of
representations.



Table 3: Performance of MMGCN with different aggregation and combination layers.

Variant Kwai Tiktok MovieLens
arian Precision Recall NDCG Precision Recall NDCG Precision Recall NDCG
Jeo—id 0.2812 0.3689 0.2146 0.1056 0.5289 0.3143 0.1034 0.4632 0.2702
Jeco 0.2927 0.3841 0.2188 0.1132 0.5482 0.3372 0.1209 0.5090 0.3001
Jele—id 0.2840 0.3729 0.2172 0.1071 0.5312 0.3186 0.1064 0.4704 0.2743
Jele 0.3057 0.3996 0.2298 0.1164 0.5520 0.3423 0.1215 0.5138 0.3062

Table 4: Performance of MMGCN w.r.t. the number of layers.

L Kwai Tiktok MovieLens
ayer Precision Recall NDCG Precision Recall NDCG Precision Recall NDCG
One 0.2814 0.3728 0.2123 0.1084 0.5371 0.3263 0.1174 0.5017 0.2950
Two 0.3057 0.3996 0.2298 0.1164 0.5520 0.3423 0.1215 0.5138 0.3062
Three 0.2983 0.3910 0.2216 0.1103 0.5431 0.3361 0.1181 0.5032 0.2957

o Generally speaking, NGCF achieves better performance than
other baselines over three datasets in most cases. It is reasonable
since NGCF are easily generalized to leverage the content
information to characterize the users and micro-videos.

e Unexpectedly, ACF performs poorly on all datasets. The reason
of this may be due to the modification that we did during
the implementation of ACF model, in which we replaced
the component-level features modeling by the modal-specific
information for a fair comparison.

3.3 Study of MMGCN (RQ2)

3.3.1 Effects of Modalities. To explore the effects of different
modalities, we compare the results on different modalities over the
three datasets, as shown in Figure 3. It shows the performance of
top-K recommendation lists where K ranges from 1 to 10. From
Figure 3, we have the following observations:

o As expected, the method with multi-modal features outperforms
those with single-modal features in MMGCN, on all three datasets.
It demonstrates that representing users with multi-modal
information achieves higher accuracy. It further demonstrates
that user representations are closely related to the content of
items. Moreover, it shows that our model could capture the user’s
modal-specific preference from content information.

The visual modality is the most effective among the three
modalities. It makes sense since as, when a user chooses what to
play, one usually pays more attention to the visual information
than other modality information.

o The acoustic modality provides more important information
for recommendation, compared with the textual features. In
particular, for Tiktok dataset, the acoustic information even has
comparable expressiveness to that of the visual modality.
Textual modality is the least descriptive for interaction prediction,
particularly on Kwai and Tiktok datasets. This is reasonable since
we find the texts are of low quality, that is, the descriptions are
noisy, incomplete, and even irrelevant to the micro-video content
on these two datasets. However, this modality offers important
cues on the MovieLens dataset. Because the textual description
is the storyline of the video, which highly relates to the content,
and some users may play the video according to the storyline.

This phenomenon is consistent with our argument that the user
preference are closely related to the content information.

e As K increases, Recall@K of MMGCN is consistently higher than
the variants. It shows that user preference representations based
on each modality are closer to the real preferences of users, which
contribute to the prediction of user-item interactions. Modeling
with user preferences on a variety of modalities can lead to quality
multi-modal personalized recommendation.

3.3.2 Effect of Combination Layers. In our model, we design a
novel combination layer to integrate the local structure information
with the node’s features, facilitating the multiple modal-specific
representation fusion. Wherein, the combination function can be
implemented with two different way (cf. Equations (6) and (7)).
Here we compare these different implementations and evaluate
the effectiveness of the proposed combination layer, in which
Jeo—id and geje_iq represent two type of implements without id
embedding, respectively. As illustrated in Table 3, we have the
following findings:

o In terms the three metrics, the g, ;. achieves the best performance
on the three datasets. This may be due to that the combination
layer retains the modal-specific features to represent the users
and micro-videos. It demonstrate the effectiveness of our
combination layers.

e Comparing these methods, we found that the methods with id
embedding significantly outperforms the others. This agains
demonstrates the effectiveness of our novel combination layers.
Besides, we suggest that the shared id embedding connects
the different modalities by propagating the shared information
during backpropagation.

e Comparing the two implementations, we observed that the
element-wise one is better than the concatenate one. We
conjecture that the concatenate one with fully connected layer is
more difficult to train, especially on the spare datasets, like Kwai.

3.3.3 Effect of Model Depth. To evaluate the effectiveness of
layers stack, we conduct experiments on the three different layers,
as shown in Table 4. From the results, we observed that:

e In terms three metrics, the two-layer model achieves better
results, which show that increasing of layers does not lead to
better results. This seems to indicate that the discrimination of the
nodes is decreasing as the number of layers increases. We suggest
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Figure 4: Visualization of users’ played micro-videos distribution in different modalities, where each color indicates a user.

that the increasing layers makes the neighbors of nodes more
similar, and further makes node representations more similar.

o Compared the one-layer model with the two-layer model, the
improvement of the results on Tiktok and Kwai are more obvious,
while that on MovieLens are not significantly improved. It
demonstrates that integrating the local structure information
can enhance the node representation.

e Compared the two-layer model with the three-layer model, the
later model achieved worse results than the former one. This
may be caused by overfitting due to the sparsity of data.

e Compared the single layer model with the three-layer model, we
observed that the results of single layer model are slightly inferior
to those of the three-layer model. We suppose the insufficient
local structure information of the single layer model results in the
low quality of node representation. This again demonstrates the
effectiveness of content information in the node representations.

3.4 Case Study (RQ3)

We conducted experiments to visualize our modal-specific
representations. In particular, we randomly sampled 5 users
and collected the micro-videos they have played. To verify our
assumption that the user preferences on different modalities are
different, we visualized these representations using t-Distributed
Stochastic Neighbor Embedding (t-SNE) in 2-dimension, as
illustrated in Figure 4.

The coordinate graphs from left to right represent the visual
and textual modality, respectively. The points in the graphs
represent the videos that the users have played, and their colors
represent different users. Because the acoustic modality is hard to
be visualized, we only analyze the results on visual and textual
modalities.

o In visual modality, the points of user1 are dispersive and some
of them are mixed with the points of user2, user3, and user4. On
the other hand, the points from user1 form two concentrated
regions in the textual modality, and they are far apart from each
other. The distribution of the points means that users have two
distinct preferred themes in textual modality. While he/she has
no particular preference on visual modality. The points of user2
clustered in three regions in the visual modality; while in the
textual modality, they are diffuse and mixed with the points of

other users. The distribution pattern of user2 shows that his/her
has three preferred themes in the visual modality. The points
of user3 are obviously well clustered distribution in the two
modalities, which indicates that user has particular preference in
each modality. The distribution of the points of user4 and user5
are scattered and mixed with other points of users.

e It is still abstract to use the distribution of points for analysis. The
multi-modal information of videos represented by each point is
displayed on the graph for further explanation. Take the example
of user1 and user2, the visual and textual modality of some of their
preferred videos are displayed in Figure 4, which are represented
by video posters and storylines. We observed that the videos
played by userl have no obvious themes visually, because the
posters he/she preferred cover many different varieties. However,
the storylines or textual modality of these videos cover just
two themes: war and romance. From user2, we observed that
his/her preference on visual modality are clearly divided into
animation and classicism, while he/she has no distinct preference
on storylines. These phenomena supports our assumption that
the users have different preference in different modalities.

4 RELATED WORK

In this section, we introduce some works that are related to our
research, including multi-modal personalized recommendation,
multi-modal fusion and graph convolution network.

Multi-modal Personalized
Recommendation

4.1

Due to the success of CF method in recommendation systems,
early multi-modal recommendation algorithms mainly based
on CF models [6, 18, 38—-40]. CF-based models leverage users’
feedbacks (e.g. implicit feedback and explicit feedback) to predict the
interactions between users and items. Although these approaches
work well for items with sufficient feedbacks, they are less
applicable to those with few feedbacks, which cause the low-quality
recommendations. Therefore, the CF-based methods are limited by
the sparsity of the data.

To remedy the disadvantage of CF-based model, researchers
have developed hybrid approaches which incorporate the items’
content information and the collaborative filtering effects for



recommendation. For instance, Chen et al. [7] constructed a user-
video-query tripartite graph and performed graph propagation
to combine the content and feedback information between users
and videos. Recently, Chen et al. [8] explored the fine-grained
user preference on the items and introduced a novel attention
mechanism to address the challenging item- and component-level
feedback in multimedia recommendation. In this method, the user is
characterized by both collaborative filtering effect and the attended
items’ content information. Although this method has learned
the two levels of the user preference, it fails to model the user
preferences on different modalities, which is the key in multi-modal
recommendation as mentioned in Section 1. To fill the void in modal-
specific features representation, our model constructs the graph
in each modality and represents the model-specific features using
GCN techniques, which integrates the local structure information
and distribution of content information in neighborhood.

4.2 Multi-modal Representation

The multi-modal representation is one of the most important
problem in multi-modal applications [27]. However, there are few
prior works that focus on multi-modal representation in the area
of multi-modal personalized recommendations.

Existing multi-modal representations can be grouped into two

categories: joint representations and coordinated representations [3].

Joint representations usually combine the various single-modal
information into a single representation and project it into the
same representation space. The simplest implementation of the
joint representation is the concatenation of single-modal features.
Recently, with its success in computer vision [2, 15, 23] and natural
language processing [9, 32], neural networks are increasingly
used in the multi-modal domain, especially on multi-modal
representations [10, 11, 35-37, 43]. Using neural networks, the
function fusing the different modalities information into a joint
representation can be learned. Besides, the probabilistic graphical
models [4, 13] are another way to construct a joint representation
for multi-modal information using the latent random variable.
Although these methods learn a joint representation to model the
multi-modal data, they are suited for situations when all of the
modalities are present during inference, which is hardly guaranteed
in social platforms.

Different from joint representations, the coordinated ones learn
separate representations for each modality but coordinate them
with constraints. To represent the multi-modal information, Frome
et al. [12] proposed a deep visual-semantic embedding model
which projects the visual information and semantic information
into a common space constrained by distance between the visual
embedding and the corresponding word embedding. Similarly,
Wang et al. [34] constructed a coordinated space which enforces
images with similar meanings to be closer to each other. However,
since the modal-specific information is the factor causing the
difference in each modality signals, the model-specific features
are inevitably discarded via those similar constrains.

In contrast, in our model, we introduced a novel representation,
which respectively models the common part and specific part of
features, to resolve the abovementioned problem.

4.3 Graph Convolution Network

As mentioned above, our proposed model uses the GCN techniques
to represent the users and micro-videos, which is widespread
in recommendation systems [21, 22, 26, 29]. Towards video
recommendation, Hamilton et al. [14] proposed a general inductive
framework which leverages the content information to generate
node representation for unseen data. Based on this method, Ying et
al. [42] developed and deployed a large-scale deep recommendation
engine at Pinterest for image recommendation. In this model, the
graph convolutions and random walks are combined to generate
the representations of nodes. Concurrently, Berg et al. [5] treated
the recommender systems as the view of link prediction on graphs
and proposed a graph auto-encoder framework based on message
passing on the bipartite interaction graph. Moreover, the side
information can be integrated into the node representation via
a separate processing channel. However, as can be seen, these
methods fail to capture the modal-specific representation for each
node in the multi-modal recommendation, which is the major
concern of our work.

5 CONCLUSION AND FUTURE WORK

In this paper, we explicitly modeled modal-specific user preferences
to enhance micro-video recommendation. We devised a novel
GCN-based framework, termed MMGCN, to leverage information
interchange between users and micro-videos in multiple modalities,
refine their modal-specific representations, and further model users’
fine-grained preferences on micro-videos. Experimental results on
three publicly available micro-video datasets well validated our
model. In addition, we visualized some samples to illustrate the
modal-specific user preferences.

This work investigates how the information exchange in
different modalities influences user preference. This is an initial
attempt to encode modality-aware structural information into
representation learning. It is a promising solution to understand
user behaviors and provide more accurate, diverse, and explainable
recommendation. In future, we will extend MMGCN in several
directions. First, we would construct multi-modal knowledge
graph to present objects and relations between them in micro-
videos [31], and then use it into MMGCN to model finer-grained
content analysis. It will be used to explore user interests in a
more fine-grained manner, and offer an in-depth understanding
of user intents. It can also provide more accurate, diverse, and
explainable recommendation. Second, we would explore how social
leaders influence the recommendation, that is, integrating social
network with user-item graphs. We would also like to incorporate
multimedia recommendation into dialogue systems towards more
intelligent conversational recommendations.
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