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ABSTRACT

Mixed dish is a food category that contains different dishes mixed
in one plate, and is popular in Eastern and Southeast Asia. Recogniz-
ing individual dishes in a mixed dish image is important for health
related applications, e.g. calculating the nutrition values. However,
most existing methods that focus on single dish classification are
not applicable to mixed-dish recognition. The new challenge in
recognizing mixed-dish images are the complex ingredient combi-
nation and severe overlap among different dishes. In order to tackle
these problems, we propose a novel approach called contextual
relation networks (CR-Nets) that encodes the implicit and explicit
contextual relations among multiple dishes using region-level fea-
tures and label-level co-occurrence, respectively. This is inspired by
the intuition that people are likely to choose dishes with common
eating habits, e.g., with multiple nutrition but without repeating
ingredients. In addition, we collect a large-scale dataset of mixed-
dish images that contain 9, 254 mixed-dish images from 6 school
canteens in Singapore. Extensive experiments on both our dataset
and a smaller-scale public dataset validate that our CR-Nets can
achieve top performance for localizing the dishes and recognizing
their food categories.
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Figure 1: Food images. (a) is a single dish image, (b) is an
example of multiple dish on the School Lunch dataset [12],
and (c) shows an example of our mixed dish dataset. In (c),
we additionally show the annotation of food category and
bounding box.

1 INTRODUCTION

“Keep healthy and fit” is one of the main themes of human life.
People care more and more about the calorie and nutrition in their
daily food. Among the diverse types of food, mixed dish is one of the
most popular food in Eastern and Southeast Asian countries. Some
examples are given in Figure 1(c). Recognizing such mixed dish
means identifying each of the dish category presented in the mixed
dish, which is crucial for calorie estimation as well as nutrition
estimation. This is a challenging task, due to the high diversity and
the severe overlap among the food components.

For example in Figure 1(c), there are four kinds of dishes and
there is no clear boundary between any two of them. In the litera-
ture of food recognition, there are several works focusing on the
recognition on single dish images [5, 9, 13, 16, 17], and some other
works on recognizing the multiple dishes separated in different
plates [1, 14, 30, 34]. The image examples are given in Figure 1(a)
and (b), respectively. In contrast, we consider a more realistic and
challenging scenario in which we need to both localize and clas-
sify the individual dishes that are presented on one plate and have
severe overlaps, see the example in Figure 1(c).

In order to initiate the study on these problems, we build a dataset
by collecting 9, 245 mixed dish images from 6 school canteens in
Singapore. As shown in Figure 1(c), we annotate the categories
and locations of individual dishes appearing in the image. In the
experiments, we leverage the location information to boost the dish
identification performance. Additionally, as the data is collected
from different canteens, we set a more practical and challenging
“cross-domain” evaluation setting that each time the test data comes
from a new canteen which is not used during training.

As we have mentioned, the mixed dish data indeed contain high
diversities and unclear boundaries. In order to tackle these prob-
lems, we propose the novel contextual relation networks (CR-Nets)
that aim to encode 1) texture patterns learned from a large-scale
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single dish dataset, 2) the implicit feature-level contextual relations
among the dishes on the same plate (image), and 3) the explicit
co-occurrence contextual relation among their labels. Specifically,
we propose to transfer the knowledge learned from single dish
classification for multiple dish detection. This is basically an idea of
transfer learning that has been widely employed [40, 41]. Besides, to
improve the dish recognition performance, we propose to make use
of both implicit context and explicit context. Implicit context mod-
els the contextual relations between region features in the process
of implicite attribute detection [41], aiming to incorporate low-level
context information, such as color assortment; while explicit con-
text models the co-occurrence relation among dish labels in the
process of recognition refinement, aiming to incorporate the high-
level context information such as nutritional mutual replenishment.
Overall, our approach encodes implicit and explicit contextual re-
lation information in the perspectives of model, data and label, in
order to achieve robust and efficient mixed dish recognition.
Our main contributions are three folds.

o A dataset of mixed dish images annotated with bounding
boxes and categories. This aims to provide a realistic testing
bed and encourage further research on this topic.

e The novel contextual relation networks (CR-Nets) that aims
to encode rich information from the perspectives of model,
image and label. It offers a superior representation for the
recognition and localization of mixed dishes.

e Extensive experiments on the proposed dataset as well as
the existing multi-dish dataset [12]. Our CR-Nets achieves
consistent improvements over the state-of-the-art models,
especially on the most challenging cross-domain setting.

2 RELATED WORK

Overview on food recognition task. Research literature on food
image recognition exhibits a high diversity. The most popular di-
rection is to use deep object recognition models specifically on
recognizing food images [4, 6, 9, 13, 17, 26, 27, 29, 31]. Some inter-
esting works proposed to leverage the GPS and restaurant menus
[2, 3, 20, 44], some focused on personalized food recognition by his-
tory data [19, 22, 45], and some emphasized on multi-modal fusion
[21] and real-time recognition [24, 33, 46]. Those most related to
ours are on multiple dish recognition [1, 14, 30, 34].

Multiple dish recognition models. The initial work [30] on mul-
tiple dish recognition has a two-step pipeline that step-1 detects
the plate using either a circle detector or a deformable part model
(DPM) [15], and step-2 fuses the image features extracted on the
detected regions. The following works use more effective detec-
tion models, such as YOLO [35] and Faster R-CNN [36] for dish
detection and recognition [12] [14]. In [12], Ege el al. used Faster
R-CNN to first get the bounding boxes of dish region proposals and
then conduct a multi-task learning to predict both dish categories
and calories. Later, Ege el al. [14] proposed a framework that lever-
age the better-performed YOLO detectors and obtained a higher
detection efficiency. Aguilar el al. [1] proposed to combine seman-
tic segmentation models FCN [28] with YOLO for dish detection
and recognition. In their method, food and non-food regions are
first segmented by FCN and then refined by YOLO. This kind of
work requires expensive image annotations, especially for training

segmentation models, therefore, it is not applicable to large-scale
training. Another work [38] tries to generate foodness proposals
with a fully convolutional neural network for multiple dish recog-
nition. Compared to Faster R-CNN and YOLO based methods, this
work does not require any bounding box labels. Overall, these
mentioned approaches were proposed under the assumption that
different dishes are in different containers (plates) and each plate
only contains a single type of dish, which is different from the case
of our mixed dish recognition.

Multiple dish datasets and recognition models. There are sev-
eral public food datasets, including VIREO Food 172 [6], UEC Food-
100 [30], UEC Food-256 [25], Food-101 [5], ChinFood1000 [16],
UNIMIB2016 [1], PFID [8] and School Lunch image dataset [12].
However, most of these food datasets are collected for single dish
recognition. The exceptions include UEC Food-100, School Lunch
image dataset and UNIMIB2016. Nevertheless, these three datasets
are relatively small datasets, ranging from 1,027 to 4,877 food im-
ages that cover less than 70 dish categories. Besides, in these three
datasets, different dishes are presented in different plates which is
the simplest situation for multiple dish recognition. Different to
these datasets, we collected a mixed dish dataset which contains
9,254 multiple dish images and covers 164 dish categories. More
importantly, this dataset considers the most challenging situation
for multiple dish recognition, where different dishes are presented
in one plate, and some of them may have overlaps with each other.
To the best of our knowledge, we are the first to build a mixed dish
dataset annotated with bounding boxes and categories.

There are some related works focusing on recognizing mixed
food presented in one plate [10, 32]. For example, Myers et al. [32]
proposed to use deep convolutional neural network (CNN) and
conditional random field (CRF) to predict the pixel level labels
which is also called multiple dish segmentation. Dehais et al. [10]
proposed a CNN-based food border map to guide the region growing
for food segmentation. These two methods have shown promising
segmentation results on western food images on which each food
item only contains a single and simple ingredient. In contrast, we
aim to handle the more complicated Asian food images on which
each term has higher diversity as well as more complex mixed
ingredients.

3 CONTEXTUAL RELATION NETWORKS
(CR-NETS)

Figure 2 shows the training pipeline of our proposed CR-Nets. It
mainly contains three steps in which the network respectively ex-
tracts three kinds of contextual relation information from mixed
dish data. (1) Pre-training on the large-scale dataset of single dish
images. The trained model contains the content (ingredient) infor-
mation that is tightly related and helpful to the recognition of mixed
dishes. (2) Training the dish localization and recognition model on
our proposed mixed dish dataset. In this step, the contexts among
co-occurring dishes are implicitly encoded in the representation
features. (3) Incorporating the label co-occurrence semantics. This
step modifies the classification scores (obtained in the last step)
based on modeling the dish co-occurrence in the label space.
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Figure 2: The overview of the proposed CR-Nets for mixed dish recognition. The top block illustrates the pre-training of the
feature extractor on a single dish dataset. The middle block shows the region localization and relation encoding on the mixed
dish image. The bottom block presents the final step that incorporates the label co-occurrence semantics for refining the

recognition results.

3.1 Pre-training on single dish images

As shown in the first block of Figure 2, we train the backbone
network of our CR-Nets, e.g. ResNet-50, on the large-scale single
dish dataset. Then we copy the pre-trained weights to CR-Nets to
enable a fast model adaptation to the mixed dish data. Specifically,
the single dish image dataset used in this step contains 264, 048
images that cover 751 food categories in southeast Asia. Compared
to mixed or multiple dishes, single dish image collection and anno-
tation are cheaper and easier. In fact, a number of existing datasets
such as VIREO Food-172 [6] or Food 101 [5] can also be directly
leveraged.

It is a fact that mixed dish is the composition of multiple single
dishes. When CR-Nets copies the weights and bias from the pre-
trained model, it obtains the shared image patterns from the single
dish which enables a warm start for the following fine-tuning on
mixed dish data. In experiments, we have a careful ablation study on
this transfer learning. We conduct pre-training on either the widely
used ImageNet [11] or the single dish datasets [5, 6]. The superiority
of the second one is clear and consistent in both self-domain and
cross-domain settings.

3.2 Mixed dish localization and recognition

As shown in the second block of Figure 2, given a mixed dish image,
it goes through the network to locate and classify the dishes it has.
This procedure is performed by combining a Faster R-CNN model
with a relation module which encodes the feature co-occurrence.
A similar application of relation module has been demonstrated
to exhibit high efficiency for object detection [23]. In details, the
combined network includes a backbone network for feature ex-
traction, a region proposal network (RPN) for localization, and a
region recognition network that contains the relation module for
classification.

Given a mixed dish image I, we use ResNet-50 [18] as the back-
bone network to generate conv4 feature map, denoted as f. Then,
we extract the regional proposals on f to generate the candidate re-
gional locations P = {p1, p2...pm }. With the feature map f and can-
didate region locations P as inputs, we use Rol-pooling to obtain the
7% 7 % 2048 dimension features. These features go through two fully
connected layers to output the region features F = {f1, f2...fm }-
The output is a 1024-dimension feature.



Each feature presents a single image region. We explicitly encode
the contextual relations using relation modules. Intuitively, each
region may have several implicit relations with the others, such
as dish co-occurrence, boundary mixture and overlaps, which are
helpful for constructing a richer dish representation. The computing
flow of the relation module is given in Figure 3.

Given the n-th region, f, denotes its feature and p, denotes the
position. Notes that there are different types of implicit relations.
Let f}é (n) as the relation feature for n-th region under i-th relation
type, fé(n) is obtained by

M
famy= )" Wt (Wy - ), (1)
m=1

where M is the number of regions, fy, is the region feature for
mth region, and Wy is the transformation matrix. Besides, w™" is
the weight that indicates the impact of m-th region on n-th region,
which considers both the locations and features of m-th and n-th
region. Specifically, w™" is computed as follows,

mn WI’J”" . exp(w;?")

Tiewp" - exp(wk™)’
where wi'" and w'" represent the weights measuring the impor-
tance of m-th region to the n-th region according to appearance
feature and location feature, respectively. The w/{'" is obtained as
follows,
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where W, W are the transformation matrices, mapping the re-
gion features to a lower-dimensional space. dj. is the dimension
of transformed features. w'" takes the position features of two
regions as inputs and embeds them into a vector denoted as ¢,

using the method presented in [42]. Besides, wp'™ is obtained by

wi™ = max{0,Wp - £p(pn.pm)}, )

where Wp is the transformation matrix.

After obtaining N, relation features, the relation module con-
catenates them together and sums them with the original region
feature f;, to get the new region feature f,;

fo = fo + Concat [ f3(n), .... f" (n)]. (5)

Finally, we obtain the image feature that is assumed to combine
the transferred image patterns (from the pre-trained network) and
contextural information (from co-occurring image regions). This is
followed by the bounding box regression to localize the dish and
softmax operation to recognize the dish category.

®)

3.3 Dish recognition refinement with label
semantics

As demonstrated in the last block in Figure 2, we refine the recog-
nition scores obtained in the second step, using the holistic co-
occurrence statistics of the dish labels. Such statistics depict the
co-occurrence of dish categories. They also reveal the geographic
information that certain dishes are from certain canteens. Basically,
such contextual information can be implicitly extracted by the rela-
tion modules during the training in the second step. To enhance its
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Figure 3: The computation flow of our relation module.

effect on the challenging mixed dish recognition task, its semantic
representation is explicitly mined and modeled in our method. In
experiments, we conduct ablation study to show its efficiency.

We first compute the recognition scores of all proposals detected
(by Faster R-CNN) in the second step. We then filter out those with
confidence scores of below 0.001. For the rest, we refine their scores
by the following steps.

Let C = {c1,c2,...,cn} be the set of food categories and denote
n as the number of the set. The graph G is composed of n vertices
V representing the food categories and edges E as the explicit
co-occurrence relationships between dishes, with the operation
denoted as ¢(). Given the graph G, let P(C) be the joint probability
of food categories. It is calculated as follows,

1
Plersnoen) = rmsexp( 3 sisidih). @
i,jeC
where s; indicates the probability of presence of category i, and
Z(¢) is the normalization factor as follows,

2@) = Y exp( Y sisi(i.)))- )

C i,jeC
To learn the graph, we approximate Z(¢$) by Monte Carlo inte-
gration and optimize ¢(-) with gradient descent method as in [37].
The energy function consists of unary and binary potentials is then
computed by

Ey)= Y ®ulye)+ . plc,0), ()

ceC (c,v)€E

where E is the set of pairwise cliques. The unary term ®,(y.)
contains the set of dish categories predicted by the second step
of dish detection. It is computed by ®,(y.) = —log(x.), where x.
is the recognition scores of Faster R-CNN. The pairwise potential
@, (yc, yo) demonstrates the joint distribution of dish ¢ and dish



v. For the pairwise co-occurrence, a binary potential is defined as
follows,

M
Op(Ye yo) = ) W™ (Feolc,0)), (®)
m=1

where F¢o(c, v) is the co-occurrence function defined as Feo(c,v) =
co(c,v)

count(c)+count(v)’

and v, recorded in the co-occurrence matrix. count(c) and count(v)

represent the count of categories ¢ and v, respectively. We employ
loopy belief propagation [43] for the minimization. At the infer-
ence stage, CRF re-weights the scores of recognition of dishes with
context co-occurrence relationship captured in graph G.

co(c,v) is the count of co-occurrence between ¢

4 DATASET CONSTRUCTION

In this section, we introduce the proposed mixed dish dataset. De-
tails are given for image collection, label annotation and image-label
statistics.

4.1 Image collection

Images are collected from 6 different school canteens. The lighting
conditions and the plate colors vary among different canteens. In 5
canteens, we use cellphone cameras to capture dish photos. For each
mixed dish sample, we take 2 pictures from 2 different shooting
angles. In the 6-th canteen, we use the camera mounted on the
canteen wall to collect videos and then crop the sequence of images
to the same size. In total, the dataset contains 9,254 images.

In Figure 4, we show some examples of our dataset. Apart from
the unclear boundaries between different dishes, the challenge of
this dataset also comes from the fact that the visual appearances
of same dish in different canteen can exhibit huge visual variances.
For example, the “okra” in Figure 4(a) looks quite different from
the “okra” in Figure 4(b), because of different cooking and cutting
methods methods.

4.2 Dish annotation

To instruct the annotation process, we collect the list of dish names
for each canteen. By merging the overlapped dish categories from
different canteens, we totally get 164 categories.

On each image, we annotate the dish categories with each dish
in a single bounding box. Annotating bounding boxes on hundreds
of dishes for nearly ten thousands of images is extremely tedious.
When considering the confusing dish boundaries, it is more tough.
First, some foods are mixed in economic rice since all food are
placed in one plate, leading to the confusing boundary. Second,
some dishes are accidentally separated, or the portion of dishes are
obscured leading to some dishes appearing in different positions.
Third, certain foods such as “seaweed chicken” consist of several
separate integral parts whose number is uncertain, and each part
can be considered as a dish. Hence, we stipulate some principles of
annotation for eliminating the divergence. If the ingredients of the
dish concentrate in the continuous area, regardless of the mixture,
all ingredients should be surrounded by the same bounding box.
Otherwise, even if the separated parts are logically the ingredients
of the same dish, these separated parts are labelled with multiple
bounding boxes to minimize the area of the mixture of dishes.

Long Bean N ¢ Braised
chicken

(a) (b) (c)

Figure 4: Three mixed dish examples on our new dataset.
They are collected from three canteens with different light-
ing conditions and backgrounds e.g. the shapes and colors
of plates.

We recruited 7 trained operators to label the mixed dish dataset.
The operator was instructed to label the dishes following the afore-
mentioned principles. In order to guarantee the accuracy of the
labels and bounding boxes, we cropped patches from all images ac-
cording to the annotated bounding boxes to review the annotations.
By putting the cropped patches which belong to the same label
together, we carefully checked the annotations and corrected the
wrong annotations. The entire annotation process took a month.

4.3 Statistics

After annotation, our dataset contains a total of 39,668 bounding
boxes and each images contains 4.28 bounding boxes on average.
Figure 5(a) shows the distribution of positive samples in dish cat-
egories. On average, there are 241 bounding boxes per category.
Figure 5(b) further shows the distribution of the annotated bound-
ing box sizes. The sizes of the bounding boxes vary from 0.14% to
71.62% of the image size, and the average sizes of the bounding box
is 15.12% of the image size.
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Figure 5: (a) The distribution of dish categories; (b) The dis-
tribution of bounding box size.

5 EXPERIMENTS
5.1 Data Splitting

We perform experiments on two datasets, one is the collected mixed
dish dataset, and the other one is the School Lunch dataset [12]. As
the images in the mixed dish dataset are collected from 6 canteens,
we therefore have two manners in terms of data splitting: self-
domain splitting and cross-domain splitting. Self-domain splitting
ignores the canteen information and randomly split the images into
three parts. Among them, 80% of images are selected as training
data, and 10% of images are validation data. The remaining 10



Table 1: Contributions of knowledge transfer (Trans), im-
plicit context (IC) and explicit context (EC) on mixed dish
dataset. Note that EC is introduced to refine the dish recog-
nition rather than the dish detection results, hence we only
report F1 for the models with EC.

Cross-domain Self-domain

Trans? IC? EC? mAP (%) F1(%) | mAP (%) F1(%)
(a) 40.63 494 73.49 84.59
(b) N4 44.96 51.05 74.17 84.83
(c) v 44.39 51.47 76.32 86.24
(d) v - 50.86 - 85.56
(e) N4 Vv 47.57 52.58 76.89 86.89
() v v - 52.37 - 87.63
@ | v v - 52.22 - 85.59
h)| v v - 53.55 - 88.42

% images are used for testing. Cross-domain splitting retains the
canteen information and splits the data according to the canteen.
Under cross-domain setting, images from 5 canteens are chosen as
the training data, and the images from the remaining 1 canteen are
equally split into validation and testing set. In fact, this is a more
realistic setting, as collecting training samples that cover all the
canteens is not possible. The evaluation is repeated 6 times such
that one testing is performed on each canteen. For evaluation, we
only consider the categories of dishes that appear in both training
and testing sets. We report the average performances.

The School Lunch dataset is a multi-dish dataset that contains
4,877 images and covers 21 dish categories. Each dish in the images
is annotated with a bounding box. Different from our mixed-dish
dataset, in the School Lunch dataset, different dishes are presented
in different containers and there are clear boundaries between dif-
ferent dishes. Besides, all the images are collected from one canteen.
Therefore, this dataset is less challenging. We also conduct exper-
iments on this dataset to verify the effectiveness of the proposed
framework on general multi-dish scenarios. Similar to mixed dish
dataset, 80% of the images are randomly selected for training, 10%
is used for validation set and the remaining 10% is used for testing.

5.2 Implementation Details

The backbone network is initialized with the first four blocks of
ResNet-50 network that is pre-trained on large-scale single dish
dataset. In this way, the knowledge learned from single dish image
recognition is transferred to multi-dish detection. For dish detection,
the input images are resized to make their short side equals to 600
pixels. The detection model is trained on 1 NVIDIA TITAN V GPU
with the batch size set to 2. The learning rate is set to 0.001, and
decays by a factor of 0.1 after the 7/" and 12!* epoch. In total,
the model is trained for 20 epochs. For dish detection, similar to
that used in [12], we adopt mean Average Precision (mAP) as the
evaluation metric. As our goal is to identify each of the dish type
presented in the multiple dish image, we also report the F1 score of
the dish recognition results. For dish recognition refinement, the
CRF model is trained with the validation set.

Table 2: 10 dish categories that achieve large margin of im-
provement with knowledge transfer (Trans) on self-domain
splitting.

Category [ AmAP (%) Number of Samples
Meat Ball 58.50 28
Curry Chicken 50.00 33
Beef Potato 31.15 49
Steamed Bread 23.33 23
Celery 21.05 82
Braised Duck 19.82 98
White Radish 16.51 227
Chicken & Potato 14.41 122
Petai with Prawn 14.29 61
Potato Slice 13.33 44

5.3 Ablation Study

We first investigate the effect of each sub-module in our proposed
framework. Table 1 lists the contribution of knowledge transfer,
implicit context, explicit context and their combinations towards
the performance improvement on mixed dish dataset. From the
results, we have the following observations. First, the performance
of multiple dish detection and recognition on cross-domain sce-
nario are much lower than that on the self-domain scenario, which
demonstrates that cross-domain recognition is more challenging
since the same dish provided by different canteens have different
visual appearances. Second, with knowledge transfer, it attains
higher performance of dish detection on both cross-domain and
self-domain settings. In terms of mAP, it improves by around 4%
on cross-domain setting and 0.7% on self-domain setting. It’s worth
noting that the improvement gained from knowledge transfer on
cross-domain is larger than that on self-domain. This is maybe
because that pre-training on single dish dataset enables the system
to learn better features to cope with the visual variance of the same
dish in different canteens. Third, with implicit context, the perfor-
mance of dish detection improves by around 4% on cross-domain
setting and 3% on self-domain setting. The results demonstrate
that implicit context is quite effective in improving the dish de-
tection performance. Fourth, explicit context improves the dish
recognition performances by around 1% on both the cross-domain
and self-domain settings, which verifies that label-occurrence is
also useful for mixed dish recognition. Fifth, compared with using
only implicit context or explicit context, considering both contexts
achieves better mixed dish recognition performance. This demon-
strates that implicit context and explicit context are complementary
to each other. Lastly, by combining knowledge transfer, implicit
context and explicit context, the model achieves the best mixed
dish recognition performance on both settings.

To obtain deep insights on how the transfer learning influences
the detection results, we list 10 dish categories that gain large
improvement from knowledge transfer in Table 2. Basically, most
of these categories have a limited number of training samples,
which is insufficient for learning good discriminative features. By
transferring the knowledge learned from the single dish dataset,
the model is able to learn good food features and quickly adapt to
the task of multiple dish detection with only a few training samples.
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Figure 6: 13 dish categories that achieve large margin of im-
provement with implicit context on self-domain splitting.

For example, “meat ball" contains only 28 training samples. With
knowledge transfer, performance improvement can be as high as
58.5% in terms of mAP.

Figure 6 further lists 13 dish categories that gain large improve-
ment from implicit context. As shown in the Figure 6, dishes that
appeared in small size (small portion) in the images, such as “boiled
egg" and “salted egg”, gain large improvement from implicit context.
The detection performance of “boiled egg” and “salted egg” is 87%
and 64% respectively. This is mainly because the implicit context
considers the interaction between region features and enhances
the features of the dish in small size.

Table 3 shows a few categories that record large improvement
with explicit context in terms of F1. For most of the categories,
explicit context helps to reduce the false positive predictions, hence
lead to higher precision. The examples include “fungus & chicken”
and “chicken leg”, in which both achieve 50% improvement in terms
of precision. This is mainly due to the fact that people tend not
to order dishes with repeating ingredients. There are 16 dishes
with chicken as the major ingredient in mixed dish dataset. By
modeling the co-occurrence among dishes, the explicit context is
effective in reducing false positive predictions that share the same
major ingredients. While increasing the precision, explicit context
sometimes decreases the recall. For example, by considering label
co-occurrence, the recall of both “fried segmented fish” and “fungus
& chicken” decrease by more than 25%. This is mainly due to the
facts that the training sample of these two categories are relatively
small, which results in bias in the learned co-occurrence matrix
and leads to decrease in recall on testing set.

Figure 7 further shows three examples, comparing the influence
of knowledge transfer and implicit context on mixed dish detec-
tion. In general, with knowledge transfer and implicit context, the
model can achieve better dish detection results. With knowledge
transfer, the model is able to learn better features and reduce the
confusion between visually similar dishes. For example, in Figure
7(a), despite “beef stomach” has similar visual appearance with
“stir-fried meat”, the model with knowledge transfer successfully
remove the false detection of “beef stomach”. Another example is
“braised pork trotter” in Figure 7(b). Without knowledge transfer,

Table 3: The changes of recall, precision and F1 score of 10
categories that achieve large margin of improvement with
explicit context on self-domain splitting.

‘APrecision (%) ARecall (%) AF1 (%)

Chicken Leg 50.00 50.00 33.33
Crab 25.00 25.00 14.29
Glass Noodles 20.00 20.00 11.11
Chinese Cabbage 14.19 37.26 9.97
Potato Slice 13.33 33.33 8.89
Marinated Tofu 15.37 18.07 8.59
Shrimp & Celery 11.19 38.46 8.02
Beans & Eggs 14.12 14.12 7.63
Fried Segmented Fish 33.33 -26.67 7.14
Fungus & Chicken 50.00 -25.00 6.67

the model confuses “chicken & potato” with“braised pork trotter”
and predicts “braised pork trotter” with a higher confidence score.
Through knowledge transfer, the false detection “braised pork trot-
ter” has been successfully removed. While knowledge transfer helps
to remove false defections, implicit context, on the other hand, is
effective in improving the recall. As implicit context models the
contextual relations between region features, it benefits the pre-
dictions of dish in small size (portion). For example, as shown in
Figure 7(b) and (c), despite that “salted egg” and “scrambled egg”
are small in size, our model is still able to detect them with high
confidence score with the help of implicit context.

5.4 Performance comparison

We compare our approach with several baseline methods on both
mixed dish dataset and School Lunch dataset. On the proposed
mixed dish dataset, we compare with 4 baseline methods which are
listed as follows.

e ResNet-50. We fine-tune ResNet-50 pretrained on ILSVRC
with our mixed dish dataset. As mixed dish recognition is
a multi-label recognition problem, we replace the soft-max
loss with sigmoid cross-entropy loss.

e ResNet-50*. In order to transfer the knowledge learned
from single dish recognition, we first pre-train ResNet-50 on
large scale single dish dataset, and then fine-tune the model
for mixed dish recognition.

e Region-wise. The region-wise recognition model divides
the feature map of the input image into several grids and
performs classification on each grid. The final recognition
results are obtained by max pooling the probability distri-
bution across different regions. As illustrated in [7], per-
forming multi-label recognition on region level could lead
to significant performance improvement as compared with
that at image-level. Hence we also compare the proposed ap-
proach against region-wise multi-label recognition method
proposed in [7].

o Faster R-CNN. Faster R-CNN is the state-of-the-art method
on School Lunch dataset [12] for multiple dish detection and
recognition. Therefore, we also make Faster R-CNN as one of
the baseline. We set a threshold on the confidence score of the
detected bounding boxes, and evaluate the recall, precision
and F1 score. The threshold is set to 0.5.
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Figure 7: Examples of test images showing effect of transfer learning and implicit context in improving dish detection. False

positives are marked in red.

Table 4: Performance comparison of our approach with var-
ious existing methods on mixed dish dataset. The evalua-
tions are done on self-domain setting.

[ Precision (%) Recall (%) F1 (%)

ResNet-50 44.70 44.79 44.74
ResNet-50* 49.79 49.87 49.82
Region-wise 70.92 70.85 70.88
Faster R-CNN 86.53 82.73 84.59
CR-Nets 87.74 89.12 88.42

Table 4 lists the performance comparison. With pre-training
and region-wise multi-label recognition, the performance of mixed
dish recognition has gain significant improvement. Faster R-CNN,
which requires the bounding box annotation for model training,
performs much better than multi-label learning methods for mixed
dish recognition. The results basically demonstrate the advantages
of studying the mixed dish recognition problem from the perspec-
tive of object detection. Compared to Faster R-CNN, our method
improves the F1 from 70.88% to 88.42%, which demonstrate that
our method is more effective in solving the mixed dish recognition
problem.

Table 5 lists the performance comparison between our meth-
ods and Faster R-CNN on School Lunch dataset. Faster R-CNN,
which utilizes VGG [39] as backbone network, has been reported to
achieve the best performance on School Lunch dataset [12]. For fair
comparison, we re-implement the Faster R-CNN with ResNet-50
network and report the performances. From the results, for dish
detection, our method that utilizes knowledge transfer and implicit
context performs better than Faster R-CNN, which improves by
0.36% in terms of map. For dish recognition, our method improves
by 1.4% as compared with Faster R-CNN. The results basically verify
the effectiveness of our method.

Table 5: Performance comparison on School Lunch dataset.

| mAP(%) F1(%)

Faster R-CNN (VGG) [12] 90.7 -

Faster R-CNN (ResNet-50) 93.55 93.94
CR-Nets (Trans + IC) 93.91 95.26
CR-Nets - 95.30

6 CONCLUSION

In this paper, we introduced a novel approach named CR-Nets for
mixed dish recognition. Three kinds of contextual relations from
the model, data and label perspectives are explicitly encoded in the
model. In addition, we collected a mixed dish dataset containing
over 9k images from 6 school canteens. Extensive experiments on
both our dataset and a public Japanese School Lunch dataset validate
the effectiveness and efficiency of the proposed CR-Nets. There are
two interesting directions for future work. First, there remains a
significant performance gap between the cross-domain and self-
domain settings. How to leverage few-shot learning technique to
improve the performance of the cross-domain scenario is one of
the direction that is worth investigating. Second, the proposed
framework models implicit context and explicit context separately,
which makes it difficult to train the model in end-to-end fashion.
Therefore, incorporating the explicit context into the detection
framework for end-to-end learning is another direction.
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