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ABSTRACT
Knowledge transfer-based few-shot learning (FSL) aims at improv-
ing the recognition ability of a novel object under limited training
samples by transferring relevant potential knowledge from other
data. Most related methods calculate such knowledge to refine the
representation of a novel sample or enrich the supervision to a
classifier during a transfer procedure. However, it is easy to in-
troduce new noise during the transfer calculations since: (1) the
unbalanced quantity of samples between the known (base) and the
novel categories biases the contents capturing of the novel objects,
and (2) the semantic gaps existing in different modalities weakens
the knowledge interaction during the training.

To reduce the influences of these issues in knowledge transfer-
based FSL, this paper proposes a multi-directional knowledge trans-
fer (MDKT). Specifically, (1) we use two independent unidirectional
knowledge self-transfer strategies to calibrate the distributions of
the novel categories from base categories in the visual and the
textual space. It aims to yield transferable knowledge of the base
categories to describe a novel category. (2) To reduce the inferences
of semantic gaps, we first use a bidirectional knowledge connec-
tion to exchange the knowledge between the visual and the textual
space. Then we adopt an online fusion strategy to enhance the
expressions of the textual knowledge and improve the prediction
accuracy of the novel categories by combining the knowledge from
different modalities. Empirical studies on three FSL benchmark
datasets demonstrate the effectiveness of MDKT, which improves
the recognition accuracy on novel categories under limited samples,
especially on 1-shot and 2-shot training tasks.
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Figure 1: The predictions of (a) classical classificationmethod,
(b) common knowledge transfer-based method, and (c) multi-
directional knowledge transfer method, where (c) benefits
from both (a) and (b), and achieves amore accurate prediction
on a novel sample.
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1 INTRODUCTION
In the past few years, convolutional neural networks (CNNs) have
been proved the powerful ability on several visual tasks, such as
classification [14, 15, 17, 20, 40], and information transformation
[4, 6, 12, 13, 41, 50, 51]. Although CNNs have strong robustness to
the content of objects, they can hardly show a good performance
without large amounts of training data. Conversely, humans can
recognize a new category with a few samples of it because they
have seen many other related objects or learned them from other
semantic knowledge, and thus are already familiar with their salient
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Figure 2: A procedure of our multi-directional knowledge
transfer (MDKT). (a) Given a series of textual features of
novel categories (points in green) and its related base cate-
gories (blue points), the self-transfer in textual space adjusts
the distance (dotted line in red) of the novel categories by
relations between the features. (b) Given a series of samples
of the base categories (circles in blue), the self-transfer in
visual space hallucinates the potential prototypes of related
novel samples (circles in yellow) by analyzing the relations of
different categories. Finally, a bidirectional transfer strategy
connects the different modalities, which aims to close the
novel samples (in green circles) with their textual labels.

features. Therefore, knowledge transfer-based few-shot learning
(FSL) has been proposed recently to imitate this human ability.

Most recent knowledge transfer-based methods [16, 23, 42, 43]
use knowledge to intervene in training procedures of the represen-
tation learning or classifier optimization stage. Specifically, [16]
and [43] use a CNN trained on the base categories to extract the
global features of novel objects directly. They aim to transfer the
textures from the base categories to help describe a novel cate-
gory. However, this operation is insufficient to represent the novel
samples since the number of samples of base categories is much
larger than that of novel categories. As shown in Figure 1(a), a
CNN trained on the base categories is more inclined to focus on
the textures and structures of the objects it learns and ignores the
details of a novel sample [42]. [23] extracts the knowledge from
semantics and uses it as extra supervision for transfer training.
Such extra supervision alleviates the recognition bias of the classi-
fier trained only under the supervision of hard labels. However, it
ignores the semantic gaps in different modalities and introduces
task-independent noise from the external knowledge, which may
mislead the recognition of the classifier. As depicted in Figure 1(b),
although the introduced semantic reduces the predicted probability
of categories with similar textures, it increases the predictions of
categories with similar semantics during the inference. Based on
the analysis above, we set our goal in two aspects: reducing the in-
fluences of unbalanced training data and connecting the knowledge
between the different modalities. Thus, as shown in Figure 1(c), to
suppress predictions for irrelevant novel categories, we propose a
multi-directional knowledge transfer (MDKT) model which fuses

the different transfer procedures: unidirectional knowledge transfer
in a single modality and bidirectional knowledge transfer between
the different modalities.

For reducing the influences of unbalanced training data, inspired
by the humans’ ability that describes a new category by many other
familiar related knowledge (textual and visual space), we employ
two unidirectional knowledge self-transfer strategies in the visual
and the textual space independently to refine the descriptions of
the novel categories from the base categories, called intra-modality
calculation. In textual space, we focus on the relations between
the base and the novel features and use them to adjust the dis-
tance in the novel categories. These relations help the semantic
knowledge of novel categories can be discriminative with others
and such discriminative features are used to stabilize the transfer
procedure by fusing visual knowledge. As shown in Figure 2(a),
given a series of samples (from both base and novel categories)
and their descriptions, we first compare the distance between the
base and the novel features in textual space, and then adjust the
relations of novel features. For example, the refined features of the
novel categories “Arctic Wolf” and “Red Wolf” are farther away
than that in the original textual space, since the base categories
“Arctic Fox” and “African Hunting Dog” help distinguish these novel
categories. In visual space, we combine the relations calculated by
the textual knowledge to hallucinate the potential prototypes of the
novel samples and use these prototypes to help train the classifier.
As shown in Figure 2(b), the novel samples of the “Arctic Wolf”
and “Red Wolf” categories are related to the base categories by
referring to the textual relations. Thus, the potential prototypes are
similar to that in textual space. They provide prior knowledge for
the classifier.

For connecting the knowledge between the different modalities,
deep mutual learning (DML) provides a training strategy that rather
than a one-way transfer between a static pre-defined model and a
dynamic model, an ensemble of models learns collaboratively and
teaches each other throughout the training process [53]. Inspired
by DML, we design a bidirectional transfer strategy that combines
the refined features in the textual space and the hallucinated pro-
totypes in the visual space to exchange knowledge from different
modalities, called inter-modality calculation. This strategy mini-
mizes the consistency between different modalities in both the base
and the novel categories to improve the capacity of refined fea-
tures in unidirectional knowledge transfer procedures. As shown
in the second row of Figure 2, similar to the recognition procedure
of humans that they can correlate the knowledge from different
modalities to comprehend a novel object, the connections between
the refined samples are used to explore the relations between the
textual features and the visual features of novel categories. For
example, the visual sample of “Arctic Wolf” is related to its textual
label. It provides extra supervision for the training and reduces the
difficulty of optimization. In addition, we employ an online fusion
strategy to capture the knowledge from different modalities calcu-
lations and improve the prediction accuracy of the novel category.
The main contributions of our method are twofold.

(1) We introduce two unidirectional knowledge self-transfer
strategies independently in the visual and the textual space to
discover the potential knowledge of the novel categories.
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(2) We design a bidirectional knowledge connection scheme to
exchange knowledge in different modalities. It helps the classifier
focus on the relations between the visual and the textual space.
Meanwhile, we employ an online fusion strategy to better the rela-
tions between the different categories.

2 RELATEDWORK
In this section, we will briefly introduce the traditional FSL methods
and the related knowledge transfer-based FSL methods, and then
enumerate the differences between ours and the related methods.

2.1 Traditional Few-Shot Learning
Previous methods generally design a classifier with different struc-
tures or optimization strategies to predict novel categories. The
representative methods are meta-learning, metric-learning, near-
est neighbor (NN), and so on. Specifically, the methods [7, 21, 29]
based on the meta-learning train a meta-learner from many FSL
tasks (with base categories) without relying on ad hoc knowledge
to suit for new FSL tasks (with novel categories). Metric-learning
[34, 35, 39] attempts to train a network that can make samples of
the same category closer and samples of different categories farther
in the feature space. NN-based methods [22, 23] use the learned
features to search the novel labels in a given support set that is
closest (or most similar) to a given feature.

2.2 Transfer-based Few-Shot Learning
Recently, the knowledge transfer-based FSL methods have been
noticed by researchers. It is because the other knowledge can be
introduced to enrich the supervision or enlarge the training informa-
tion for the classifier during the transferring stage. To analyze the
existing related work, we briefly group knowledge transfer-based
methods into three categories by different transferring directions:
vision-based, semantic-based, and fusion-based transfer.

2.2.1 Vision-based Transfer.
The vision transfer-based methods [10, 11, 16, 43, 49] attempt

to find the relations between the novel and the base categories in
visual space. For example, Gidaris et al. design a sample classifica-
tion weight generator with an attention mechanism and modify the
weights of the classifier with the cosine similarity [10]. The work in
[11] combines meta-learning with a graph neural network (GNN)
to model the relationships of different categories and predicts the
parameters of novel classes. Yang et al. first “calibrate” the data
distribution of the novel categories by calculating the statistical
distribution of the base categories. Then they sample the novel
features from such “corrected” distribution of novel categories to
enrich training samples [49]. There are also many data augmen-
tation methods existing in the FSL task. Such as Hariharan et al.
hallucinate new samples in the feature space by using a separate
Multilayer Perceptron (MLP) to model the relationships between
the foregrounds and the backgrounds of images [16]. Wang et al.
train a meta-learner with hallucination to expand the training set
and to classify the samples simultaneously [43]. Similar to the fea-
ture hallucination methods, many traditional generation networks,
e.g., Generative Adversarial Networks (GAN) [9, 24, 55, 56], Auto-
encoder (AE) [32], and Variational AE (VAE) [28], have been applied

to generate the original image for training. It also improves the
performance of the classification.

2.2.2 Semantic-based Transfer.
The semantic transfer-based methods [22, 23, 42] aim at using

the semantic knowledge from other modalities to refine the rep-
resentations of the visual samples or enrich the supervision for
the classifier. Such as the work in [23] clusters hierarchical textual
labels both from the base and the novel categories to train a feature
extractor. It helps learn a more transferable feature embedding for
recognizing the novel samples. Wang et at. introduce semantic soft
labels generated from textual knowledge to help the network learn
a more powerful classifier [42]. These soft labels are used as super-
vision to help the classifier find hyperplane in classification space
easily. Li et at. develop a class-relevant additive margin loss with
the semantic similarity between each pair of classes to separate
samples in the feature embedding space from similar classes [22].

2.2.3 Fusion-based Transfer.
The fusion transfer-based methods [1, 26, 47] capture the knowl-

edge from different modalities and balance its influences to improve
the capacity of the classifier. For example, Xing et al. first use two
prototype networks to model the visual and the textual features and
achieve the prototypes of different modalities. Then, a multi-modal
fusion strategy with a self-attention mechanism is designed to cali-
brate the prototypes in the visual space [47]. Peng et at. propose
a knowledge transfer network, named KTN, to explore the prior
knowledge from the semantic knowledge and develop a semantic-
visual mapping network to infer the category of novel sample [26].
The work in [1] designs a graph convolutional transfer network to
introduce similar visual concepts captured by semantic correlations.
Then it associates the classifier weights with graphs construction
to update the parameters iteratively. Similar to the vision transfer-
based methods, there are also existing many data augmentation
methods [31, 45, 46] which fuse the semantic as prior knowledge to
generate samples, such as conditional-GAN [45], conditional-VAE
[31], and so on. They aim to achieve more samples for the training.

Based on the analysis of the related work, our method belongs
to the fusion transfer-based method. The method most related to
ours is recently proposed KTN in [26]. The key differences between
ours are fourfold. First of all, in addition to the inter-modality trans-
ferring in the KTN, we propose the intra-modality unidirectional
knowledge transfer. Second, we add interaction to novel categories
between the visual and the textual space during the inter-modality
bidirectional transferring. Third, we use the correlations of the
available labels to construct an adjacency matrix rather than in-
troduce a large-scale WordNet graph [25]. Finally, we replace the
offline fusion strategy with an online fusion strategy to improve
the recognition performance flexibly.

3 APPROACH
In this section, we elaborate on our proposed multi-directional
knowledge transfer (MDKT). Firstly, we briefly revisit the prelimi-
naries of the few-shot learning tasks and overview of our frame-
work. Secondly, we illustrate our unidirectional knowledge transfer
and bidirectional knowledge connection in detail. Finally, we de-
scribe the training and inference procedures of our method.



MM ’22, October 10–14, 2022, Lisboa, Portugal Shuo Wang et al.

Base
Samples 𝑿!

Novel
Samples 𝑿"

Base
Labels 𝑻!

Visual 
Self Transfer

Textual 
Self Transfer

Label

Feature
Extractor

Features

𝑾!
# $𝑻𝒃

$𝑻𝒏

Knowledge
Connection

MLP

GAT Relations

%𝑻

&𝑻"

'𝑾𝒏
𝒗

(𝑾"
#

𝛀

Novel
Labels 𝑻"

Figure 3: An overview of our multi-directional knowledge transfer, where𝑊∗, �̂�∗, and �̃�∗ is the original weights, potential
weights, and transferred weights, respectively, of the classifier in the visual space. And 𝑇∗, 𝑇∗, and 𝑇∗ is the features, potential
features, and transferred features, respectively, of the semantic knowledge in the textual space.

3.1 Preliminaries
The data of few-shot learning tasks can be split into three parts:
training set Dtrain, support set Dsupport, and testing set Dtest.
Specifically, Dtrain has large-scale training samples (e.g., about
hundreds of samples in one category), and the categories of these
samples are denoted as Cbase. It provides a large amount of prior
knowledge as known contents to help describe other samples. Con-
versely, support set Dsupport and testing set Dtest have the same
category, called Cnovel, which are disjoint with that in the training
set Cbase. The goal of few-shot learning is to learn an image classifi-
cation model by using the training set and the support set that can
accurately classify images in the testing set from novel categories,
where the training samples of novel categories are sampled from
Dsupport and the testing samples belong to Dtest. It usually focuses
on the 𝑁 -way-𝐾-shot recognition problem that identifies 𝑁 novel
categories and each category has 𝐾 support samples.

The overview of our multi-directional knowledge transfer is de-
picted in Figure 3. Before the transfer stage, we represent the visual
samples (𝑿𝑏 , 𝑿𝑛) and their semantic labels (𝑻𝑏 , 𝑻𝑛) from the base
and the novel categories into the features by a visual CNN and a
word embedding method, respectively. Denoted the textual features
of the base and the novel categories as 𝑻𝑏 = {𝒕 𝑗 ∈ R𝑑𝑡 } | Cbase |

𝑗=1 and

𝑻𝑛 = {𝒕 ′
𝑖
∈ R𝑑𝑡 } | Cnovel |

𝑖=1 , respectively, where 𝑑𝑡 is the dimension of
the textual feature. Then, we employ two different format unidi-
rectional knowledge self-transfer strategies both in the visual and
the textual space to learn the potential novel knowledge from the
base categories at first. Second, we connect such potential knowl-
edge as bidirectional transfer to exchange information between the
different modalities. Finally, the hard labels are used to optimize
the whole parameters, which contain the weights of the classifier
and the parameters of the transfer network. For the inference stage,
we fuse the predictions from different modalities to improve the
recognition accuracy of the novel samples. We introduce the details
of our method as follows.

3.2 Unidirectional Knowledge Self-transfer
3.2.1 Textual Self-Transfer.
To transfer the knowledge from the base categories to the novel

categories, we combine the relations from the textual space with

a graph attention network (GAT) [38]. Compared with the tradi-
tional graph neural network (GNN) [30], GAT assigns the weights
of each node by capturing the characteristics of its neighbors rather
than calculating an entire graph. Thus, each node is only related to
adjacent nodes and the shared edges. It is suitable for a unidirec-
tional transfer calculation. To achieve this target, we first calculates
the correlations between these features by a variant of Euclidean
distance function. The correlation of 𝑖th and 𝑗 th textual features
can be defined as: 𝑑 (𝒕𝑖 , 𝒕 𝑗 ) = | |𝒕𝑖 − 𝒕 𝑗 | |−1

2 . Then, we construct the
adjacency matrix 𝑨 of GAT by exploring the category correlation
in two stages: (1) Given a textual feature of 𝑘 novel category 𝒕 ′

𝑘
, we

select the top𝑀 base categories with the closest distance (largest
similarity) to 𝒕 ′

𝑘
as M𝑘

base. (2) We fuse the correlations of 𝒕𝑘 and its
related base categories M𝑘

base to fill the elements of the adjacency
matrix. The 𝑘th row and𝑚th column of 𝑨 can be calculated as:

𝑎𝑘,𝑚 =
𝑑 (𝒕 ′

𝑘
, 𝒕𝑚)∑

𝑖∈M𝑘
base (𝑑 (𝒕

′
𝑘
,𝒕𝑖 ) )

, (1)

where 𝑎𝑘,𝑚 represents the adjacency relations between the 𝑘th

novel category and𝑚th base category. Thus 𝑨 ∈ R | Cnovel |× | Cbase | is
an asymmetric matrix which focuses on the transfer knowledge
from base categories to novel categories.

Then, we introduce the calculations of GAT. A GAT with𝐻 -head
attentions first mapping the features into different𝐻 hidden spaces,
and then use the attention mechanism to measure the importance
between the adjacency nodes of ℎth space:

𝜎ℎ
𝑘,𝑚

=
exp(LeakyRelu( [𝒕 ′

𝑘
𝑾ℎ | |𝒕𝑚𝑾ℎ]𝑾𝑡

ℎ
))∑

𝒕𝑖 ∈M𝑘
base

exp(LeakyRelu( [𝒕 ′
𝑘
𝑾ℎ | |𝒕𝑖𝑾ℎ]𝑾𝑡

ℎ
))
, (2)

where𝑾ℎ ∈ R𝑑𝑡×𝑑 ′
𝑡 is the parameter of ℎth-head mapping calcula-

tion, 𝑑′𝑡 is the size of the transfer space,𝑾
𝑡
ℎ
∈ R2𝑑 ′

𝑡×1 is the parame-
ter of ℎth-head attention, and [•| |•] is concatenation operation, 𝜎ℎ

𝑘,𝑚

is the element of 𝝈𝒉 ∈ R | Cnovel |× | Cbase | indicates the importance of
𝑚th feature to 𝑘th feature. Combining with the adjacency matrix
𝑨, the ℎth transferred textual features �̂�ℎ𝑛 ∈ R | Cnovel |×𝑑 ′

𝑡 of novel
categories can be calculated by:

�̂�ℎ𝑛 = (𝑨 ⊙ 𝝈𝒉)𝑻ℎ
𝑏
𝑾ℎ, (3)
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where ⊙ is hadamard product. Finally, we average the multi-head
outputs to refine the representations of novel categories:

�̂�𝑛 =
1
𝐻

∑︁
�̂�ℎ𝑛 =

1
𝐻

∑︁
(𝑨 ⊙ 𝝈𝒉)𝑻ℎ

𝑏
𝑾ℎ, (4)

Meanwhile, we use a multi-layer perceptron (MLP) Φ𝜃 to model
the channel representations of the features independently:

𝑻 = Φ𝜃 ( [𝑻𝑏 | |𝑻𝑛]) = 𝛿 (( [𝑻𝑏 | |𝑻𝑛])𝑾𝑡
𝜃
+ 𝒃𝑡

𝜃
), (5)

where𝑾𝑡
𝜃
∈ R𝑑𝑡×𝑑 ′

𝑡 and 𝒃𝑡
𝜃
∈ R𝑑 ′

𝑡 are the parameters of Φ𝜃 .
Finally, we first concatenate the relations and the contents of the

textural features to further fuse two aspects knowledge by using a
one-dimensional convolution:

�̃� = Conv1D( [𝑻 | |�̂�𝑛]), (6)

and then combine the visual features with fused textual features
�̃� ∈ R( | Cbase |+| Cnovel | )×𝑑 ′

𝑡 to optimize the parameters of the trans-
fer network by cross-entropy (CE) loss. Given a batch 𝐵 of visual
samples and its labels as S = {𝒙𝑖 ∈ R𝑑𝑣 , 𝑙𝑖 }𝐵𝑖=1, where 𝑑𝑣 is the
dimension of the visual feature, the loss of textual space L𝑡 can be
calculated as:

L𝑡 =
1
𝐵

𝐵∑︁
𝑖=1

CE(softmax(�̃� · 𝒙⊤𝑖 ), 𝑙𝑖 ), (7)

where minimizing L𝑡 can be loosely considered as maximizing the
association between the visual and the textual knowledge. And in
our experiments, we set 𝑑′𝑡 = 𝑑𝑣 to simplify the optimization stage.

3.2.2 Visual Self-Transfer.
For visual space, given a batch training set sampled from both

the base categories and the novel categories S = {𝒙𝑖 , 𝑙𝑖 }𝐵𝑖=1, the
traditional classifier aims to fit these features to predict the category
of the 𝑛th testing sample 𝒙𝑛 :

𝑝𝑛 = Classifier(𝒙𝑛) =𝑾 𝑣 · 𝒙⊤𝑛 , (8)

where𝑾 𝑣 ∈ R( | Cbase |+| Cnovel | )×𝑑𝑣 and 𝑝𝑛 ∈ R | Cbase |+| Cnovel | is the pa-
rameters and the prediction of the traditional classifier, respectively.
However, the identifying process is susceptible to over-fitting on
the novel categories with limited training samples. And [16] shows
that a classifier trained under the supervision of hard labels without
other assistant strategies biases the recognition. To alleviate these
issues, we use the relations calculated from the textual space to
adjust the weights of the classifier

�̂� 𝑣
𝑛 = 𝑨 ·𝑾 𝑣

𝑏
, (9)

where 𝑨 is adjacency matrix,𝑾 𝑣
𝑏
∈ R | Cbase |×𝑑𝑣 is the weight of the

base categories in traditional classifier𝑾 𝑣 , �̂� 𝑣
𝑛 ∈ R | Cnovel |×𝑑𝑣 repre-

sents the transferred weights of novel categories. �̂� 𝑣
𝑛 provides extra

potential knowledge from relations to improve the represented abil-
ity of novel categories.

In few shot learning task, the essential purpose of a classifier
is to learn from the training samples and classify the testing sam-
ples. Thus, similar to the calculations in textual space, we combine
the transferred weights with the original weights to fit the visual
samples by cross-entropy loss

L𝑣 =
1
𝐵

𝐵∑︁
𝑖=1

CE(softmax(𝑾 𝑣 · 𝒙⊤𝑖 ), 𝑙𝑖 ), (10)

where �̃� 𝑣 = 𝑾 𝑣 ⊕ �̂� 𝑣
𝑛 , �̃� 𝑣 ∈ R( | Cbase |+| Cnovel | )×𝑑𝑣 , and ⊕ is ele-

ments summation.

3.3 Bidirectional Knowledge Transfer
For intra-modality knowledge transfer, it could be insufficient to
infer novel categories by exploring only the visual or the textual
information. Thus, KTN [26] maximize the consistency between the
vision-based classifiers of base categories and external knowledge to
help predict the category of a visual sample, where the consistency
𝐶 is simplified as

𝐶 =
∑︁

𝑐∈Cbase

| |𝑾 𝑣
𝑐 − 𝑻𝑐 | |2 . (11)

However, it only focuses on the relationship in the base categories
and ignores that between the base and the novel categories. It per-
forms good results since KTN chooses a sub-graph of WordNet [25]
as a knowledge graph to model the semantic information, where
WordNet contains all categories in the 21K ImageNet data [8]. Mean-
while, it needs that the semantic features are identical distribution
and related to the validation data. Thus, the distribution of the novel
categories can be inferred directly from the base categories.

In our method, we use the pre-trained word2vec method [23]
to represent the features of semantics and calculate the relations
between these features to construct the knowledge graph. It is
easy to introduce bias from the original semantic knowledge. Thus,
inspired by DML [53], we design a bidirectional connection strategy
that calculates the consistency between all categories to alleviate the
influences of the bias. Benefiting from the intra-modality knowledge
transfer, the connections capture the correlation accurately from
the transferred knowledge and provide the reversed supervision
for the self-transfer process. The optimization of this connection
can be calculated by using mean squared error (MSE) loss

L𝑐 =
1

|Cbase | + |Cnovel |
(

∑︁
𝑐∈{Cbase+Cnovel }

| |�̃� 𝑣
𝑐 − �̃�𝑐 | |2). (12)

In our transfer method, the semantic-based knowledge transfer
and the vision-based knowledge transfer are complementary to each
other. Therefore, we propose an online fusion strategy to integrate
them during the training and the inference stage, and optimize the
parameters by the hard labels. Similar to the calculations in intra-
modality transfer stage, given a batch training set S = {𝒙𝑖 , 𝑙𝑖 }𝐵𝑖=1,
the fusion strategy models the distribution over the all categories:

L𝑚 =
1
𝐵

𝐵∑︁
𝑖=1

CE(softmax((�̃� 𝑣 + 𝜆�̃� )) · 𝒙⊤𝑖 ), 𝑙𝑖 ), (13)

where 𝜆 is the hyper-parameter to control the weight of the fusion.

3.4 Training and Inference
For the training stage, we utilize hard labels to simultaneously
optimize the parameters of different parts. Thus, the total loss L
for a training batch is defined as

L = L𝑣 + L𝑡 + L𝑚 + 𝜇L𝑐 , (14)

where 𝜇 is weighting factor and 𝜇 is set to 100 in our experiments
to balance the different losses.

In our method, we believe that the trained network can better
express the distribution of the current training dataset. Thus we
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retrain our network with new semantic features under L after the
first training. Specifically, we replace 𝑻 of the second training with
�̃� 𝑣 + 𝜆�̃� calculated from the first training to construct a new adja-
cency matrix �̃�, where �̃� 𝑣 +𝜆�̃� is related to the training dataset and
can be used to describe more accurate relations. The effectiveness
of this strategy can be found in Section 4.3.3.

For the inference stage, we extract the predictions after second
training from the connection module which benefits from both the
visual and the textual knowledge, and classify the novel sample
into a specific category by using the 𝑎𝑟𝑔𝑚𝑎𝑥 function.

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the performance
of our proposed MDKT. Our experiments are intended to address
the following research questions (RQ):
RQ1:What are the benefits of unidirectional knowledge transfer?
RQ2:How do the influences of bidirectional knowledge connection
and fusion strategy?
RQ3: What are the effects of different training strategies of the
proposed MDKT?
RQ4: How does MDKT perform top-𝐾 accuracy as compared with
the state-of-the-art FSL methods?

4.1 Datasets and Evaluations
ImageNet-FS contains 1000 categories. It is divided into 389 base
categories 𝑺base and 611 novel categories 𝑺novel, where 300 novel
categories 𝑺1

novel are used for validating the hyper-parameters, and
the remaining 311 novel categories 𝑺2

novel are used for classifier
learning and testing. There are about 1300 samples in a base cat-
egory 𝑺base. For novel categories, there are 5 settings with 𝐾 = 1,
2, 5, 10, and 20 support samples per category. The evaluation of
this benchmark is to recognize the samples from these 311 novel
categories 𝑺2

novel. More details of the settings can be found in [16].
ImNet contains 1000 base categories and 360 novel categories. For
novel categories, there are 5 settings with 𝐾 = 1, 2, 3, 4, and 5
support samples per category. The evaluation of this benchmark
is to recognize the samples from these 360 novel categories. More
details are described in [19].
Mini-ImageNet consists of 100 categories and each category has
600 images. It is divided into three parts: 64 base categories, 16 novel
categories for validation, and the remaining 20 novel categories for
testing. This dataset is evaluated on several 5-way-𝐾-shot classifi-
cation tasks. In each task, 5 novel categories are sampled first, then
𝐾 samples in each of the 5 categories are sampled for training, and
finally 15 samples (different from the previous 𝐾 samples) in each
of the 5 categories are sampled for testing. To report the results, we
sample 800 such tasks and average accuracies over all the tasks.

4.2 Experimental Setting
For fair comparisons with other methods, we use ResNet [17] as
the feature extractor for the ImageNet-FS and ImNet, and use the
recent popular backbone ResNet-12 for the Mini-ImageNet. We
follow the training strategies in [42] to optimize the parameters of
such feature extractors with the Dtrain under the supervision of
hard labels in different datasets. The embedding sizes 𝑑𝑣 of visual
feature represented by ResNet-10, ResNet-50, and ResNet-12 are

Table 1: Top-5 accuracies (%) in the evaluation of the textual
self-transfer on 𝑺1

novel, where “w/o” means “without”.

Training under * 𝐾 = 1 𝐾 = 2 𝐾 = 5 𝐾 = 10 𝐾 = 20
L𝑡 w/o Transfer 60.8 68.5 75.5 77.9 80.2
L𝑡 60.9 68.6 76.0 79.6 81.5

Table 2: Top-5 accuracies (%) in the evaluation of the visual
self-transfer on 𝑺1

novel.

Training under * 𝐾 = 1 𝐾 = 2 𝐾 = 5 𝐾 = 10 𝐾 = 20
L𝑣 w/o Transfer 52.2 64.6 75.6 80.2 82.9
L𝑣 56.1 66.4 75.8 80.1 82.7

512, 2048, and 512, respectively. Meanwhile, we use the pre-trained
word2vec [23] to represent the labels with vectors.

After the feature extraction stage, we first calculate the rela-
tionships between the textual features and choose the nearest
|Mbase | = 5 base categories of each novel category to construct the
adjacency matrix 𝑨 in a compromised calculation and cost. 𝐻 is set
to 8 by following in [37]. Then, we train the transfer parameters
by the Adam optimization [18] with the starting learning rate of
0.001 and the weight decay of 0.001. For inference, followed by the
strategy in [26] that gradually decreases 𝜆 with increasing novel
support samples, 𝜆 is set to 2, 1, 1/2 when novel training shot𝐾 = 1,
1 < 𝐾 < 10, and 𝐾 ≥ 10, respectively.

4.3 Ablation Study
In the ablation study, we use the validation set 𝑺1

novel of ImageNet-
FS with ResNet-50 to evaluate the effectiveness of the different
parts of our method.

4.3.1 Unidirectional Knowledge Transfer. (RQ1)
Textual Self-Transfer. In this ablation study, we combine the

visual features 𝒙 with different textual features, i.e., 𝑻 and �̃� to con-
struct the textual-based classifier, and train the classifier under L𝑡

in Eq. (7). As shown in Table 1, the results indicate that the textual
knowledge (“Training under L𝑡 ”) can help the classifier recognize
the novel samples. Specifically, compared with the training without
transfer strategy, the introduced relations in �̃� improve about 1%
accuracy on 5-shot, 10-shot, and 20-shot tasks.

Visual Self-Transfer. In this ablation study, similar to the ex-
periments in textual self-transfer, we use the original weights𝑾 𝑣

and the transferred weights �̃� 𝑣 of different classifiers to model the
visual features as in Eq. (10). The results are shown in Table 2. It
indicates that the introduced relations can help the basic network
classify the novel samples, especially on 1-shot and 2-shot tasks.
Specifically, It achieve 3.9% and 1.8% accuracy improvements for
𝐾 = 1 and 𝐾 = 2. Meanwhile, there are almost no losses of accuracy
when large support samples, which validates the effectiveness of
our visual self-transfer strategy.

4.3.2 Bidirectional Knowledge Connection. (RQ2)
Compared with the results on 1-shot and 2-shot tasks in Table 1,

we can find that the classifier trained with only textual knowledge is
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Novel Samples Method Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7
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Figure 4: The recognition results of several novel samples by the classifier with and without bidirectional knowledge connection,
denoted as “Baseline + L” and “Baseline”, respectively. In this experiment, 𝐾 = 1.

(a) China Cabinet (b) Red Wolf (c) Bouvier Des Flandres
Testing SampleSupport Sample Weight in the Second TrainingWeight in the First Training

Figure 5: The visualizations of our retraining strategy. We
use the T-SNE method [36] to visualize the distributions of
support samples, testing samples, and the classifier weights
of different training stages. In this experiment, 𝐾 = 1.

Table 3: Top-5 accuracies (%) in the evaluation of the bidirec-
tional knowledge connection on 𝑺1

novel.

Training under * 𝐾 = 1 𝐾 = 2 𝐾 = 5 𝐾 = 10 𝐾 = 20
(1) L𝑡 + L𝑣 61.3 69.3 77.0 80.5 82.8
(2) L𝑚 61.4 68.9 76.9 80.5 82.9
(3) L 61.8 69.6 77.1 80.7 83.5

insufficient to achieve a better result when limited samples. Mean-
while, the results of “Training under L𝑣” in Table 2 can hardly
improve the performances on large training samples𝐾 ≥ 5. Thus, it
provides the possibility of knowledge fusion in different modalities.
In this ablation study, we design three comparisons to evaluate
the effectiveness of the bidirectional knowledge connection: (1) an
offline fusion that fuses the results of two sub-models trained under
the visual and the textual loss, i.e., L𝑣 and L𝑡 , independently. (2)
an online fusion that is trained only under the connection loss L𝑚 .
(3) an online fusion which is trained under the whole loss L. As
depicted in Table 3, the fusion results of (2) and (3) are better than
that by separate training strategy with L𝑡 or L𝑣 in Table 1 and
2. Meanwhile, the performance of offline fusion is slightly better

Table 4: Top-5 accuracies (%) in the evaluation of the retrain-
ing strategy on 𝑺1

novel.

Method 𝐾 = 1 𝐾 = 2 𝐾 = 5 𝐾 = 10 𝐾 = 20
First Training 61.8 69.6 77.1 80.7 83.4

Second Training 62.5 70.0 77.2 80.8 83.4

than that of “Training under L𝑚” since there is more supervision
(L𝑣 and L𝑡 ) in the separate training process. Furthermore, our
bidirectional knowledge fusion “Training under L” shows the best
performance. Specifically, it achieves 0.5%-1% accuracy improve-
ments for 𝑺1

novel. It also indicates that our bidirectional connection
provides a communication channel for capturing knowledge from
different modalities.

In Figure 4, we show several examples of the results by the
network with the bidirectional knowledge connection (denoted as
“Baseline + L”) and the network without it (denoted as “Baseline”).
It is easy to see that the method of “Baseline + L” obtains the
top-ranked results that are more relevant to the input objects. For
example, when the input novel image is a kind of fruit (“Pineapple”
here), all the top 5 results of “Baseline + L” are fruit labels, but the
first and the second results (“Mixing bowl” and “Chocolate sauce”)
of “Baseline” are mislead by the textures of the bowl. This figure
shows the effectiveness of the bidirectional knowledge connection.

4.3.3 Retraining Strategy. (RQ3)
In this ablation, we retrain our network with a new adjacency

matrix �̃� calculated from �̃� 𝑣 + 𝜆�̃� of the first training stage and
compare the performances of different training stages in Table 4.
We can find the performances of the second training stage are better
than that in the first training stage, especially on 1-shot and 2-shot
tasks, which are significant for FSL tasks.

In Figure 5, we show the distribution of several novel features
and the weights from different training stages. It is easy to see that
the weights of the first training stage (♦) are closed to the support
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Table 5: Top-5 accuracies (%) by different methods on 𝑺2
novel of ImageNet-FS.

Method with ResNet-10 Method with ResNet-50
𝐾 = 1 𝐾 = 2 𝐾 = 5 𝐾 = 10 𝐾 = 20 𝐾 = 1 𝐾 = 2 𝐾 = 5 𝐾 = 10 𝐾 = 20

Prototypical Nets [34] 39.3 54.4 66.3 71.2 73.9 49.5 59.9 70.1 75.1 77.6
Matching Networks [39] 43.6 54.0 66.0 72.5 76.9 49.6 64.0 74.4 78.1 80.0
SGM + Hallucination[16] 44.3 56.0 69.7 75.3 78.6 52.8 64.4 77.3 82.0 84.9
wDAE-GNN [11] 48.0 59.7 70.3 75.0 77.8 —— —— —— —— ——
KTCH [23] —— —— —— —— —— 58.1 67.3 77.6 81.8 84.2
IDeMe-Net [3] 51.0 60.9 70.4 73.4 75.1 60.1 69.6 77.4 80.2 ——
KTN [26] 54.7 61.7 70.4 75.0 77.9 61.9 68.7 76.4 80.1 82.4
Our MDKT 55.2 63.2 70.8 75.0 78.2 62.6 70.1 77.6 81.5 83.7

Table 6: Top-5 accuracies (%) by different methods on the
novel categories from ImNet.

Method Novel Categories
𝐾 = 1 𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5

NN (from [23]) 34.2 43.6 48.7 52.3 54.0
PPA [27] 33.0 43.1 48.5 52.5 55.4
LSD [5] 33.2 44.7 50.2 53.4 57.6
KTCH [23] 39.0 48.9 54.9 58.7 60.5
KGTN [1] 42.5 50.3 55.4 58.4 60.7
Our Baseline 36.1 47.9 54.0 58.1 60.8
Our MDKT 44.4 53.3 58.1 61.7 63.8

Table 7: Top-1 accuracies (%) by different methods on the
testing novel categories of Mini-ImageNet.

Method 𝐾 = 1 𝐾 = 5
Meta-Baseline [2] 63.17 ± 0.23% 79.26 ± 0.17%
MetaFun [48] 64.13 ± 0.13% 80.82 ± 0.17%
P-Transfer [33] 64.21 ± 0.77% 80.38 ± 0.59%
MMKD [42] 64.40 ± 0.43% 83.05 ± 0.28%
IEPT [52] 67.05 ± 0.44% 82.90 ± 0.30%
FRN [44] 66.45 ± 0.19% 82.83 ± 0.13%
BML [54] 67.04 ± 0.63% 83.63 ± 0.29%
Our MDKT 67.39 ± 0.76% 82.25 ± 0.53%

samples (▲) and the weights of the second training stage (■) tend
to the center of the testing samples (•). This figure clearly shows
the effectiveness of the retraining strategy.

4.4 Comparisons with Other Methods (RQ4)
ImageNet-FS. The compared methods include Prototypical Nets
(PN) [34], Matching Networks (MN) [39], SGM [16], wDAE-GNN
[11], KTCH [23], IDeMe-Net [3], and KTN [26]. All the results with
ResNet-10 and ResNet-50 on 𝑺2

novel are listed in Table 5. Our method
outperforms others in the cases of small training samples (𝐾 < 10)
and achieves comparable results with SGM [16] on 𝐾 ≥ 10 tasks.
Note that SGM is a hallucination method which expand the training
set for classifier training.
ImNet. The compared methods include Nearest Neighbor (NN)
[23], PPA [27], LSD [5], KTCH [23], and KGTN [1]. The Top-5

accuracies by our and these methods on the novel categories are
listed in Table 6. We can see that our method performs best on this
dataset in all the cases. Compared with the “Baseline” which uses
one-layer perceptron as visual classifier, our method achieves the
huge improvements on all tasks, especially on 1-shot. Compared
with the previous best model KGTN, our improvements for 𝐾 = 1,
2, 3, 4, and 5 are 1.9%, 3.0%, 2.7%, 3.3%, and 3.1%, respectively.
Mini-ImageNet. The compared methods include Meta-Baseline
[2], MetaFun [48], P-Transfer [33], MMKD [42], IEPT [52], FRN [44],
and BML [54]. As shown in Table 7, our MDKT achieves nearly
3-4% improvements for the baseline method Meta-Baseline (we use
its extracted features as our model input). Particularly, MDKT that
uses pre-trained features can even achieve competitive performance
to BML which is an end-to-end learning method.

5 CONCLUSION
In this paper, we have proposed multi-directional knowledge trans-
fer to tackle the problem of few-shot learning. Specifically, (1) two
intra-modality unidirectional knowledge transfer strategies in the
visual and the textual space calibrate the distributions of the novel
categories from the base categories. (2) the inter-modality bidirec-
tional connection reduces the influences of semantic gaps between
the visual and the textual knowledge. (3) an online fusion and re-
training strategy both improve the prediction accuracy of the novel
categories. The extensive experiments have demonstrated the effec-
tiveness of our proposed method on three benchmarks, especially
on 1-shot and 2-shot training tasks.

Note that the improvements of our MDKT gradually decreased
when the number of support samples gradually increased. It is
because the visual sample brings rich descriptions for training,
which leads the classifier to ignore the relatively weak knowledge
of semantics. In our future work, we will focus on boosting the
performances on tasks with a large number of support samples by
using such semantics.
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