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ABSTRACT
Videos naturally contain dynamic variation over the temporal axis,
which will result in the same visual clues (e.g., semantics, objects)
changing their scale, position, and perspective patterns between ad-
jacent frames. A primary trend in video CNN is adopting spatial-2D
convolution for spatial semantics and temporal-1D convolution for
temporal dynamics. Though the direction achieves a favorable bal-
ance between efficiency and efficacy, it suffers from misalignment
of visual clues with large displacements. Particularly, rigid temporal
convolution would fail to capture correct motions when a specific
target moves out of the reception field of temporal convolution
between adjacent frames.

To tackle large visual displacements between temporal neigh-
bors, we propose a new temporal convolution named Hourglass
Convolution (HgC). The temporal reception field of HgC has an hour-
glass shape, where the spatial reception field is enlarged in prior &
post temporal frames, enabling an ability to capture large displace-
ment. Moreover, since videos contain long, short-term movements
viewed from multiple temporal interval levels, we hierarchically
organize the HgC net to both capture temporal dynamics from
frame (short-term) and clip (long-term) levels. Besides, we also
adopt strategies, such as low-resolution for short-term modeling
and channel reduction for long-term modeling, from efficiency
concerns. With HgC, our H2CN equips off-the-shelf CNNs with
a strong ability in capturing spatio-temporal dynamics at a ne-
glectable computation overhead. We validate the efficiency and
efficacy of HgC on standard action recognition benchmarks, includ-
ing Something-Something V1&V2, Diving48, and EGTEA Gaze+.
We also analyse the complementarity of frame-level motion and
clip-level motion with visualizations. The code and models will be
available at https://github.com/ty-97/H2CN.
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1 INTRODUCTION

Figure 1: Sampled clips from Something-Something V1. The
recognition of “put a table tennis ball on flat” needs to focus
on the table tennis ball and hand, as well as their interaction.
Conventional temporal convolution fails to capture the cor-
rect motion due to misalignment of visual clues caused by
the large displacement of the ball and hand.

Visual clues (e.g., semantics, objects) evolve with the temporal
axis, changing their scale, position, and perspective patterns. These
dynamic variations aggregate into discriminative motion patterns
and are crucial for video content classification.

Towards capturing these evidential dynamical patterns, existing
works could be divided into three directions:
• Optical Flow, which explicitly extracts motions out of RGB frames
is used intuitively as external information to enhance dynamics

https://github.com/ty-97/H2CN
https://doi.org/10.1145/3503161.3547841
https://doi.org/10.1145/3503161.3547841


MM ’22, October 10–14, 2022, Lisboa, Portugal Yi Tan et al.

modeling in video actions. Representative works include the
two-stream network [40], which represents motion in optical-
flow [20] form, and independently feeds static (RGB) and dynamic
(opt-flow) into two separate CNNs. Predictions of two streams
are further late-fused. Though effective, the two-stream network
suffers from a heavy computation burden due to the per-fetching
of opt-flow modality and adding an extra CNN branch.

• Conventional Temporal Convolutions, which perform temporal
aggregation at the same spatial location of temporal neighbors.
Specifically, conventional 1D temporal convolutions are com-
bined with 2D spatial convolution in a cascade [3, 45] or parallel
manner [37, 47, 54]. Equipping 2D-CNN with the ability of tem-
poral perception, these paradigms gain favorability in network
design. However, their temporal modeling capability is limited
without special consideration of the temporal dimension.

• Attention Strategies, which introduce similarities between spatio-
temporal variations to represent motion pattern [25, 51]. Though
effective, it shares the same computation issue as opt-flow-based
methods since pairwise similarities calculation between spatial-
temporal localities is inefficient.

This paper argues that visual displacements between adjacent
temporal frames prevent the rigid 1D temporal convolution from
capturing motion patterns well. For example, in Figure 1, the action
“pick up a table tennis ball and put the ball on the table” includes
interactions of core objects like “hand” and “tennis ball”. As the time
flows, the spatial semantics of individual frames gradually change
from “pick up the ball” to “lift the ball in the air” and “put it on the
table”. In this progress, the scale, position, and patterns of “hand”
and “tennis ball” change. Rigid 1D temporal convolution does not
take a large variation into consideration as it only aligns the same
spatial location across different timestamps for dynamical model-
ing. Thereby, it could easily lose core visual clues when evidential
objects move out of the reception field in adjacent frames.

To tackle large visual displacements between temporal neigh-
bors, we propose a new temporal convolution named Hourglass
Convolution (HgC). With the hourglass-shaped reception field, i.e.,
larger spatial reception fields for prior and latter temporal neigh-
bors, our HgC enables more accurate motion capturing, especially
for those with large movements. Besides, motions in video activities
involve multiple granularities simultaneously. They behave with
various magnitudes on different temporal interval levels, e.g., frame
level and clip level.

With the concerns above, we extend the HgC to capture both
frame-level and clip-level motions hierarchically. We name our
video CNN asHierarchical Hourglass Convolutional Network (H2CN).
Specifically, we operate HgC on frames within a clip and aggregate
features across adjacent frames for frame-level motion modeling.
Frame-level motion information then supply the shallow 2D convo-
lution features with the intra-clip temporal dynamics via a lateral
connection. For efficiency consideration, we conduct frame-level
motion modeling on a lower frame resolution. As for clip-level
motion modeling, we employ HgC across clips to aggregate the
long-term temporal dynamics. Consequently, a local clip will be
contextualized by long-term temporal perception. To balance com-
putations, we performed HgC on features preprocessed with dimen-
sional reduction. From frame-level and clip-level motion modeling,

H2CN captures diverse motion patterns and equips off-the-shelf
CNNs with a strong ability in modeling spatial-temporal dynamics
at a neglectable computation overhead.

Our HgC presents a new temporal convolution that can better
capture the motion pattern with its strong capability to model large
visual displacements caused by visual clues movement. Thanks to
the Hierarchical structure, the proposed H2CN can capture both
frame-level and clip-level motions. To show the effectiveness of
HgC and H2CN, we conduct extensive experiments on real-world
video classification benchmarks, such as Something-Something
V1 & V2, Diving48, and EGTEA Gaze+. The experimental results
show that the convolution scheme of HgC outperforms the rigid
1D temporal convolution. Also, H2CN shows a strong ability of
motion representation learning and obtains SOTA performances
compared with other competing methods. Our contributions are
briefly summarized as below.

• Hourglass Convolution. We propose a new hourglass con-
volution operator which sets larger spatial reception fields
for prior & post time-stamps than the current one to better
model the spatio-temporal dynamics in the video.

• Hierarchical Hourglass Convolutional Network. We
build a new network for action recognition with the hour-
glass convolution operator. It can capture motion features at
frame and clip levels and demonstrate solid discriminative
power.

• SOTAEfficiency and Efficacy. Our proposedH2CN demon-
strates superior performance on four video benchmarks, cov-
ering a broad range of video activities, to other SOTA meth-
ods but incurs little computation overhead (i.e., 1%/3% extra
parameters/FLOPs) to the ResNet backbone.

2 RELATEDWORKS
Convolution structure. With the current availability of powerful
parallel machines (e.g., GPUs, TPUs) and large amounts of training
data, convolution has witnessed great progress in a large range of
deep learning communities, such as computer vision [19, 57] and
natural language processing [13]. Convolutional operators usually
have rigid reception fields to fit the shape of the studied modality
(e.g., square image and language sequence). In the image processing
area, there have been some convolution variants like deformable
convolutions [5, 6] that augments the 2D spatial sampling locations
with additional offsets to allow the network to obtain information
away from its regular local neighborhood. In video processing area,
researchers try to build high-dimensional convolutions (e.g., de-
composed 3D [37, 47, 54], 3D [3, 46] and even 4D [58] convolutions)
to facilitate the spatio-temporal tensor calculating. Although these
video convolutions demonstrate better results than 2D convolution
on video motion modeling, their abilities are limited to model large
visual displacements between temporal neighbors due to the same
spatial reception filed for each temporal stamp.

Motion capturing. Except for the above implicit motion captur-
ing with high-dimensional operations, efforts to explicitly model
the motion pattern are spared. Particularly, TSM [30] proposes a
temporal shift of partial channels to enhance a pure 2D CNN with
motion capturing ability. GSM [41] extends TSM with learnable
shift parameters and uses the channel decomposition to compress
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parameters. Moreover, RubikShift [9] even attempts to replace all
convolutional filters with lightweight spatial/temporal shift opera-
tions. Token shift transformer further [55] explores the transfer of
shift operator in transformer structures. Although efficient, these
methods may neglect the long-range temporal characteristics of
video modality, which deserves special consideration. As a more
intuitive representation of motion information, optical flow [20]
is proved to be effective in video recognition [40]. However, the
pre-computation for optical flow is time-consuming. Researchers
turn to adopt temporal difference [27, 31, 49] as an approximation
of optical flow. Like two sides of a coin, optical flow and temporal
difference are unaware of the static appearance feature, which also
is crucial in video recognition.

Spurred by the promising performance, researchers learn motion
information with various attention-based methods [15, 16, 18, 54].
For example, S3D-G [54] aggregates the global Spatio-temporal
context and assigns it to feature channels by using the squeeze-and-
excitation operation as SE-Net [21]. Apart from the long-range axial
contexts, SDA [44] and GC [17] further consider the local spatio-
temporal contexts for accuratemotionmodeling. Someworks utilize
self-attention [4, 10, 48] for CNN feature refinement. For instance,
Non-local [51] represents a neural response at a specific location
as the weighted sum of features from all Spatio-temporal voxels
based on the feature similarity. STSS [25] generates motion by
learning self-similarity in a local Spatio-temporal window. Patrick
et al. [36] model the similarity across frames as motion trajectory
in transformer architecture. Similarity-based models perform well
with the inherent non-locality for motionmodeling, but the external
pairwise similarity calculation makes them less efficient.

3 METHOD
In this section, we will elaborate on our proposed H2CN. The core
of H2CN is the newly designed hourglass convolution (HgC) which
provides a new paradigm for temporal information aggregation.
Based on HgC, we propose to model complex motions of videos on
both frame and clip levels. Firstly, we briefly revisit the rigid tempo-
ral convolution. Secondly, we describe our HgC in detail, which sets
different sizes of reception fields for different time offset positions.
Finally, we present a hierarchical video recognition network H2CN
using HgC as key motion capturing operations.

3.1 Revisiting Temporal Convolution
We first revisit the temporal convolutions, which is widely used in
3D spatio-temporal convolution [3, 45] (implicitly) and decomposed
3D convolution [37, 47, 54]. For clearly understanding the working
flow, we adopt a 3 × 1 × 1 depth-wise temporal convolution1 as
the representative of temporal convolutions. Given a video feature
input X with the size of𝑇 ×𝐻 ×𝑊 ×𝐶 where {𝑇,𝐻,𝑊 } denote the
dimensions of {time, space-x, space-y} and𝐶 is the channel number
(𝐶 = 1 for calculation convenience), the feature response of the
(𝑡, ℎ,𝑤)-th voxel can be represented as:

𝑥𝑡,ℎ,𝑤 = 𝛼−1 · 𝑥𝑡−1,ℎ,𝑤 + 𝛼0 · 𝑥𝑡,ℎ,𝑤 + 𝛼1 · 𝑥𝑡+1,ℎ,𝑤 , (1)

1The depth-wise convolution does not perform channel interaction and thus is easy
to understand. Here, the spatial kernel size is set 1 only for computational simplicity.
Other kernel sizes like 3, 5, 7 can also be used.

(a)

(b)

Figure 2: Comparison between (a) traditional temporal con-
volution and (b) hourglass convolution.

where 𝛼𝛼𝛼 = [𝛼−1, 𝛼0, 𝛼1] is the parameter of the temporal convolu-
tion. We can find that the temporal convolution essentially acts as a
learnable pixel-level feature aggregator for the same spatial location
of temporal adjacent frames/clips. However, the spatio-temporal
interactions not always happen in the same location. As the video
plays, spatio-temporal interactions change their location, scale and
pattern. Hence, the simply feature aggregator at the same location
may fail to model the complete motion information which is of
most importance in video recognition.

3.2 Hourglass Convolution
Considering the issue of 1D temporal convolution mentioned in
section 3.1, we believe that it would benefit the motion modeling if
setting a larger reception field (i.e., kernel) for frames/clips far away
from the anchor (the middle one). That is, the spatial kernel sizes
of different timestamps should not be kept the same. In this work,
we propose a new temporal convolution termed as hourglass con-
volution (HgC), which is named for its hourglass shaped reception
field. Specifically, the kernel size on a timestamp is determined by
its relative time offset. Suppose that the size of temporal reception
field is 𝐾 (i.e., a total of 𝐾 frames or clips) and the time offset is
𝑖 ∈ [−

⌊
𝐾
2
⌋
,
⌊
𝐾
2
⌋
]. The size of spatial reception field in HgC is thus

computed as (𝑝 · |𝑖 | +1, 𝑝 · |𝑖 | +1), where 𝑝 denotes the slope of recep-
tion field expansion. For example, when setting𝐾 = 3 and 𝑝 = 2, the
spatial kernel sizes become {(3, 3), (1, 1), (3, 3)} for {𝑡−1, 𝑡, 𝑡 +1}-th
frames respectively. In the implementation, we adopt a two-step
operation. Firstly, we use a 2D convolution or average-pooling with
the determined kernel size to achieve information aggregation in
space. Secondly, we use a 1D convolution with kernel 3 to perform
temporal information aggregation along the time axis. Formally,
given the input X, the output of HgC can be written as:

𝐻𝑔𝐶 (X)𝑡,ℎ,𝑤 =

𝐾
2∑︁

𝑖=−𝐾2

𝛼𝑖 · 𝑓 (X𝑡+𝑖,:,:;𝑊𝑝 · |𝑖 |+1,𝑝 · |𝑖 |+1)ℎ,𝑤 , (2)

where 𝑓 (·) denotes the spatial aggregation operation (2D convolu-
tion or 2D average-pooling), and𝑊𝑝 |𝑖 |+1,𝑝 |𝑖 |+1 represents the size
of expanded reception field.

Figure 2 illustrates the comparison between traditional temporal
convolution and HgC, where the temporal reception field is set as 3
for both of them and 𝑝 is set as 2. It can be found that our HgC has
larger spatial reception filed for temporal neighbors (e.g., (3, 3) vs.
(1, 1) of the counterpart), which significantly reduces the risk of
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Figure 3: Network structure of (a) TSN (2D ResNet), (b)
R(2+1)D (decomposed 3D ResNet) and (c) HgC-ResNet as well
as their performance comparison on the validation set of
Something-Something V1. Two reception field expansion
strategies are investigated in HgC.

object vanishing from the reception filed. Consequently, HgC will
be more suitable for motion modeling.

As a tapas, empirically we compare HgC with a typical motion
model operation R(2+1)D [47] in video recognition task. R(2+1)D
cascades a 2D spatial convolution and 1D temporal convolution
for spatio-temporal information modeling. The spatial reception
fields of R(2+1)D remain unchanged among all time offsets in the
convolutions. For a fair comparison, similar to R(2+1)D network,
we also use the 2D ResNet-50 as backbone and densely plugin HgC
before the 2D convolution, referred to as HgC-ResNet. Here, we
instantiate 𝑓 with both a 2D depth-wise convolution and the simple
average-pooling operation. The experiment is conducted on the
commonly used Something-Something V1 dataset. Figure 3 shows
their performance comparison w.r.t top-1 recognition accuracy,
model parameters (#P) and FLOPs as well as their network struc-
tures. As observed, both R(2+1)D and HgC-ResNet can significantly
improve the performance of 2D CNN backbone (TSN). HgC-ResNet
variants, regardless of the types of spatial operation, consistently
outperform R(2+1)D by remarkable margins (e.g., 0.4% with 2D
average-pooling and 1.0% with 2D convolution) but with almost the
same computation cost. This comparison primarily shows a proof
of the good capability of HgC in video motion modeling.

3.3 Hierarchical Hourglass Convolutional
Network

As analysed in section 1, magnitudes of video motions vary in
temporal intervals. In this part, we explore two levels of motion
tempos, i.e., frame-level and clip-level movements, and model them
by separately applying HgC on consecutive frames and video clips.
The overall architecture is shown in Figure 4. Specifically, given
a video V, we firstly divide it into 𝑇 non-overlapped&equal clips

{𝑉1,𝑉2, · · · ,𝑉𝑇 }. Then, a frame is randomly sampled from each clip,
resulting in a total of 𝑇 keyframes F = [𝐹1, 𝐹2, · · · , 𝐹𝑇 ] with each
one having the size of 𝐻 ×𝑊 × 3. The clip-level temporal dynamics
are thus reserved in these keyframes. We refer them to as clip-level
motions. In practice, a single static keyframe cannot completely
express the entire clip content since there often exist rich micro
dynamics within a clip. Therefore, we additionally sample another
4 frames centered at each keyframe 𝐹𝑡 . Finally, a total of 5 frames
C𝑡 = [𝐶−2

𝑡 ,𝐶−1
𝑡 , 𝐹 0𝑡 ,𝐶

1
𝑡 ,𝐶

2
𝑡 ] are sampled to represent the 𝑡-th clip.

Below, we first elaborate on the frame-level motion capturing from
a clip (i.e., C𝑡 ) and then detail the clip-level motion capturing from
the video (i.e., F).

Frame-level motion capturing. We conduct frame-level mo-
tion capturing on each video clip represented by C𝑡 ∈ R5×𝐻×𝑊 ×3,
for which a frame-level motion capturing block (FMCB) is designed.
Our goal is to learn themicromotions from the 5 consecutive frames
and preserve these motions information into a frame-size feature
tensorM𝑓𝑚

𝑡 ∈ R1×𝐻×𝑊 ×𝐶 . As shown in Figure 5(a), FMCB consists
of two HgCs which are connected in series. Here, normalization
and activation functions are omitted for notation convenience. The
computation flow of FMCB can be defined as follows

H𝑓𝑚
𝑡 = 𝐻𝑔𝐶2 (𝐻𝑔𝐶1 (𝐷𝑜𝑤𝑛𝑆𝑎𝑚𝑝𝑙𝑒 (C𝑡 ))), (3)

M𝑓𝑚
𝑡 = 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒 (𝐶𝑜𝑛𝑣2𝑑 (H𝑓𝑚

𝑡 ; 7 × 7)) . (4)
The 𝐷𝑜𝑤𝑛𝑆𝑎𝑚𝑝𝑙𝑒 function is used to resize the frame resolution
(𝐻,𝑊 ) to a lower size (𝐻2 ,

𝑊
2 ) and the 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑒 recoveries the

original resolution. The two HgCs, i.e.,𝐻𝑔𝐶1 and𝐻𝑔𝐶2, achieve mi-
cro motion modeling. Without feature padding, the temporal length
of H𝑓𝑚

𝑡 is reduced to 1 for fitting the fusion with the appearance
feature of keyframe 𝐹𝑡 . Afterwards, a 2D convolution with kernel
7 × 7 is used to further readjust the learned micro motions within
relatively larger spatial neighbors, resulting in the ultimate feature
tensorM𝑓𝑚

𝑡 . Finally, we fuseM𝑓𝑚
𝑡 and the appearance feature of

the keyframe 𝐹𝑡 by elementwise addition. After the above process-
ing, the frame-level dynamics modeled by FMCB are incorporated
entirely in the clip.

Clip-level motion capturing. FMCB enhances the appearance
feature of each keyframe (clip) 𝐹𝑡 with frame-level motions within a
clip in the early stage. However, it is incapable of exploring the long-
range motion pattern of the entire video because of the limitation
in the temporal reception field. Consequently, the clip-level motion
capturing block (CMCB) is proposed to model long-range motion
structure across the 𝑇 clips. Here, CMCB is designed as plug-in at-
tention module. Specifically, we denote the video feature outputted
by a specific convolution layer in the backbone as Y ∈ 𝑇 ×𝐻×𝑊 ×𝐶 .
For computational efficiency, we firstly introduce a convolution
layer with kernel 1 × 1 × 1 followed by a normalization layer, to
reduce the dimensions of channel𝐶 controlled by a hyperparameter
𝑟𝑐 (following previous work [21], we set 𝑟𝑐 as 16). After getting the
light weighted clip-level feature Y′ ∈ 𝑇 × 𝐻 ×𝑊 × 𝐶

𝑟𝑐
, we utilize

HgC upon Y′ to aggregate the motion dependency across clips:
D𝑐𝑚 = 𝐻𝑔𝐶 (Y′) . (5)

Then, we use a global average pooling layer to squeeze the spatial
information and focus on the temporal dimension:

D𝑐𝑚𝑝 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝑑 (D𝑐𝑚) . (6)
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Figure 5: The work flows of frame-level motion capturing
block (left) and clip-level motion capturing block (right).

To excite the dependency context for clips, we recover the channel
dimension ofD𝑐𝑚𝑝 to the original value𝐶 using a convolution layer
with kernel 1× 1× 1. Finally, the dependency feature is activated by
a Sigmoid function and used to elementwisely refine the original
feature Y in a gating manner:

M𝑐𝑚 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶𝑜𝑛𝑣3𝑑 (D𝑐𝑚𝑝 ; 1 × 1 × 1)), (7)

Z = M𝑐𝑚 ⊙ Y. (8)
Since FMCB and CMCB are designed to capture motion infor-

mation on different temporal interval levels, the magnitudes of
motions between consecutive frames and between clips are dis-
parate. We empirically ablate multiple kernel settings of HgC in
the experiments.

3.4 Integrated Model
Our proposed FMCB and CMCB can be easily integrated into off-
the-shelf CNN backbones. Here, we use ResNet as an example. The
FMCB is laterally connected to the 𝐶𝑜𝑛𝑣1 layer to achieve frame-
level motion modeling and fusion. The CMCB is densely inserted
into each bottleneck block (between the first and second convo-
lutional layer) of 𝑅𝑒𝑠1 − 4 stages. As such, we have equipped the
backbone with both short-range (frame-level) and long-range (clip-
level) dependencies by the proposed FMCB and CMCB, resulting
in the new video network H2CN. Benefiting from the use of low-
resolution and channel reduction, H2CN introduces as low as 1%
parameters and 3% FLOPs of the backbone.

4 EXPERIMENTS
To verify the effectiveness of HgC and hierarchical framework we
conduct extensive ablation studies in 4.3. We further compare our
H2CN with SOAT methods including CNN-based approaches as
well as more sophisticated transformer-based methods to justify
the superiority of H2CN in 4.4.

4.1 Datasets
We conduct extensive experiments on four benchmark datasets,
including Something-Something V1&V2 [14, 35], Kinetics-400 [60],
Diving48 [28] and EGTEA Gaze+ [29] for video recognition. The
metrics are top-1 and top-5 precision. Something-Something
V1&V2 datasets contain 174 fine-grained humans performing pre-
defined actions with objects and focus on more temporal dynamics
than spatial statics.Kinetcs-400 is a large-scale video dataset which
covers 400 categories in daily life. Kinetics dataset mainly focuses on
static appearance. In addition, we include two datasets with relative
smaller scale, i.e., EGTEA Gaze+ which provides first-person videos
and Diving 48with dive sequence. Covering a broad range of actions
in videos, these five datasets can not only evaluate the effectiveness
but also the robustness of our proposed model. Due to the space
limitation, we include the performance comparison on Diving48
and EGTEA Gaze+ in the supplementary material.

4.2 Implementation Details
We use ResNet as the backbone to implement our H2CN framework.
All models are implemented with Pytorch toolkit and run on 8 ×
3090 GPUs.

Training. Following the common setting [50], we uniformly
sample 8 or 16 keyframes from input videos for all datasets. As for
resolution, we resize the sampled frames into 240 × 320 images and
then crop a 224 × 224 patch out of the resized frames for Something-
Something V1&V2. For Kinetics-400, Diving48 and EGTEA Gaze+,
we resize the short-side of frames to 256 maintaining the aspect
ratio and then crop a 224×224 patch out of resized frames. Data
augmentations such as random scaling before cropping and random
horizontal flipping are also adopted.

We train the network with batch size 8 per GPU and we set the
learning rate (lr) as 0.01. The total training epoch is set as 100 for
Kinetics-400 and 60 for other datasets. We decay lr by 0.1 at 50 75
90 for Kinetics-400 and decay lr at epoch 30, 45 and 55 for other
datasets. The dropout ratio is set as 0.5. The backbone ResNet is
pre-trained on ImageNet.

Inference. We sample 8 or 16 keyframes per video, resize them
into 240 × 320 images for Something-Something dataset and 256 ×
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Table 1: Performance comparison of different reception field
expansion slopes 𝑝 for HgC in CMCB on the validation set
of Something-Something V1.

method top-1 top-5 #p FLOPs
w/o FMCB 45.6 74.2 23.9M 32.9G

FMCB
p=2 52.3 80.3 23.9M 33.6G
p=4 52.5 80.5 23.9M 33.6G
p=6 52.3 80.3 23.9M 33.6G

256 for Diving48 and EGTEA Gaze+, then we use one center crop
with size 224 × 224 from the resized images. Testing augmentations
are specified in tables.

4.3 Ablation Study
In this section, we investigate the effectiveness of frame-level mo-
tion capturing block (FMCB) and clip-level motion capturing block
(CMCB) as well as the 𝑝 value which stands for the slope of re-
ception field expansion for prior and latter temporal neighbors. In
addition, we ablate our HgC and rigid 1D temporal convolution
in FMCB and CMCB. These evaluations are conducted on the val-
idation set of Something-Something V1 dataset. We use a center
crop of 8 keyframes for model testing in all ablation studies and the
metrics are Top1/Top5 acc., model size and FLOPs are also specified.

Firstly, we investigate the effectiveness of FMCB and CMCBwith
different 𝑝 values. The magnitude of 𝑝 determines the size of recep-
tion field for prior and latter temporal neighbors. We empirically
set 𝑝 as 2, 4, 6, the reception field for prior and latter temporal neigh-
bors are then respectively calculated as 3×3, 5×5, 7×7. Specifically,
we implement reception fields of 5×5, 7×7 by utilizing convolution
dilation based on 3×3 for efficiency. Table 1 shows the performance
comparison of FMCB under different settings. Overall, equipping
the backbone network with frame-level motion capturing block
(FMCB), regardless of their settings, can significantly improve the
performance (+6.7%-+6.9%) with neglectable external parameters
and only 2% computation overhead. These results verify our claim
that the motions in video activity involve multiple temporal granu-
larities which may be ignored by models that explore video motions
on only one temporal interval level. Particularly, we observe the
increment of 𝑝 from 2 to 4 which enlarges the spatial reception
for prior and latter temporal frames from 3 × 3 to 5 × 5 slightly
enhances the model with a performance improvement of 0.2% and
further increasing 𝑝 does not introduce performance improvement.
This phenomenon indicates the raw frame with a bigger size than
the feature maps in the latter stages of the network needs a bigger
reception field than the 3 × 3 spatial kernel for the feature maps
with smaller sizes. Since we utilize dilation convolution to imple-
ment the 5×5 spatial convolution, it doesn’t introduce any external
parameters and FLOPs, we fit 𝑝 in FMCB as 4 for the following
experiments.

As for the effectiveness of clip-level motion capturing block
(CMCB), Table 2 shows its performance under different 𝑝 . All results
are obtained by densely inserting CMCB into the ResNet backbone
equipped with FMCB under 𝑝 = 4 which is denoted as "w/o CMCB"
in Table 2. Similar to FMCBs, CMCBs under different settings of
𝑝 consistently enhance the backbone with obvious performance
improvements (+0.9%-+1.1%). However, increasing the reception

Table 2: Performance comparison of different reception ex-
pansion slopes 𝑝 for HgC in FMCB based on ResNet back-
bone equipped with FMCB (𝑝=4) on the validation set of
Something-Something V1.

method top-1 top-5 #p FLOPs
w/o CMCB 52.5 80.5 23.9M 33.6G

CMCB
p=2 53.6 81.4 24.1M 33.8G
p=4 53.4 81.4 24.1M 33.8G
p=6 53.6 81.8 24.1M 33.8G

Table 3: Performance comparison between HgC and rigid 1D
temporal convolution in FMCB and CMCB on Something-
Something V1. The 𝑝 value is set as 4 and 2 in FMCB and
CMCB respectively.

Motion level acc.(%) #P FLOPsFMCB CMCB top-1 top-5
Conv1d — 52.0 80.2 23.9M 33.6G
HgC 52.5 80.5 23.9M 33.6G

HgC Conv1d 53.2 81.0 24.1M 33.8G
HgC 53.6 81.4 24.1M 33.8G

field expansion slope could not further boost the effectiveness of
CMCB, reflecting expand the reception field with slope 𝑝 = 2 is
enough to handle the movement of spatial clues in the feature maps
which with smaller resolution size than raw frames. We fit 𝑝 in
CMCB as 2 for the following experiments.

After investigating the effectiveness of FMCB and CMCB under
different settings, we further explore the effectiveness of HgCs in
FMCB and CMCB. For a fair comparison, we replace the HgC in
FMCB and CMCB with a rigid 1D temporal convolution and remain
the other parts unchanged. Specifically, for HgCs in FMCB, we
respectively integrate FMCBs which are implemented using HgC
and 1D temporal convolution into ResNet50, and compare their per-
formance on Something-Something V1. As shown in Table 3, using
HgC in FMCB obtains a 0.5% performance improvement compared
to 1D temporal convolution. This result verifies the capacity of our
HgC in capturing micro motions across contiguous frames.

Based on backbone model equipped with FMCB, we replace
the HgC in CMCBs using rigid 1D convolution in every bottle-
neck block of Res1-4 and make a comparison with original CMCBs.
As shown in Table 3, insertion of CMCB using HgC introduces a
larger improvement of 1.1% while the insertion of CMCB using
rigid temporal 1D convolution only makes an improvement of 0.7%.
Exhibiting stronger capability in both short-term and long-term
motion capturing, our HgC is superior in spatio-temporal dynamics
modeling than rigid 1D temporal convolution.

4.4 Performance Comparison
In this section, we compare H2CN with state-of-the-art video net-
works. The result comparison follows the same protocol of using
RGB frames as input unless otherwise specified. For the recent suc-
cess of introducing transformer into action recognition, we compare
H2CN with both CNN-based and transformer-based architectures.



Hierarchical Hourglass Convolutional Network for Efficient Video Classification MM ’22, October 10–14, 2022, Lisboa, Portugal

Table 4: Performance comparison with state-of-the-arts on Something-Something V1 and V2 datasets.

Method Backbone #Pretrain Keyframes×Views #P FLOPs V1 V2
Top-1 Top-5 Top-1 Top-5

I3D [3]
3DResNet-50 ImageNet 32×2

28.0M 153.0G×2 41.6 72.2 — —
NLI3D [51] 35.3M 168.0G×2 44.4 76 — —
NLI3D+GCN [52] 62.2M 303.0G×2 46.1 76.8 — —
GST [34] ResNet-50 ImageNet 16×1 21.0M 59.0G×1 48.6 77.9 62.6 87.9
TSM [30] ResNet-50 ImageNet 16×1×2 23.9M 65.8G×1×2 48.4 78.1 63.1 88.2
SDA-TSM [44] 16×1×2 25.8M 67.8G×1×2 52.2 80.9 64.7 89.5
TIN [39] ResNet-50 Kinetics 16×1 24.3M 67.0G×1 47 76.5 60.1 86.4
TEINet [31] ResNet-50 ImageNet 16×1 30.4M 66.0G×1 49.9 — 62.1 —
TAM [33] ResNet-50 ImageNet 16×1 25.6M 66.0G×1 47.6 77.7 62.5 87.6
TEA [27] ResNet-50 ImageNet 16×30 24.5M 70.0G×30 52.3 81.9 — —
STM [22] ResNet-50 ImageNet 8×30 24.0M 33.3G×30 49.2 79.3 62.3 88.8
STM [22] 16×30 24.0M 66.5G×30 50.7 80.4 64.2 89.8
MoViNet-A3 [24] — — 50 5.3M 23.7G — — 64.1 88.8
TDN [49] ResNet-50 ImageNet (8+16)×1 26.1M 108.0G×1 55.1 82.9 67.0 89.5
SELFYNet [25]

ResNet-50 ImageNet
8×1 — 37.0G×1 52.5 80.8 64.5 89.4

SELFYNet [25] 16×1 — 77.0G×1 54.3 82.9 65.7 89.8
SELFYNet [25] (8+16)×1 — 114.0G×1 55.8 83.9 67.4 91.0
TimeSformer-HR [2]

Transformer Kinetics

16×3 121.4M 1703G×3 — — 62.5 —
ViViT-L [1] 32×4 352.1M 903G×4 — — 65.4 89.8
MViT-B [8] 64×3 36.6M 455G×3 — — 67.7 90.9
Video-Swin-B [32] 16×3 88.8M 321G×3 — — 69.6 92.7

H2CN(ours)
ResNet-50 ImageNet

8×1 24.1M 33.8G×1 53.6 81.4 65.2 89.7
H2CN(ours) 16×1 24.1M 67.6G×1 55.0 82.4 66.4 90.1
H2CN(ours) (8+16)×1 — 101.4G×1 56.7 83.2 67.9 91.2

Something-SomethingV1&V2. Since the recognition of videos
in Something-Something V1&V2 relies heavily on time dynamic
modeling, Something-Something V1&V2 are widely used to mea-
sure the motion capturing ability of video recognition methods. We
report the top-1/top-5 precision of H2CN with other SOTAs, model
size and FLOPs are considered as well in Table 4. We compare our
H2CN with CNN-based architectures including classical methods
such as I3D [3], GST [34], TSM [30] and most recent methods, such
as TDN [49] and SELFYNet [25]. H2CN achieves the highest Top-1
accuracies of 56.7% and 67.9& using (8+16) frames on Something-
Something V1&V2, respectively. Compared to other CNN-based
SOTAs, H2CN outperforms them by obvious margins (0.9%-17.1%
on V1 and 0.5%-6.8% on V2). These results demonstrate the capacity
of H2CN in capturing diverse activity motions. Compared to the
more sophisticated Transformer-based methods like MViT [8] and
Video-Swin transformer [32], the performance of our H2CN is still
competitive. What’s more, H2CN appears more efficient by con-
suming less computation and being with fewer parameters. H2CN
only requires 101.4G FLOPs, which is about 12.5 times cheaper than
MViT-B (1365G FLOPs) and 8.5 times lower than Video-Swin-B
(963G FLOPs).

Kinetics-400. Kinetics-400 has a very different temporal char-
acteristic from Something-Something dataset, we conduct experi-
ments on Kinetics-400 to verify the generality of the effectiveness
of our H2CN and HgC. On Kinetics-400, our H2CN achieves 76.9%
using 8 frames, while uses 16 frames, H2CN reaches 77.9%. We
further ensemble the 8-frames model and the 16-frames model and
boost the performance to 78.7%. Compared with the classical video

Table 5: Performance comparison on Kinetics-400.

Method Backbone Frames GFLOPs Top1 Top5
TSN [50] InceptionV3 25 80×10 72.5 90.2
TSM [30] ResNet50 16 65×30 74.7 91.4
I3D [3] InceptionV1 64 — 72.1 90.3
R(2+1)D [47] ResNet34 32 152×10 74.3 91.4
S3D-G [54] InceptionV1 64×30 71.4×30 74.7 93.4
NL-I3D [51] ResNet50 32 282×10 74.9 91.6
TEA [27] ResNet50 16 70×30 76.1 92.5
TANet [33] ResNet50 16 86×12 76.9 92.9
SmallBigNet [26] ResNet50 8 57×30 76.3 92.5
SlowFast [12] ResNet50 8+32 65.7×30 77.0 92.6
X3D-L [11] — 16 24.8×30 77.5 92.9
MoViNet-A5 [24] — 120 289 78.2 —
SELFYNet [25] ResNet50 16 77×30 77.1 —
TDN [49] ResNet50 8+16 108×30 78.4 93.6
H2CN (Ours) ResNet50 8 33.8×30 76.9 93.0
H2CN (Ours) ResNet50 16 67.6×30 77.9 93.3
H2CN (Ours) ResNet50 8+16 101.4×30 78.7 93.6

CNN backbones, spanning from 2D CNNs (e.g. TSN [50] and TSM
[30]) to (decomposed) 3D CNNs (e.g. I3D [3] and R(2+1)D [47]),
with large margin, H2CN consistently outperforms those methods
consuming less or similar computation. When compared with meth-
ods equipped by advanced motion capturing techniques (e.g. TDN
[49], SELFYNet [25] and SlowFast [12]), our H2CN still performs
better at a similar or lower computation cost, except X3D-L [11] and
MoViNet [24] which achieve efficiency through the reconstruction
of the entire architecture of CNNs.
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Figure 6: Per-category accuracy of ResNet backbone, H2CN
w/o CMCB, and H2CN over 20 action categories. The 20 ac-
tions are improved most by CMCB (left of dotted line) or
FMCB (right of dotted line).

4.5 Analysis and Visualization
We investigate the effectiveness of frame-level motion information
and clip-level motion information by comparing the performance
of full H2CN, H2CN w/o CMCB and ResNet backbone on differ-
ent action categories of Something-Something V1, in particular,
the performance margin between H2CN, H2CN w/o CMCB shows
the effectiveness of clip-level motion information while the per-
formance gap between H2CN w/o CMCB and ResNet backbone
demonstrates the capacity of frame-level motion information on a
specific action category. Figure 6 shows the per-category perfor-
mance comparison. The categories on the left of the dotted line
are improved most by clip-level motion capturing compared to
H2CN w/o CMCB. The recognition of these categories needs more
long-term motion information between clips than micro motion
between contiguous frames, for example, the recognition of “label-
116: Putting something that can’t roll onto a slanted surface, so it
slides down” relies on capturing long-term object movement. Con-
trary to categories on the left of the dotted line, the recognition
of categories on the right of the dotted line relies more on micro
motion information, such as the recognition of “label-93: Pulling
two ends of something so that it separates into two pieces” only needs
to focus on the moment when an object is divided into two pieces.

Based on the observation of recognition of different categories
relies on motion information on different levels, we assume motion
information on different levels works complementary. To verify
this assumption, we calculate the performance margin between
H2CN w/o CMCB and ResNet backbone model which reflects the
effectiveness of frame-level motion information as well as the per-
formance margin between H2CN and H2CN w/o CMCB which
reflects the effectiveness of clip-level motion information to inves-
tigate the relation of frame/clip-level motion information on all 174
categories of Something-Something V1. We respectively sort the
performance margin between H2CN and H2CN w/o CMCB and
the performance margin between H2CN w/o and backbone then
observe the trend of each other. For clear demonstration, we utilize
third-order polynomial to smooth the trends. The trends are shown
in Figure 7: as the effectiveness of clip-level motion information
decreases, the recognition benefits more from frame-level motion
information, and vice versa. This phenomenon verifies the motion
information on different levels works in a complementary way.
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Figure 7: Per-category accuracy margins between H2CN w/o
CMCB and ResNet backbone (orange), H2CN and H2CN
w/o CMCB (blue) over all action categories on Something-
Something V1. The trend of effectiveness of CMCB and FMCB
shows CMCB and FMCB are complementary formotionmod-
eling.

5 CONCLUSION AND FUTUREWORK
In this paper, we have presented a novel temporal convolution
named as Hourglass Convolution (HgC) for its hourglass shaped re-
ception field. With larger reception fields for prior and latter tempo-
ral frames/clips, HgC aggregates richer spatio-temporal semantics
than rigid 1D temporal convolution. With the motion capturing
capacity of HgC, we construct Hierarchical Hourglass Convolu-
tional Network (H2CN) for modeling both short-term (frame-level)
and long-term (clip-level) motions in videos by separately applying
HgC on consecutive frames and video clips. Being easily integrated
into ResNet backbones, H2CN results in SOTA performance on
Something-Something V1&V2 of 56.7%/67.9% by only introducing
1%/3% extra parameters/FLOPs. SOTA performances are also ob-
tained on Diving48 and EGTEA Gaze+ which have disparate data
distributions, showing the generality of HgC and H2CN.

This work represents an initial attempt to enhance the video
motion modeling by designing a non-trivial temporal convolutional
kernel rather than the widely used rigid 1D temporal convolution.
Apart from the HgC presented in this paper, we would like to
explore more flexible convolution kernel designs. In current version,
HgC focuses on adjusting the spatial receptive field by considering
the temporal offsets. So, how about resetting the temporal receptive
field based on the spatial cues, for example, enlarging the temporal
size as the spatial offset increases. Further more, all the above kernel
designing regimes need to be pre-defined. Inspired by transformers
that adaptively decide the importance of feature points, we seek
for the adaptive HgC for learnable visual perception in the future.
We hope our HgC and H2CN provide some insights in the filed of
video motion modeling.
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A PERFORMANCE COMPARISON ON
DIVING48 [28] AND EGTEA GAZE+ [29]

Diving48. Diving48 is also a temporally-heavy dataset for the
recognition of a diving pose relies on the temporal aggregation of
sub-poses in the dive sequences. Since the new version Diving48
has revised for wrong labels, we re-train the CNN-based baselines,
i.e. TSN [50] and TSM [30] using 16 frames and test them using 1
center crop as H2CN. Table 6 shows the performance comparison.
Compared with CNN baselines, our H2CN achieves the best perfor-
mance of 87.0%. What’s more, our H2CN performs better than the
best Transformer-based method VIMPAC (85.5%).

Table 6: Performance comparison on the updated Diving48
dataset using the official train/validation split V2.

Method Backbone #Frame Top-1
SlowFast,16×8 from [2] ResNet101 64+16 77.6
TSN ResNet50 16 79.0
TSM ResNet50 16 83.2
SDA [44] ResNet50 8 80.2
RSANet-R50 [23] ResNet50 16 84.2
TimeSformer-HR [2] Transformer 16 78.0
TimeSformer-L [2] Transformer 96 81.0
VIMPAC [43] Transformer 32 85.5
H2CN(ours) ResNet50 16 87.0

Table 7: Performance comparison on EGTEA Gaze+ dataset
using the official train/validation split 1/2/3.

Method Backbone #Frame Split1 Split2 Split3
I3D-2stream [29] ResNet34 24 55.8 53.1 53.6
R34-2stream [42] ResNet34 25 62.2 61.5 58.6
TSM [59] ResNet50 8 63.5 — —
SAP [53] ResNet50 64 64.1 62.1 62.0
Vit(video) [7] Transformer 8 62.6 — —
TokShift [56] Transformer 8 64.8 — —
H2CN ResNet50 8 66.2 63.9 60.5

EGTEA Gaze+. Table 7 shows the performance of different
methods on the first-vision EGATEA Gaze+ dataset. We compare
our H2CN firstly with methods which utilize 2 stream architecture
[29, 42], although equipped with explicit motion information cap-
tured by optical flow, our H2CN outperforms these methods with

obvious margins on all three splits. Facing the specifically designed
method for egocentric action recognition [53], our H2CN outper-
forms SAP [53] on the split1 and split2 significantly with less data
consumption. Then, we compare H2CN with recent transformer-
based methods. Our H2CN significantly outperforms these methods,
indicating the effectiveness of our H2CN.

B SPATIO-TEMPORAL RESPONSE OF H2CN
Figure 8 shows some examples of visualization results of spatio-
temporal features of different models, including the backbone TSM,
H2CN w/o CMCB, and H2CN. Specifically, heatmaps of their spa-
tial features are computed by overlaying Grad-CAMs [38] of the
Res4 feature on the input keyframes. Higher magnitudes in these
heatmaps indicate higher feature responses for the regions. Since
our H2CN additionally has the temporal attention, we also visual-
ize the keyframes with high attention weights using a red box as
shown in the last row of each subfigure. The temporal attention is
calculated from the last bottleneck of the Res4 stage. We use this vi-
sualization to clearly demonstrate the capture for both frame-level
and clip-level motions of our H2CN.

In general, with the receptive field expansion of HgC, H2CN
and H2CN w/o CMCB demonstrate stronger dynamic perception
in a larger area as the Grad-CAMs of H2CN and H2CN w/o CMCB
attend to broader areas compared to the backbone. Particularly, in
the recognition of the action “Moving something across a surface
until it falls down” as shown in Figure 8 (a), the backbone model fails
to focus on the interaction of “hand” and “bottle cap” over the whole
video, resulting in an error category. As contrasts, H2CN and H2CN
w/o CMCB manage to locate the moving interactions of “hand” and
“bottle cap” and predict the correct category with the help of frame-
level motion information. In addition, CMCB in H2CN successfully
pick the core keyframes (e.g., 6-8th keyframes) which contain the
fallen “bottle cap” to confirm the prediction. As for the recognition of
“Rolling something on a flat surface” in which the capturing of long-
term movement plays a role of importance in Figure 8 (b), although
frame-level motion information helps H2CN w/o CMCB to locate
the important motion areas more accurately than the backbone
model, H2CN w/o CMCB still fails to give the correct prediction
for the lack of ability of modeling long-term movement. Equipped
with long-term movement preception provided by CMCB which
accurately attends to the keyframes when large object movement
takes place (e.g. the 2-5th keyframes), H2CN correctly recognizes
the action.
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GT: Rolling something on a flat surface.

TSM: Putting something on a flat surface without letting it roll.

H2CN W/O CMCB: Putting something on a flat surface without letting it roll.

H2CN: Rolling something on a flat surface.

GT: Moving something across a surface until it falls down.

TSM: Throwing something against something.

H2CN W/O CMCB: Moving something across a surface until it falls down.

H2CN: Moving something across a surface until it falls down.
(a)

(b)

Figure 8: Spatio-temporal response of H2CN. We compare H2CN with the backbone model and H2CNW/O CMCB.
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